Bioceramic scaffolds with two-step internal/external modification of copper-containing polydopamine enhance antibacterial and alveolar bone regeneration capability

Xiaojian JIANG¹, Lihong LEI¹, Weilian SUN¹, Yingming WEI¹, Jiayin HAN¹, Shuaiqi ZHONG¹, Xianyan YANG², Zhongru GOU^{2 \boxtimes}, Lili CHEN^{1 \boxtimes}

Table S1 Element proportion of bioceramic powders

Element	Content (10 ⁻⁶)	Mol proportion (%)	
Ca	33.01	93.26	
Mg	1.43	6.73	

Table S2 Concentration of active ions released at different stages of immersion

Time (d)	Ion —		Ion concentration (μg/mL)			
		CS	CS*P	CS@PDA	CS*P@PDA	
0–1	Ca ²⁺	77.33	74.33	76.17	79.17	
	Mg^{2+}	6.52	6.05	4.25	6.07	
	Si ⁴⁺	44	52.5	42.33	58.33	
	Cu ²⁺	0.02	0.08	8.65	9.71	
1–3	Ca ²⁺	144.17	208.84	125.5	193.33	
	Mg^{2^+}	7.11	8.78	6.23	6.75	
	Si ⁴⁺	123.5	116.67	92	97.84	
	Cu^{2+}	0.03	0.2	0.88	1.3	
3–5	Ca ²⁺	193.83	262.5	134.66	178.67	
	Mg^{2+} Si^{4+}	6.8	6.75	3.9	5.96	
		67	69.83	56	80.16	
	Cu ²⁺	-0.01	0.05	-0.04	0.01	

¹Department of Oral Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China

²Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang–California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China

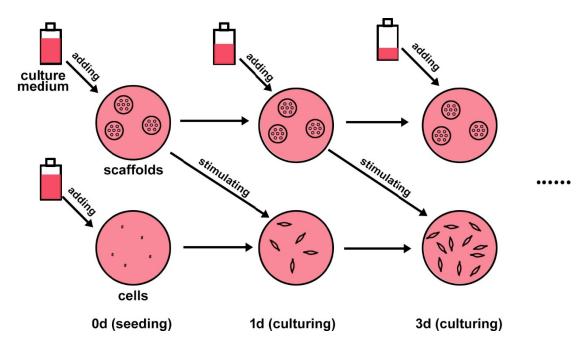


Fig. S1 Schematic diagram of obtaining scaffold extract to stimulate cells. The scaffolds were soaked in culture medium at the ratio of 0.1 g/mL to obtain the extract during the same period of cell seeding (0 d). The next day, the extracts were used to stimulate cells and refreshed every two days. Subsequently fresh culture mediums were added to the extract plate for continue extraction.

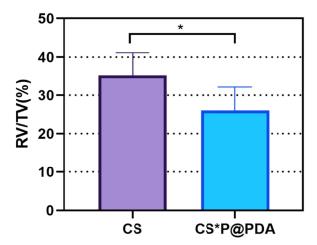


Fig. S2 Residual scaffold volume after four weeks of scaffolds implantation. RV/TV: residual volume/total volume. *P <0.05.