Full Text:  <2162>

Summary:  <1517>

CLC number: TH161+.7

On-line Access: 2018-08-06

Received: 2016-10-10

Revision Accepted: 2017-01-22

Crosschecked: 2018-06-08

Cited: 0

Clicked: 5830

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhen-yu Liu

http://orcid.org/0000-0003-2463-4553

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Assembly variation analysis of flexible curved surfaces based on Bézier curves


Author(s):  Zhen-yu Liu, Shi-en Zhou, Jin Cheng, Chan Qiu, Jian-rong Tan

Affiliation(s):  State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):  cjinpjun@zju.edu.cn

Key Words:  Assembly variation analysis, Feature points, Side lines, Flexible curved surfaces, Bézier curves


Share this article to: More <<< Previous Paper|Next Paper >>>

Zhen-yu Liu, Shi-en Zhou, Jin Cheng, Chan Qiu, Jian-rong Tan. Assembly variation analysis of flexible curved surfaces based on Bézier curves[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601619

@article{title="Assembly variation analysis of flexible curved surfaces based on Bézier curves",
author="Zhen-yu Liu, Shi-en Zhou, Jin Cheng, Chan Qiu, Jian-rong Tan",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1601619"
}

%0 Journal Article
%T Assembly variation analysis of flexible curved surfaces based on Bézier curves
%A Zhen-yu Liu
%A Shi-en Zhou
%A Jin Cheng
%A Chan Qiu
%A Jian-rong Tan
%J Frontiers of Information Technology & Electronic Engineering
%P 796-808
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1601619"

TY - JOUR
T1 - Assembly variation analysis of flexible curved surfaces based on Bézier curves
A1 - Zhen-yu Liu
A1 - Shi-en Zhou
A1 - Jin Cheng
A1 - Chan Qiu
A1 - Jian-rong Tan
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 796
EP - 808
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1601619"


Abstract: 
assembly variation analysis of parts that have flexible curved surfaces is much more difficult than that of solid bodies, because of structural deformations in the assembly process. Most of the current variation analysis methods either neglect the relationships among feature points on part surfaces or regard the distribution of all feature points as the same. In this study, the problem of flexible curved surface assembly is simplified to the matching of side lines. A methodology based on Bézier curves is proposed to represent the side lines of surfaces. It solves the variation analysis problem of flexible curved surface assembly when considering surface continuity through the relations between control points and data points. The deviations of feature points on side lines are obtained through control point distribution and are then regarded as inputs in commercial finite element analysis software to calculate the final product deformations. Finally, the proposed method is illustrated in two cases of antenna surface assembly.

基于Bézier曲线的柔性曲面装配变动分析

概要:在装配过程中,柔性零件表面特征会发生形状变化,相比刚性体,其变动分析复杂许多。现有柔性装配变动分析方法大多未考虑零件表面邻近点的相互关系,或者将零件表面上所有特征点的概率分布情况视为统一。本文将柔性曲面零件装配简化为边侧线匹配问题,提出基于Bézier曲线来表征曲面零件边侧线的方法,解决了柔性零件装配中考虑表面连续性的曲面零件装配变动分析问题。该方法利用控制点变动来获取零件边侧线上特征点的偏差,并将它们作为输入参数进行有限元分析,从而计算出最终产品变形量。通过天线表面装配的两个实例,对所提方法进行了验证。

关键词组:装配变动分析;特征点;边侧线;柔性曲面;Bézier曲线

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cai N, Qiao LH, 2011. Dimensional variation analysis of compliant sheet metal assembly. 2nd Int Conf on Digital Manufacturing and Automation, p.429-432.

[2]Camelio JA, Hu SJ, Marin SP, 2004. Compliant assembly variation analysis using component geometric covariance. J Manuf Sci Eng, 126(2):355-360.

[3]Chaumette D, 2006. Technical evaluation report. Meeting on multifunctional structures/integration of sensors and antennas, p.T1-T10. https://doi.org/10.14339/RTO-MP-AVT-141

[4]Choi W, Chung H, 2015. Variation simulation of compliant metal plate assemblies considering welding distortion. J Manuf Sci Eng, 137(3):031008.

[5]Gerbino S, Patalano S, Franciosa P, 2008. Statistical variation analysis of multi-station compliant assemblies based on sensitivity matrix. Int J Comput Appl Technol, 33(1): 12-23.

[6]Guo JK, Li BT, Liu ZG, et al., 2016. Integration of geometric variation and part deformation into variation propagation of 3-D assemblies. Int J Prod Res, 54(19):5708-5721.

[7]Huang WZ, Liu JY, Chalivendra V, et al., 2014. Statistical modal analysis for variation characterization and application in manufacturing quality control. IIE Trans, 46(5): 497-511.

[8]Lancaster HO, Seneta E, 2005. Chi-Square Distribution. John Wiley & Sons, New York, USA.

[9]Liao XY, Wang GG, 2005a. Employing fractals and FEM for detailed variation analysis of non-rigid assemblies. Int J Mach Tools Manuf, 45(4-5):445-454.

[10]Liao XY, Wang GG, 2005b. Wavelets-based method for variation analysis of non-rigid assemblies. Int J Mach Tools Manuf, 45(14):1551-1559.

[11]Lindau B, Wärmefjord K, Lindkvist L, et al., 2014. Method for handling model growth in nonrigid variation simulation of sheet metal assemblies. J Comput Inform Sci Eng, 14(3):031004.

[12]Liu J, Jin JH, Shi JJ, 2010. State space modeling for 3-D variation propagation in rigid-body multistage assembly processes. IEEE Trans Autom Sci Eng, 7(2):274-290.

[13]Liu SC, Hu SJ, 1997. Variation simulation for deformable sheet metal assemblies using finite element methods. J Manuf Sci Eng, 119(3):368-374.

[14]Marciniak Z, Duncan JL, Hu SJ, 2002. Mechanics of Sheet Metal Forming (2nd Ed.). Butterworth-Heinemann, Oxford, UK.

[15]Qu XT, Li XN, Ma Q, et al., 2016. Variation propagation modeling for locating datum system design in multi-station assembly processes. Int J Adv Manuf Technol, 86(5-8):1357-1366.

[16]Rocca P, Anselmi N, Massa A, 2014. Interval arithmetic for pattern tolerance analysis of parabolic reflectors. IEEE Trans Antennas Propag, 62(10):4952-4960.

[17]Tonks MR, Chase KW, 2004. Covariance modeling method for use in compliant assembly tolerance analysis. Int Design Engineering Technical Conf and Computers and Information in Engineering Conf, p.49-55.

[18]Yang Z, McWilliam S, Popov AA, et al., 2013. A probabilistic approach to variation propagation control for straight build in mechanical assembly. Int J Adv Manuf Technol, 64(5-8):1029-1047.

[19]Yu KG, Yang ZH, 2015. Assembly variation modeling method research of compliant automobile body sheet metal parts using the finite element method. Int J Automot Technol, 16(1):51-56.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE