Full Text:  <2791>

Summary:  <1500>

CLC number: O441

On-line Access: 2019-06-10

Received: 2018-10-11

Revision Accepted: 2019-03-11

Crosschecked: 2019-05-13

Cited: 0

Clicked: 5331

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lin Chen

http://orcid.org/0000-0002-6848-5257

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review


Author(s):  Lin Chen, Deng-gao Liao, Xu-guang Guo, Jia-yu Zhao, Yi-ming Zhu, Song-lin Zhuang

Affiliation(s):  Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; more

Corresponding email(s):  linchen@usst.edu.cn, ymzhu@usst.edu.cn, slzhuang@yahoo.com

Key Words:  Terahertz (THz) time-domain spectroscopy, Micro-cavity, Metal holes array, Waveguide cavities, Spoof localized surface plasmons (LSPs)


Share this article to: More |Next Paper >>>

Lin Chen, Deng-gao Liao, Xu-guang Guo, Jia-yu Zhao, Yi-ming Zhu, Song-lin Zhuang. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1800633

@article{title="Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review",
author="Lin Chen, Deng-gao Liao, Xu-guang Guo, Jia-yu Zhao, Yi-ming Zhu, Song-lin Zhuang",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1800633"
}

%0 Journal Article
%T Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review
%A Lin Chen
%A Deng-gao Liao
%A Xu-guang Guo
%A Jia-yu Zhao
%A Yi-ming Zhu
%A Song-lin Zhuang
%J Frontiers of Information Technology & Electronic Engineering
%P 591-607
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1800633"

TY - JOUR
T1 - Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review
A1 - Lin Chen
A1 - Deng-gao Liao
A1 - Xu-guang Guo
A1 - Jia-yu Zhao
A1 - Yi-ming Zhu
A1 - Song-lin Zhuang
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 591
EP - 607
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1800633"


Abstract: 
We give a brief review of the developments in terahertz time-domain spectroscopy (THz-TDS) systems and micro- cavity components for probing samples in the University of Shanghai for Science and Technology. The broadband terahertz (THz) radiation sources based on GaAs m-i-n diodes have been investigated by applying high electric fields. Then, the free space THz-TDS and fiber-coupled THz-TDS systems produced in our lab and their applications in drug/cancer detection are introduced in detail. To further improve the signal-to-noise ratio (SNR) and enhance sensitivity, we introduce three general micro-cavity approaches to achieve tiny-volume sample detection, summarizing our previous results about their characteristics, performance, and potential applications.

利用太赫兹时域光谱法和微腔器件检测样品:综述

摘要:简要回顾了上海理工大学在用于探测样品的太赫兹时域光谱系统和微腔器件领域的研究进展。首先,通过施加高电场研究了基于砷化镓m-i-n二极管的宽频太赫兹辐射源。然后,详细介绍了我们实验室产生的自由空间太赫兹时域光谱系统和光纤耦合太赫兹时域光谱系统及其在药物/癌症检测中的应用。为进一步提高信噪比和高灵敏度,我们引入3种通用微腔结构实现微量样品检测。本文总结了这些结构的特性、性能和潜在的传感应用。

关键词组:太赫兹时域光谱;微腔;金属孔阵列;波导腔;伪局域表面等离子体

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Auston DH, Cheung KP, Smith PR, 1984. Picosecond photoconducting Hertzian dipoles. Appl Phys Lett, 45(3):284- 286.

[2]Auston DN, Cheung KP, Valdmanis JA, et al., 1984. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys Rev Lett, 53(16):1555-1558.

[3]Bertero NM, Trasarti AF, Apesteguía CR, et al. 2011. Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon. Appl Catal A, 394(1-2):228-238.

[4]Biber S, Hofmann A, Shulz R, et al., 2004. Design and measurement of a bandpass filter at 300 GHz based on a highly efficient binary grating. IEEE Trans Microw Theory Tech, 52(9):2183-2189.

[5]Bodrov SB, Stepanov AN, Bakunov MI, et al., 2009. Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core. Opt Expr, 17(3):1871-1879.

[6]Carbajo S, Schulte J, Wu XJ, et al., 2015. Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate. Opt Lett, 40(24):5762-5765.

[7]Chen L, Cao ZQ, Ou F, et al., 2007. Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. Opt Lett, 32(11):1432-1434.

[8]Chen L, Zhu YM, Zang XF, et al., 2013a. Mode splitting transmission effect of surface wave excitation through a metal hole array. Light Sci Appl, 2(3):e60.

[9]Chen L, Gao CM, Xu JM, et al., 2013b. Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems. Opt Lett, 38(9):1379-1381.

[10]Chen L, Xu JM, Gao CM, et al., 2013c. Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities. Appl Phys Lett, 103(25):251105.

[11]Chen L, Truong KV, Cheng ZX, et al., 2014a. Characterization of photonic bands in metal photonic crystal slabs. Opt Commun, 333:232-236.

[12]Chen L, Cheng ZX, Xu JM, et al., 2014b. Controllable multiband terahertz notch filter based on a parallel plate waveguide with a single deep groove. Opt Lett, 39(15): 4541-4544.

[13]Chen L, Wei YM, Zang XF, et al., 2016. Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep, 6:22027.

[14]Chen L, Xu NN, Singh L, et al., 2017. Defect-induced fano resonances in corrugated plasmonic metamaterials. Adv Opt Mater, 5(8):1600960.

[15]Chen WQ, Peng Y, Jiang XK, et al., 2017. Isomers identification of 2-hydroxyglutarate acid disodium salt (2HG) by terahertz time-domain spectroscopy. Sci Rep, 7:12166.

[16]Cong LQ, Manjappa M, Xu NN, et al., 2015. Fano resonances in terahertz metasurfaces: a figure of merit optimization. Adv Opt Mater, 3(11):1537-1543.

[17]Consolino L, Taschin A, Bartolini P, et al., 2012. Phase- locking to a free-space terahertz comb for metrological- grade terahertz lasers. Nat Commun, 3:1040.

[18]DeFonzo AP, Jarwala M, Lutz CR, 1987. Transient response of planar integrated optoelectronic antennas. Appl Phys Lett, 50(17):1155-1157.

[19]Degl’Innocenti R, Wallis R, Wei BB, et al., 2017. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser. ACS Photon, 4(9):2150-2157.

[20]Dorney TD, Baraniuk RG, Mittleman DM, 2001. Material parameter estimation with terahertz time-domain spectroscopy. J Opt Soc Am A, 18(7):1562-1571.

[21]Du SQ, Li H, Xie L, et al., 2012. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy. Appl Phys Lett, 100(14):143702.

[22]Ebbesen TW, Lezec HJ, Ghaemi HF, et al., 1998. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(12):667-669.

[23]Fattinger C, Grischkowsky D, 1988. Point source terahertz optics. Appl Phys Lett, 53(16):1480-1482.

[24]Federici J, Moeller L, 2010. Review of terahertz and subterahertz wireless communications. J Appl Phys, 107(11): 111101.

[25]Ferguson B, Zhang XC, 2002. Materials for terahertz science and technology. Nat Mater, 1:26-33.

[26]Ferguson B, Wang SH, Gray D, et al., 2002. T-ray computed tomography. Opt Lett, 27(15):1312-1314.

[27]Ghaemi HF, Thio T, Grupp DE, et al., 1998. Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B, 58(11):6779-6782.

[28]Grischkowsky G, Keiding S, van Exter M, et al., 1990. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B, 7(10):2006-2015.

[29]Hangyo M, Tani M, Nagashima T, 2006. Terahertz time- domain spectroscopy of solids: a review. Int J Infr Millim Waves, 26(12):1661-1690.

[30]He JL, Liu PA, He YL, et al., 2012. Narrow bandpass tunable terahertz filter based on photonic crystal cavity. Appl Opt, 51(6):776-779.

[31]Huang Y, Min CJ, Veronis G, 2011. Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency. Appl Phys Lett, 99: 143117.

[32]Johnson C, Low FJ, Davidson AW, 1980. Germanium and germanium diamond bolometers operated at 4.2 K, 2.0 K, 1.2 K, 0.3 K, and 0.1 K. Opt Eng, 19(2):192255.

[33]Jones RC, 1947. The ultimate sensitivity of radiation detectors. J Opt Soc Am, 37(11):879-890.

[34]Katzenellenbogen N, Grischkowsky D, 1991. Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface. Appl Phys Lett, 58(3):222-224.

[35]Leitenstorfer A, Hunsche S, Shah J, et al., 1999. Femtosecond charge transport in polar semiconductors. Phys Rev Lett, 82(25):5140-5143.

[36]Leitenstorfer A, Hunsche S, Shah J, et al., 2000. Femtosecond high-field transport in compound semiconductors. Phys Rev B, 61(24):16642-16652.

[37]Libon IH, Baumgärtner S, Hempel M, et al., 2000. An optically controllable terahertz filter. Appl Phys Lett, 76(20):2821- 2823.

[38]Liu L, Pathak R, Cheng LJ, et al., 2013. Real-time frequency- domain terahertz sensing and imaging of isopropyl alcohol–water mixtures on a microfluidic chip. Sens Actuat B, 184:228-234.

