Full Text:  <1863>

Summary:  <1416>

CLC number: TP242

On-line Access: 2019-08-29

Received: 2018-04-03

Revision Accepted: 2018-06-17

Crosschecked: 2019-08-09

Cited: 0

Clicked: 5365

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chun-biao Gan

http://orcid.org/0000-0002-6597-5605

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Control strategy for gait transition of an underactuated 3D bipedal robot


Author(s):  Hai-hui Yuan, Yi-min Ge, Chun-biao Gan

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):  hh_yuan@zju.edu.cn, geyimin@zju.edu.cn, cb_gan@zju.edu.cn

Key Words:  Gait transition, Underactuated three-dimensional biped, Event-based feedback controller, Adaptive control law


Share this article to: More <<< Previous Paper|Next Paper >>>

Hai-hui Yuan, Yi-min Ge, Chun-biao Gan. Control strategy for gait transition of an underactuated 3D bipedal robot[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1800206

@article{title="Control strategy for gait transition of an underactuated 3D bipedal robot",
author="Hai-hui Yuan, Yi-min Ge, Chun-biao Gan",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1800206"
}

%0 Journal Article
%T Control strategy for gait transition of an underactuated 3D bipedal robot
%A Hai-hui Yuan
%A Yi-min Ge
%A Chun-biao Gan
%J Frontiers of Information Technology & Electronic Engineering
%P 1026-1035
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1800206"

TY - JOUR
T1 - Control strategy for gait transition of an underactuated 3D bipedal robot
A1 - Hai-hui Yuan
A1 - Yi-min Ge
A1 - Chun-biao Gan
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1026
EP - 1035
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1800206"


Abstract: 
Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications. In reality, bipedal robots are often required to perform gait transitions to achieve flexible walking. In this paper, we consider the gait transition of a five-link underactuated three-dimensional (3D) bipedal robot, and propose a two-layer control strategy. The strategy consists of a unique, event-based, feedback controller whose feedback gain in each step is updated by an adaptive control law, and a transition controller that guides the robot from the current gait to a neighboring point of the target gait so that the state trajectory can smoothly converge to the target gait. Compared with previous works, the transition controller is parameterized and its control parameters are obtained by solving an optimization problem to guarantee the physical constraints in the transition process. Finally, the effectiveness of the control strategy is illustrated on the underactuated 3D bipedal robot.

欠驱动3D双足机器人步态切换控制策略

摘要:由于应用前景广泛,双足机器人研究引起国内外学者重点关注。实际中,双足机器人常需进行步态切换以实现灵活步行。本文针对一个五杆欠驱动3D双足机器人步态切换问题,提出一种基于分层控制的切换控制策略。该策略包括切换控制器设计以及基于事件的反馈控制器设计。所设计的基于事件反馈控制器会在每一步对反馈增益进行自适应更新,而所设计的切换控制器将引导机器人从当前步态到达目标步态的邻域范围以实现平滑收敛。与以往研究相比,本文采用参数优化法设计切换控制器参数,确保机器人在步态切换过程中满足物理约束条件。最后,为验证所提控制策略的有效性,针对欠驱动3D双足机器人进行了数值仿真验证。

关键词组:步态切换;欠驱动3D双足机器人;基于事件的反馈控制器;自适应控制律

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ames AD, 2014. Human-inspired control of bipedal walking robots. IEEE Trans Autom Contr, 59(5):1115-1130.

[2]Ames AD, Galloway K, Sreenath K, et al., 2014. Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE Trans Autom Contr, 59(4):876-891.

[3]Chevallereau C, Grizzle JW, Shih CL, 2009. Asymptotically stable walking of a five-link underactuated 3D bipedal robot. IEEE Trans Rob, 25(1):37-50.

[4]Collins S, Ruina A, Tedrake R, et al., 2005. Efficient bipedal robots based on passive-dynamic walkers. Science, 307(5712):1082-1085.

[5]Da XY, Harib O, Hartley R, et al., 2016. From 2D design of underactuated bipedal gaits to 3D implementation: walking with speed tracking. IEEE Access, 4:3469-3478.

[6]Da XY, Hartley R, Grizzle JW, 2017. Supervised learning for stabilizing underactuated bipedal robot locomotion, with outdoor experiments on the wave field. IEEE Int Conf on Robotics and Automation, p.3476-3483.

[7]Dehghani R, Fattah A, Abedi E, 2015. Cyclic gait planning and control of a five-link biped robot with four actuators during single support and double support phases. Multibody Syst Dynam, 33(4):389-411.

[8]Freidovich LB, Mettin U, Shiriaev AS, et al., 2009. A passive 2-DOF walker: hunting for gaits using virtual holonomic constraints. IEEE Trans Rob, 25(5):1202-1208.

[9]Geng T, 2014. Online regulation of the walking speed of a planar limit cycle walker via model predictive control. IEEE Trans Ind Electron, 61(5):2326-2333.

[10]Gregg RD, Righetti L, 2013. Controlled reduction with unactuated cyclic variables: application to 3D bipedal walking with passive yaw rotation. IEEE Trans Autom Contr, 58(10):2679-2685.

[11]Griffin B, Grizzle J, 2017. Nonholonomic virtual constraints and gait optimization for robust walking control. Int J Rob Res, 36(8):895-922.

[12]Grizzle JW, Abba G, Plestan F, 2001. Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans Autom Contr, 46(1):51-64.

[13]Grizzle JW, Chevallereau C, Sinnet RW, et al., 2014. Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica, 50(8):1955-1988.

[14]Hamed KA, Grizzle JW, 2014. Event-based stabilization of periodic orbits for underactuated 3D bipedal robots with left-right symmetry. IEEE Trans Rob, 30(2):365-381.

[15]Hamed KA, Buss BG, Grizzle JW, 2016. Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations. Int J Rob Res, 35(8):977-999.

[16]Hirose M, Ogawa K, 2007. Honda humanoid robots development. Phil Trans R Soc A, 365(1850):11-19.

[17]Hobbelen DGE, Wisse M, 2008. Controlling the walking speed in limit cycle walking. Int J Rob Res, 27(9):989-1005.

[18]Hu Y, Yan GF, Lin ZY, 2011. Feedback control of planar biped robot with regulable step length and walking speed. IEEE Trans Rob, 27(1):162-169.

[19]Kaneko K, Kanehiro F, Morisawa M, et al., 2011. Humanoid robot HRP-4—-humanoid robotics platform with lightweight and slim body. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4400-4407.

[20]Kaneko K, Morisawa M, Kajita S, et al., 2015. Humanoid robot HRP-2Kai–-improvement of HRP-2 towards disaster response tasks. Proc 15$^textth$ Int Conf on Humanoid Robots, p.132-139.

[21]Li C, Xiong R, Zhu QG, et al., 2015. Push recovery for the standing under-actuated bipedal robot using the hip strategy. Front Inform Technol Electron Eng, 16(7):579-593.

[22]Montano O, Orlov Y, Aoustin Y, et al., 2017. Orbital stabilization of an underactuated bipedal gait via nonlinear H-control using measurement feedback. Auton Rob, 41(6):1277-1295.

[23]Moon JS, Stipanovic DM, Spong MW, 2016. Gait generation and stabilization for nearly passive dynamic walking using auto-distributed impulses. Asian J Contr, 18(4):1343-1358.

[24]Nguyen Q, Agrawal A, Da XY, 2017. Dynamic walking on randomly-varying discrete terrain with one-step preview. In: Robotics: Science and Systems. Cambridge, MA, USA.

[25]Park IW, Kim JY, Lee J, et al., 2007. Mechanical design of the humanoid robot platform, HUBO. Adv Rob, 21(11):1305-1322.

[26]Shih CL, Grizzle J, Chevallereau C, 2012. From stable walking to steering of a 3D bipedal robot with passive point feet. Robotica, 30(7):1119-1130.

[27]Sreenath K, Park HW, Poulakakis I, et al., 2013. Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL. Int J Rob Res, 32(3):324-345.

[28]Tang C, Yan GF, Lin ZY, et al., 2015. Stable walking of 3D compass-like biped robot with underactuated ankles using discrete transverse linearization. Trans Inst Meas Contr, 37(9):1074-1083.

[29]Vukobratović M, Borovac B, 2004. Zero-moment point—thirty five years of its life. Int J Humanoid Rob, 1(1):157-173.

[30]Westervelt ER, Grizzle JW, Chevallereau C, et al., 2007. Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton, USA.

[31]Yanco HA, Norton A, Ober W, et al., 2015. Analysis of human-robot interaction at the DARPA robotics challenge trials. J Field Rob, 32(3):420-444.

[32]Yang T, Westervelt E, Serrani A, et al., 2009. A framework for the control of stable aperiodic walking in underactuated planar bipeds. Auton Rob, 27(3):277-290.

[33]Yi Y, Lin ZY, 2015. Stability and agility: biped running over varied and unknown terrain. Front Inform Technol Electron Eng, 16(4):283-292.

[34]Yi Y, Lin ZY, Yan GF, 2014. Variable speed running on kneed biped robot with underactuation degree two. Int J Humanoid Rob, 11(2):1450015.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE