Full Text:  <2008>

Summary:  <1452>

CLC number: TP277

On-line Access: 2019-07-08

Received: 2017-12-08

Revision Accepted: 2018-05-13

Crosschecked: 2019-06-11

Cited: 0

Clicked: 5704

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong Lei

http://orcid.org/0000-0003-0235-5203

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Message delay time distribution analysis for controller area network under errors


Author(s):  Lei-ming ZHANG, Yi-chao SUN, Yong LEI

Affiliation(s):  State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):  lmzhang@zju.edu.cn, syc_best@163.com, ylei@zju.edu.cn

Key Words:  Controller area network, Message delay, Probability distribution, Errors


Share this article to: More <<< Previous Paper|Next Paper >>>

Lei-ming ZHANG, Yi-chao SUN, Yong LEI. Message delay time distribution analysis for controller area network under errors[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1700815

@article{title="Message delay time distribution analysis for controller area network under errors",
author="Lei-ming ZHANG, Yi-chao SUN, Yong LEI",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1700815"
}

%0 Journal Article
%T Message delay time distribution analysis for controller area network under errors
%A Lei-ming ZHANG
%A Yi-chao SUN
%A Yong LEI
%J Frontiers of Information Technology & Electronic Engineering
%P 760-772
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1700815"

TY - JOUR
T1 - Message delay time distribution analysis for controller area network under errors
A1 - Lei-ming ZHANG
A1 - Yi-chao SUN
A1 - Yong LEI
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 760
EP - 772
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1700815"


Abstract: 
controller area network (CAN) is a widely used fieldbus protocol in various industrial applications. To understand the network behavior under errors for the optimal design of networked control systems, the message response time of the CAN network needs to be analyzed. In this study, a novel delay time distribution analysis method for the response messages is proposed when considering errors. In this method the complex message queues are decomposed into typical message patterns and cases. First, a stochastic fault model is developed, and the probability factor is defined to calculate the error distribution. Then the message delay time distribution for the single slave node configuration is analyzed based on the error distribution. Next, based on the delay time distribution analysis of typical patterns and cases, an analysis framework of message delay time distribution for the master/slave configuration is developed. The testbed is constructed and case studies are conducted to demonstrate the proposed methodology under different network configurations. Experimental results show that the delay time distributions calculated by the proposed method agree well with the actual observations.

控制器局域网在错误状态下的报文延时分布研究

摘要:控制器局域网(CAN)是一种广泛应用于各类工业场景的现场总线协议。为深入理解错误发生时的网络行为并优化网络控制系统设计,需分析CAN网络报文响应时间。本文在考虑错误的基础上,提出一种新颖的CAN网络报文延时分布分析方法,将复杂报文序列分解为典型报文模式和情形。首先开发随机故障模型并定义概率因子计算错误的分布形式,其次基于错误分布分析单个子节点布局下报文的延时分布。然后基于典型报文模式和情形的延时分布,开发多子节点布局下报文延时分布的分析框架。最后搭建实验平台,在不同网络设置下进行多组实验,展示和验证该方法。结果表明该方法计算出的报文延时分布与实际观测值一致。

关键词组:控制器局域网;报文延时;概率分布;错误

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bosch R, 1991. CAN Specification Version 2.0. Technical Report, Rober Bousch GmbH. http://esd.cs.ucr.edu/webres/can20.pdf

[2]Broster I, Burns A, Rodríguez-Navas G, 2005. Timing analysis of real-time communication under electromagnetic interference. Real-Time Syst, 30(1-2):55-81.

[3]Chen X, Liu LY, Lü WJ, et al., 2012. Modeling and analysis of response time of CAN bus based on queueing theory. J Tianjin Univ, 45(3):228-235 (in Chinese).

[4]Davis RI, Navet N, 2012. Controller area network (CAN) schedulability analysis for messages with arbitrary deadlines in FIFO and work-conserving queues. Proc $9^text{th}$ IEEE Int Workshop on Factory Communication Systems, p.33-42.

[5]Davis RI, Burns A, Bril RJ, et al., 2007. Controller area network (CAN) schedulability analysis: refuted, revisited and revised. Real-Time Syst, 35(3):239-272.

[6]Davis RI, Kollmann S, Pollex V, et al., 2011. Controller area network (CAN) schedulability analysis with FIFO queues. Proc 23rd Euromicro Conf on Real-Time Systems, p.45-56.

[7]Davis RI, Kollmann S, Pollex V, et al., 2013. Schedulability analysis for controller area network (CAN) with FIFO queues priority queues and gateways. Real-Time Syst, 49(1):73-116.

[8]Farsi M, Ratcliff K, Barbosa M, 1999. An overview of controller area network. Comput Contr Eng J, 10(3):113-120.

[9]Hansson HA, Nolte T, Norström C, et al., 2002. Integrating reliability and timing analysis of CAN-based systems. IEEE Trans Ind Electron, 49(6):1240-1250.

[10]Kumar M, Kumar A, Srividya VA, 2009. Response-time modeling of controller area network (CAN). In: Garg V, Wattenhofer R, Kothapalli K (Eds.), Distributed Computing and Networking, Springer Berlin Heidelberg, p.163-174.

[11]Lei Y, Yuan Y, Zhao JZ, 2014. Model-based detection and monitoring of the intermittent connections for CAN networks. IEEE Trans Ind Electron, 61(6):2912-2921.

[12]Lei Y, Xie H, Yuan Y, et al., 2015. Fault location for the intermittent connection problems on CAN networks. IEEE Trans Ind Electron, 62(11):7203-7213.

[13]Mubeen S, Mäki-Turja J, Sjödin M, 2014. Extending worst case response-time analysis for mixed messages in controller area network with priority and FIFO queues. IEEE Access, 2:365-380.

[14]Mubeen S, Mäki-Turja J, Sjödin M, 2015. Integrating mixed transmission and practical limitations with the worst-case response-time analysis for controller area network. J Syst Softw, 99:66-84.

[15]Navet N, Song YQ, Simonot F, 2000. Worst-case deadline failure probability in real-time applications distributed over controller area network. J Syst Archit, 46(7):607-617.

[16]Sun YC, Yang F, Lei Y, 2015. Message response time distribution analysis for controller area network containing errors. Chinese Automation Congress, p.1052-1057.

[17]Tindell K, Burns A, 1994. Guaranteed Message Latencies for Distributed Safety-Critical Hard Real-Time Control Networks. Technical Report, Real-Time System Research Group, Department of Computer Science, University of York, England.

[18]Tindell K, Burns A, Wellings AJ, 1994. An extendible approach for analyzing fixed priority hard real-time tasks. Real-Time Syst, 6(2):133-151.

[19]Tindell K, Burns A, Wellings AJ, 1995a. Analysis of hard real-time communications. Real-Time Syst, 9(2):147-171.

[20]Tindell K, Burns A, Wellings AJ, 1995b. Calculating controller area network (CAN) message response times. Contr Eng Pract, 3(8):1163-1169.

[21]Yomsi PM, Bertrand D, Navet N, et al., 2012. Controller area network (CAN): response time analysis with offsets. Proc $9^text{th}$ IEEE Int Workshop on Factory Communication Systems, p.43-52.

[22]Zeng HB, di Natale M, Giusto P, et al., 2010. Using statistical methods to compute the probability distribution of message response time in controller area network. IEEE Trans Ind Inform, 6(4):678-691.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE