Full Text:  <2479>

Summary:  <1672>

CLC number: TP18; R329.2

On-line Access: 2018-09-04

Received: 2016-09-13

Revision Accepted: 2017-03-15

Crosschecked: 2018-06-15

Cited: 0

Clicked: 9112

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

T T Dhivyaprabha

http://orcid.org/0000-0002-8603-6826

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Synergistic fibroblast optimization: a novel nature-inspired computing algorithm


Author(s):  T T Dhivyaprabha, P Subashini, M Krishnaveni

Affiliation(s):  Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India

Corresponding email(s):  ttdhivyaprabha@gmail.com, mail.p.subashini@gmail.com, krishnaveni.rd@gmail.com

Key Words:  Synergistic fibroblast optimization (SFO), Fitness analysis, Convergence, Benchmark suite, Monk’s dataset


Share this article to: More |Next Paper >>>

T T Dhivyaprabha, P Subashini, M Krishnaveni. Synergistic fibroblast optimization: a novel nature-inspired computing algorithm[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601553

@article{title="Synergistic fibroblast optimization: a novel nature-inspired computing algorithm",
author=" T T Dhivyaprabha, P Subashini, M Krishnaveni",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1601553"
}

%0 Journal Article
%T Synergistic fibroblast optimization: a novel nature-inspired computing algorithm
%A T T Dhivyaprabha
%A P Subashini
%A M Krishnaveni
%J Frontiers of Information Technology & Electronic Engineering
%P 815-833
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1601553"

TY - JOUR
T1 - Synergistic fibroblast optimization: a novel nature-inspired computing algorithm
A1 - T T Dhivyaprabha
A1 - P Subashini
A1 - M Krishnaveni
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 815
EP - 833
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1601553"


Abstract: 
The evolutionary algorithm, a subset of computational intelligence techniques, is a generic population-based stochastic optimization algorithm which uses a mechanism motivated by biological concepts. Bio-inspired computing can implement successful optimization methods and adaptation approaches, which are inspired by the natural evolution and collective behavior observed in species, respectively. Although all the meta-heuristic algorithms have different inspirational sources, their objective is to find the optimum (minimum or maximum), which is problem-specific. We propose and evaluate a novel synergistic fibroblast optimization (SFO) algorithm, which exhibits the behavior of a fibroblast cellular organism in the dermal wound-healing process. Various characteristics of benchmark suites are applied to validate the robustness, reliability, generalization, and comprehensibility of SFO in diverse and complex situations. The encouraging results suggest that the collaborative and self-adaptive behaviors of fibroblasts have intellectually found the optimum solution with several different features that can improve the effectiveness of optimization strategies for solving non-linear complicated problems.

协同纤维母细胞优化

概要:作为计算智能技术的一个分支,进化算法是一种由生物学概念启发而来的基于种群的随机优化通用算法。通过生物启发式计算,可实现源于自然进化的优化方法和源于集体行为的适应方法。尽管元启发算法的灵感来源各不相同,它们的目标都是在特定问题中寻找最优解(最大或最小)。提出一种新的协同纤维母细胞优化(synergistic fibroblast optimization, SFO)算法并对其评估。该算法模拟了成纤维细胞生物在皮肤伤口愈合过程中的行为。采用基准套件的各种特性,在多种复杂情形下验证了SFO算法的鲁棒性、可靠性、普适性和可理解性,得到了令人鼓舞的结果。结果表明,凭借纤维母细胞的协作和自适应行为,SFO智能地找到了多个不同特征的最优解,从而提高了非线性复杂问题中优化策略的有效性。

关键词组:协同纤维母细胞优化;适应性分析;收敛;基准套件;僧侣问题数据集

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Balouek-Thomert D, Bhattacharya AK, Caron E, et al., 2016. Parallel differential evolution approach for cloud workflow placements under simultaneous optimization of multiple objectives. Proc IEEE Congress on Evolutionary Computation, p.822-829.

[2]Banerjee S, Bharadwaj A, Gupta D, et al., 2012. Remote sensing image classification using artificial bee colony algorithm. Int J Comput Sci Inform, 2(3):2231-5292

[3]Chen GHG, Rockafellar RT, 1997. Convergence rates in forward-backward splitting. SIAM J Optim, 7(2):421-444.

[4]Chuang LY, Chang HW, Tu CJ, et al., 2008. Improved binary PSO for feature selection using gene expression data. Comput Biol Chem, 32(1):29-38.

[5]Colaco MJ, Dulikravich GS, 2009. A survey of basic deterministic, heuristic and hybrid methods for single objective optimization and response surface generation. In: Orlande HRB, Fudym O, Maillet D, et al. (Eds.), Thermal Measurements and Inverse Techniques. CRC Press, Boca Raton, p.355-406.

[6]Cruz C, Gonzáez JR, Pelta DA, 2011. Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput, 15(7):1427-1448.

[7]Dallon J, Sherratt J, Maini P, et al., 2000. Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair. Math Med Biol, 17(4):379-393.

[8]Das S, Suganthan PN, 2011. Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput, 15(1): 4-31.

[9]Das S, Abraham A, Konar A, 2008. Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man Cybern A, 38(1):218-237.

[10]Derrac J, García S, Hui S, et al., 2013. Statistical analysis of convergence performance throughout the evolutionary search: a case study with SaDE-MMTS and Sa-EPSDE-MMTS. Proc IEEE Symp on Differential Evolution, p.151-156.

[11]Dhivyaprabha TT, Subashini P, Krishnaveni M, 2016. Computational intelligence based machine learning methods for rule-based reasoning in computer vision applications. Proc IEEE Symp Series on Computational Intelligence, p.1-8.

[12]DiMilla PA, Barbee K, Lauffenburger DA, 1991. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J, 60(1):15-37.

[13]Eberhart R, Kenndy J, 1995. A new optimizer using particle swarm theory. IEEE 6th Int Symp on Micro Machine and Human Science, p.39-43.

[14]Eberhart R, Shi YH, 2001. Particle swarm optimization: developments, applications and resources. Proc Congress on Evolutionary Computation, p.81-86.

[15]Goldbarg EFG, de Souza GR, Goldbarg MC, 2006. Particle swarm for the traveling salesman problem. Proc 6th Evolutionary Computation in Combinatorial Optimization, p.99-110.

[16]Gupta S, Bhardwaj S, 2013. Rule discovery for binary classification problem using ACO based antminer. Int J Comput Appl, 74(7):19-23.

[17]He J, Lin GM, 2016. Average convergence rate of evolutionary algorithms. IEEE Trans Evol Comput, 20(2):316-321.

[18]Herrera F, Lozano M, Molina D, 2009. Test Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and Other Metaheuristics for Large Scale Continuous Optimization Problems. Technical Report, University of Granada, Spain.

[19]Izakian H, Ladani BT, Abraham A, et al., 2010. A discrete particle swarm approach for grid job scheduling. Int J Innov Comput Inform Contr, 6(9):1-15.

[20]Jamil M, Yang XS, 2013. A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim, 4(2):150-194.

[21]Jana ND, Hati AN, Darbar R, et al., 2013. Real parameter optimization using Levy distributed differential evolution. Proc 5th Int Conf on Pattern Recognition and Machine Intelligence, p.605-613.

[22]Khaparde AR, Raghuwanshi MM, Malik LG, 2016. Empirical analysis of differential evolution algorithm with rotational mutation operator. Int J Latest Trends Eng Technol, 6(3):170-176.

[23]Khoshnevisan B, Rafiee S, Omid M, et al., 2015. Developing a fuzzy clustering model for better energy use in farm management systems. Renew Sustain Energy Rev, 48(3): 27-34.

[24]Krishnaveni M, Subashini P, Dhivyaprabha TT, 2016. A new optimization approach—SFO for denoising digital images. Proc Int Conf on Computation System and Information Technology for sustainable Solutions, p.34-39.

[25]Levey AS, Eckardt KU, Tsukamoto Y, et al., 2005. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidn Int, 67(6):2089-2100.

[26]Liang JJ, Qu BY, Suganthan PN, 2013. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Technical Report 201 311, Zhengzhou University, Zhengzhou, and Nanyang Technological University, Singapore.

[27]Marrow P, 2000. Nature-inspired computing technology and applications. BT Technol J, 18(4):13-23.

[28]McCaffrey JD, 2012. Simulated protozoa optimization. Proc 13th Int Conf on Information Reuse & Integration, p.179-184.

[29]McDougall S, Dallon J, Sherratt J, et al., 2006. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Phil Trans Royal Soc A, 364(1843):1385-1405.

[30]Mo HW, 2012. Ubiquity Symposium: evolutionary computation and the processes of life: evolutionary computation as a direction in nature-inspired computing. Ubiquity, 2012:1-9.

[31]Niu B, Zhu YL, He XX, et al., 2007. MCPSO: a multi-swarm cooperative particle swarm optimizer. Appl Math Comput, 185(2):1050-1062.

[32]Poli R, Kennedy J, Blackwell T, 2007. Particle swarm optimization: an overview. Swarm Intell, 1(1):33-57.

[33]Pooranian Z, Shojafar M, Abawajy JH, et al., 2015. An efficient meta-heuristic algorithm for grid computing. J Comb Optim, 30(3):413-434.

[34]Qin AK, Huang VL, Suganthan PN, 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput, 13(2): 398-417.

[35]Rajam SP, Balakrishnan G, 2012. Recognition of Tamil sign language alphabet using image processing to aid deaf-dumb people. Proc Eng, 30:861-868.

[36]Rodemann HP, Rennekampff HO, 2011. Functional diversity of fibroblasts. In: Mueller MM, Fusenig NE (Eds.), Tumor-Associated Fibroblasts and Their Matrix. Springer, Dordrecht, p.23-36.

[37]Sajjadi S, Shamshirband S, Alizamir M, et al., 2016. Extreme learning machine for prediction of heat load in district heating systems. J Energy Build, 122:222-227.

[38]Sedighizadeh D, Masehian E, 2009. Particle swarm optimization methods, taxonomy and applications. Int J Comput Theor Eng, 1(5):486-502.

[39]Shamekhi A, 2013. An improved differential evolution optimization algorithm. Int J Res Rev Appl Sci, 15(2): 132-145.

[40]Snáel V, Krömer P, Abraham A, 2013. Particle swarm optimization with protozoic behaviour. Proc IEEE Int Conf on Systems, Man, and Cybernetics, p.2026-2030.

[41]Stebbings H, 2001. Cell Motility. Encyclopedia of Life Sciences. Encyclopedia of Life Sciences. Nature Publishing Group, London.

[42]Storn R, 2008. Differential evolution research—trends and open questions. In: Chakraborty UK (Ed.), Advances in Differential Evolution. Article 143. Springer, Berlin.

[43]Storn R, Price K, 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim, 11(4):341-359.

[44]Subashini P, Dhivyaprabha TT, Krishnaveni M, 2017. Synergistic fibroblast optimization. Proc Artificial Intelligence and Evolutionary Computations in Engineering Systems, p.285-294.

[45]Tanweer MR, Suresh S, Sundararajan N, 2015. Self regulating particle swarm optimization algorithm. Inform Sci, 294: 182-202.

[46]Tanweer MR, Al-Dujaili A, Suresh S, 2016. Empirical assessment of human learning principles inspired PSO algorithms on continuous black-box optimization testbed. Proc 6th Int Conf on Swarm, Evolutionary, and Memetic Computing, p.17-28.

[47]van den Bergh F, Engelbrecht AP, 2006. A study of particle swarm optimization particle trajectories. J Inform Sci, 176(8):937-971.

[48]Wan X, Wang WQ, Liu JM, et al., 2014. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol, 14(1):1-13.

[49]Xu L, Bai JN, Li LM, 2015. Brain CT image classification based on improving harmony search algorithm optimize LSSVM. Metal Min Ind, 9:781-787

[50]Zhang K, Zhu WY, Liu J, et al., 2015. Discrete particle swarm optimization algorithm for solving graph coloring problem. Proc 10th Int Conf Bio-inspired Computing— Theories and Applications, p.643-652.

[51]Zhao HB, Feng LN, 2014. An improved adaptive dynamic particle swarm optimization algorithm. J Netw, 9(2): 488-494.

[52]Zhao SK, 2009. Performance Analysis and Enhancements of Adaptive Algorithms and Their Applications. PhD Thesis, Nanyang Technological University, Singapore.

[53]Zou DX, Gao LQ, Li S, et al., 2011. Solving 0-1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput, 11(2):1556-1564.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE