Materials and methods

1 Vector construction

For the construction of pW501, the pKSE401 vector (Xing et al., 2014) was chosen as the backbone. The single guide RNA was removed by HindIII digestion and re-ligation. Then the Cas9 gene was removed by Xbal and Sacl digestion, and replaced with DsRed by Gibson Assembly using the primer pair DsRed-F-Xbal/ DsRed-R-Sacl.

For the construction of vectors with DRs, the UBQ10 promoter and Hsp terminator were amplified with UBQ10p-F/UBQ10p-R and HspT-F/HspT-R, respectively, from the Arabidopsis thaliana Col-0 genome DNA. These fragments were introduced into the pW501 vector digested with HindIII by Gibson Assembly. For the expression of WUS, a DNA fragment containing the Nos promoter, WUS coding sequence and CaMV terminator was synthesized (Supplemental sequences). Then the WUS expressing cassette was amplified with the primer pair WUS-F/WUS-R and inserted into pW501 by Gibson Assembly. Other DRs were amplified with the corresponding primers and inserted into the Kpnl site between the UBQ10 promoter and Hsp terminator.

For the coding optimization of AtGRF5, the codons rarely used in Arabidopsis, were replaced with synonymous codons with high usage frequencies. Two Bsal sites in the AtGRF5 sequence were also removed. The final sequence fragment (listed in Supplemental sequences) was synthesized at Sangon Biotech.

For the genome editing vector, the GRF5 expression cassette was amplified with primers ZHW512-F/ZHW512-R and inserted into the EcoRI site of the CRISPR/Cas9 genome editing vector pHSE401, generating the pZHW512 vector. Then two spacers targeting CIPDS were added by PCR with primers ClaPDS-F/ClaPDS-R using the pCBC-DT1T2 plasmid (Xing et al.,
2014) as the template, and the PCR product was inserted into the pZHW512 vector digested with Bsal by Gibson Assembly.

All of the primers are listed in Supplemental Tab. 1.

2 Watermelon transformation

The genetic transformation was conducted as previously described with slight modifications (Tian et al., 2017). In brief, surface-sterilized watermelon seeds were sown on Murashige and Skoog (MS) solid medium for 3 days in the dark. Then the middle parts of the cotyledons without embryo were cut into 1.5 $\times 1.5 \mathrm{~mm}$ pieces as explants. A. tumefaciens strains harboring the indicated binary vectors were co-cultivated with the cotyledon fragments in the dark for 3 days on MS solid medium containing $1.5 \mathrm{mg} / \mathrm{L} 6-\mathrm{BA}$. Then the cotyledon fragments were transferred onto selective induction medium containing $2 \mathrm{mg} / \mathrm{L}$ 6-BA, $0.2 \mathrm{mg} / \mathrm{L} I \mathrm{AA}, 50 \mathrm{mg} / \mathrm{L}$ Kan, and $100 \mathrm{mg} / \mathrm{L}$ Timentin. The regenerated adventitious buds were excised and transferred onto elongation medium containing $0.1 \mathrm{mg} / \mathrm{L} 6-\mathrm{BA}, 0.01 \mathrm{mg} / \mathrm{L}$ NAA, $100 \mathrm{mg} / \mathrm{L}$ Timentin, and $50 \mathrm{mg} / \mathrm{L}$ Kan. Plants with full leaves and stems were transferred to rooting medium containing $1 \mathrm{mg} / \mathrm{L}$ IBA and $100 \mathrm{mg} / \mathrm{L}$ Timentin. Positive transgenic events were detected using the hand-held dual-wavelength fluorescent protein excitation light source LUYOR-3415RG (Luyor Corporation, Shanghai, China) or Zeiss SteREO Discovery.V20.

3 Detection of mutations

Genomic DNA was extracted from the transgenic watermelon plants using the CTAB method. Detection of the transgene was performed with the primers Cas9-F2/Cas9-R2 and DsRed-F3/ DsRed-R3. The PCR products with the primer pair PDS-T2-F/PDS-T2-R are used as the internal control. The target regions were amplified with two pairs of primers PDS-T1-F/PDS-T1-R and

PDS-T2-F/PDS-T2-R. PCR products were sent for Sanger sequencing at Sangon Biotech to determine the types of mutation. The mutation types are decoded by the DSDecodeM program (http://skl.scau.edu.cn/dsdecode/). The primers used are listed in Supplementary Tab. 1.

Supplemental References

Tian, S., Jiang, L., Gao, Q., Zhang, J., Zong, M., Zhang, H., Ren, Y., Guo, S., Gong, G., Liu, F., et al. (2017). Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36, 399-406.
Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., and Chen, Q.J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. Bmc Plant Biol 14, 327.

Fig. S1 Verification of transgenic plants and the effect of different Agrobacterium strains on watermelon transformation. (a). PCR verification of the transgenic lines. M, marker. Left number indicate the size of markers. Positive and negative indicate DsRed florescent positive and negative plants. The PCR product of 424 bp corresponding to the DsRed sequence is shown in the upper panel. CIPDS is used as the internal control. (b). The transformation efficiency of watermelon cultivar WW150 using different Agrobacterium tumefaciens strains. carrying the pW501 plasmid. (c). The transformation efficiencies of watermelon cultivar WW150 obtained using different Agrobacterium strains carrying the pW502 plasmid. (d). AtGRF5-mediated transformation of a second watermelon cultivar 83166.

Table S1 List of primers used in this study.

Primers	Sequence
DsRed-F-	aacgatactcgagtaatctagaatggcctcctccgagaacgtc
Xbal	
DsRed-R-	tacgaacgaaagctctgagctcctacaggaacaggtggtggcg
Sacl	aacgacggccagtgccactagtgatcaggatattcttgtttaag
UBQ10p-F	UBQ10p-R
tcatatggtaccctgttaatcagaaaactcaga	
HspT-F	ACAGGGTACCatatgaagatgaagatgaaatat
HspT-R	tgttgacctgcaggcatgccttatcttaatcatattcca
WUS-F	aaaacgacggccagtgcccctagggaaccgcaacgttgaaggagcca
WUS-R	aacaagaatatcctgatcactagtttgatcttgaaagat
BBM -F	tgagttttctgattaacagatggccactgtgaacaactggctc
BBM-R	atttcatcttcatcttcatatttaagtgtcgttccagacactgaa
GRF5-F	gttttctgattaacagatgatgagtctaagtggaagtagcggga
GRF5-R	catcttcatcttcatatttagctaccagtgtcgagtcttgagtg
GRF4-F	GTTTTTCTGATTAACAGatggcgatgccgtatgcctctctt
GRF4-R	gcatGGCAGCGGCCGCgtacatctcgccggcgaacagcat
GIF1-F	cGCGGCCGCTGCCatgcagcagcaacacctgatgcaga
GIF1-R	catcttcatcttcatatctagctgccttcctcctcggtgcc
ipt-F	gttttctgattaacagatggatcttagacttatttt
ipt-R	atcttcatcttcatatttaacacattccaaaaggaggtc
ZHW512-F	ccaattgattgacaacgaattcGATCAGGATATTCTTGTTTA
ZHW512-R	aacagctatgacatgattacCCTAGGcttatctttaatcatattcc
ClaPDS-F	agagtcgaagtagtgattgaatggagaacagcatctcgggtttagagctagaaatagc
ClaPDS-R	ctatttctagctctaaaacggcaccactctagcggcatcaatctcttagtcgactctac
PDS-T1-F	ATGAATTTCGGGAAATTGGGTG
PDS-T1-R	TTTGGGTCACAAGACGGTCTTC
PDS-T2-F	GGATTGGAGCTAAGATTTAGTTG
PDS-T2-R	CAATGGTTTACTGGGACGTGCA
Cas9-R2	CCTCACATCGTAAACCTTGTAGTCCC
Cas9-F2	TCTACCTGTACTACCTCCAGAATGGC
DsRed-F3	GGCTCCAAGGTGTACGTGAAG
DsRed-R3	TGTAGTCCTCGTTGTGGGAGG

Supplementary Sequences

The complete coding sequence for different versions of GRF5, and the synthetic WUS expressing cascades.

>AtGRF5

ATGATGAGTCTAAGTGGAAGTAGCGGGAGAACAATAGGAAGGCCTCCATT TACACCAACACAATGGGAAGAACTGGAACATCAAGCTCTAATCTACAAGTA CATGGTTTCTGGTGTTCCTGTCCCACCTGAACTCATCTTCTCCATTAGAAG ATCATTGGACACTTCCTTGGTTTCTAGGCTCCTTCCTCACCAATCCCTTGG ATGGGGGTGTTACCAGATGGGATTTGGGAGAAAACCAGATCCAGAGCCA GGAAGATGCAGAAGAACAGATGGTAAGAAATGGAGATGCTCAAGAGAGG CTTACCCAGATTCTAAGTACTGTGAAAAACACATGCACAGAGGAAGAAAC CGTGCTAGAAAATCTCTTGATCAGAATCAGACAACAACAACTCCTTTAACA TCACСАТСТСТСТСАТTСАССАAСAACAACAACCCAAGTCCTACCTTGTCA TCTTCTTCTTCATCTAATTCATCTTCTACTACTTATTCTGCTTCATCTTCATC TATGGATGCTTACAGTAACAGTAATAGGTTTGGGCTTGGTGGAAGTAGTAG TAACACTAGAGGTTATTTCAACAGCCATTCTCTTGATTATCCTTATCCTTCT ACTTCACCTAAACAACAACAACAAACTCTTCATCATGCTTCCGCTTTGTCA CTTCATCAAAATACTAATTCTACTTCTCAGTTCAATGTCTTAGCTTCTGCTA CTGACCACAAAGACTTCAGGTACTTTCAAGGGATTGGGGAGAGAGTTGG AGGAGTTGGGGAGAGAACGTTCTTTCCAGAAGCATCAAGATCATTTCAAG ATTCTCСATACCATCATCACCAACAACCGTTAGCAACAGTGATGAATGATC CGTACCACCACTGTAGTACTGATCATAATAAGATTGATCATCATCACACATA CTCTTCATCTTCATCATCTCAACATCTCCATCACGACCATGATCATAGACA GCAACAGTGTTTTGTTTTGGGTGCTGACATGTTCAACAAACCTACAAGAA GTGTCCTTGCAAACTCATCAAGACAAGATCAAAATCAAGAAGAAGATGAG AAAGATTCATCAGAGTCTTCAAAGAAGTCTCTACATCACTTCTTTGGTGAG GACTGGGCACAGAACAAGAACAGTTCAGATTCTTGGCTTGACCTTTCTTC CCACTCAAGACTCGACACTGGTAGCTAA

[^0]CTGACCACAAAGACTTCAGGTACTTTCAAGGGATTGGGGAGAGAGTTGG AGGAGTTGGGGAGAGAACGTTCTTTCCAGAAGCATCAAGATCATTTCAAG ATTCTCCATACCATCATCACCAACAACCGTTAGCAACAGTGATGAATGATC CGTACCACCACTGTAGTACTGATCATAATAAGATTGATCATCATCACACATA СТСТTСАТСТTСАТСАТСТСАAСАТСТССАТСACGACCATGATCATAGACA GCAACAGTGTTTTGTTTTGGGTGCTGACATGTTCAACAAACCTACAAGAA GTGTCCTTGCAAACTCATCAAGACAAGATCAAAATCAAGAAGAAGATGAG AAAGATTCATCAGAGTCTTCAAAGAAGTCTCTACATCACTTCTTTGGTGAG GACTGGGCACAGAACAAGAACAGTTCAGATTCTTGGCTTGACCTTTCTTC CCACTCAAGACTCGACACTGGTAGCTAA
>WUS expressing cascade (Nos promoter-WUS-CaMV terminator) GAACCGCAACGTTGAAGGAGCCACTCAGCCGCGGGTTTCTGGAGTTTAA TGAGCTAAGCACATACGTCAGAAACCATTATTGCGCGTTCAAAAGTCGCC TAAGGTCACTATCAGCTAGCAAATATTTCTTGTCAAAAATGCTCCACTGAC GTTCCATAAATTCCCCTCGGTATCCAATTAAAGCTAGCTTCCACCATGGAG TGCAGGTCGACGGATCCatggcggccaatgcgggcggcggtggaacgggaggaggcagc ggcagcggcagcgtggctgcgccggcggtgtgccgccccagcggctcgcggtggacgccgacgccgg aacagatcaagatgctgaaggagctctactacggctgcggcatccggtcgcccagctcggagcagatcc agcgcatcaccgccatgctgcggcagcacggcaagatcgagggcaagaacgtcttctactggttccaga accacaaggcccgcgagcgccagaagcgccgcctcaccagcctcgacgtcaacgtgcccgccgccgg cgcggccgacgccaccaccagccaactcggcgtcctctcgctgtcgtcgccgccgccttcaggcgcggcg cctccctcgcccaccctcggcttctacgccgccggcaatggcggcggatcggctgtgctgctggacacgag ttccgactggggcagcagcggcgctgccatggccaccgagacatgettcctgcaggactacatgggcgtg acggacacgggcagctcgtcgcagtggccacgcttctcgtcgtcggacacgataatggcggcggccgcg gcgcgggcggcgacgacgcgggcgcccgagacgctccctctcttcccgacctgcggcgacgacggcgg cagcggtagcagcagctacttgccgttctggggtgccgcgtccacaactgccggcgccacttcttccgttgc gatccagcagcaacaccagctgcaggagcagtacagctttacagcaacagcaacagcacccagctgg ccggcaccggcaaccaagacgtatcggcaacagcagcagcagccgccgccctggagctgagcctcag ctcatggtgctccccttaccctgctgcagggagtatgtgagaattcGGTACGCTGAAATCACCAG TCTCTCTCTACAAATCTATCTCTCTCTATTTTCTCCATAAATAATGTGTGAGT AGTTTCCCGATAAGGGAAATTAGGGTTCTTATAGGGTTTCGCTCATGTGTT GAGCATATAAGAAACCCTTAGTATGTATTTGTATTTGTAAAATACTTCTATCA ATAAAATTTCTAATTCCTAAAACCAAAATCCAGTACTAAAATCCAGATCTCC TAAAGTCCCTATAGATCTTTGTCGTGAATATAAACCAGACACGAGACGACT AAACCTGGAGCCCAGACGCCGTTCGAAGCTAGAAGTACCGCTTAGGCAG GAGGCCGTTAGGGAAAAGATGCTAAGGCAGGGTTGGTTACGTTGACTCC CCCGTAGGTTTGGTTTAAATATGATGAAGTGGACGGAAGGAAGGAGGAA GACAAGGAAGGATAAGGTTGCAGGCCCTGTGCAAGGTAAGAAGATGGAA ATTTGATAGAGGTACGCTACTATACTTATACTATACGCTAAGGGAATGCTTG TATTTATACCCTATACCCCCTAATAACCCCTTATCAATTTAAGAAATAATCCG CATAAGCCCCCGCTTAAAAATTGGTATCAGAGCCATGAATAGGTCTATGAC CAAAACTCAAGAGGATAAAACCTCACCAAAATACGAAAGAGTTCTTAACTC TAAAGATAAAAGATCTTTCAAGATCAAA

[^0]: >AtGRF5 codon optimized
 ATGATGAGTCTAAGTGGAAGTAGCGGGAGAACAATAGGAAGGCCTCCATT TACACCAACACAATGGGAAGAACTGGAACATCAAGCTCTAATCTACAAGTA CATGGTTTCTGGTGTTCCTGTCCCACCTGAACTCATCTTCTCCATTAGAAG ATCATTGGACACTTCCTTGGTTTCTAGGCTCCTTCCTCACCAATCCCTTGG ATGGGGGTGTTACCAGATGGGATTTGGGAGAAAACCAGATCCAGAGCCA GGAAGATGCAGAAGAACAGATGGTAAGAAATGGAGATGCTCAAGAGAGG CTTACCCAGATTCTAAGTACTGTGAAAAACACATGCACAGAGGAAGAAAC CGTGCTAGAAAATCTCTTGATCAGAATCAGACAACAACAACTCCTTTAACA TCACCATCTCTCTCATTCACCAACAACAACAACCCAAGTCCTACCTTGTCA TCTTCTTCTTCATCTAATTCATCTTCTACTACTTATTCTGCTTCATCTTCATC TATGGATGCTTACAGTAACAGTAATAGGTTTGGGCTTGGTGGAAGTAGTAG TAACACTAGAGGTTATTTCAACAGCCATTCTCTTGATTATCCTTATCCTTCT ACTTCACCTAAACAACAACAACAAACTCTTCATCATGCTTCCGCTTTGTCA CTTCATCAAAATACTAATTCTACTTCTCAGTTCAATGTCTTAGCTTCTGCTA