[39]Lu T, Lee H, Chen T, et al., 2011. High sensitivity nanoparticle detection using optical microcavities. Proc Nat Acad Sci USA, 108(15):5976-5979.

[40]Markelz AG, 2008. Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J Sel Top Quant Electron, 14(1):180-190.

[41]Mendis R, Astley V, Liu JB, et al., 2009. Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity. Appl Phys Lett, 95(17):171113.

[42]Miyamaru F, Hangyo M, 2004. Finite size effect of transmission property for metal hole arrays in subterahertz region. Appl Phys Lett, 84(15):2742-2744.

[43]Miyamaru F, Hayashi S, Otani C, et al., 2006. Terahertz surface-wave resonant sensor with a metal hole array. Opt Lett, 31(8):1118-1120.

[44]O’Hara JF, Singh R, Brener I, et al., 2008. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Expr, 16(3):1786-1795.

[45]Planken PCM, Nienhuys HK, Bakker HJ, et al., 2001. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J Opt Soc Am B, 18(3): 313-317.

[46]Por A, Moreno E, Martin-Moreno L, et al., 2012. Localized spoof plasmons arise while texturing closed surfaces. Phys Rev Lett, 108(22):223905.

[47]Pupeza I, Wilk R, Koch M, 2007. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt Expr, 15(7):4335-4350.

[48]Qu DX, Grischkowsky D, Zhang WL, 2004. Terahertz transmission properties of thin, subwavelength metallic hole arrays. Opt Lett, 29(8):896-898.

[49]Shen XP, Cui TJ, 2014. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photon Rev, 8(1):137-145.

[50]Siegel PH, 2002. Terahertz technology. IEEE Trans Microw Theory Tech, 50(3):910-928.

[51]Staus C, Kuech T, McCaughan L, 2008. Continuously phase- matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes. Opt Expr, 16(17):13296-13303.

[52]Su YY, 2014. Investigation of liquid monohydric alcohols by terahertz time-domain spectroscopy. Opt Instrum, 36(6): 499-503 (in Chinese).

[53]Theuer M, Beigang R, Grischkowsky D, 2010a. Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor. Appl Phys Lett, 97(7): 071106.

[54]Theuer M, Beigang R, Grischkowsky D, 2010b. Sensitivity increase for coating thickness determination using THz waveguides. Opt Expr, 18(11):11456-11463.

[55]Wang DN, Chen L, Fang B, et al., 2017. Spoof localized surface plasmons excited by plasmonic waveguide chip with corrugated disk resonator. Plasmonics, 12(4):947-952.

[56]Wang YX, Zhang GW, Qiao LB, et al., 2014. Photocurrent response of carbon nanotube-metal heterojunctions in the terahertz range. Opt Expr, 22(5):5895-5903.

[57]Wang YX, Deng XQ, Zhang GW, et al., 2015. Terahertz photodetector based on double-walled carbon nanotube macrobundle-metal contacts. Opt Expr, 23(10):13348- 13357.

[58]Withayachumnankul W, O’Hara JF, Cao W, et al., 2014. Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy. Opt Expr, 22(1): 972-986.

[59]Wu DM, Fang N, Sun C, et al., 2003. Terahertz plasmonic high pass filter. Appl Phys Lett, 83(1):201-203.

[60]Wu Q, Zhang XC, 1997a. Free-space electro-optics sampling of mid-infrared pulses. Appl Phys Lett, 71(10):1285- 1286.

[61]Wu Q, Zhang XC, 1997b. 7 terahertz broadband GaP electro- optic sensor. Appl Phys Lett, 70(14):1784-1786.

[62]Xu JM, Chen L, Xie L, et al., 2013a. Effect of boundary condition and periodical extension on transmission characteristics of terahertz filters with periodical hole array structure fabricated on aluminum slab. Plasmonics, 8(3):1293-1297.

[63]Xu JM, Chen L, Zang XF, et al., 2013b. Triple-channel terahertz filter based on mode coupling of cavities resonance system. Appl Phys Lett, 103(16):161116.

[64]Yomogida Y, Sato Y, Nozaki R, et al., 2010. Comparative dielectric study of monohydric alcohols with terahertz time-domain spectroscopy. J Mol Struc, 981(1-3):173- 178.

[65]Zang XF, Shi C, Chen L, et al., 2015. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci Rep, 5:8901.

[66]Zhao G, Schouten RN, van der Valk N, et al., 2002. Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter. Rev Sci Instrum, 73(4): 1715-1719.

[67]Zhu YM, Unuma T, Shibata K, et al., 2008a. Femtosecond acceleration of electrons under high electric fields in bulk GaAs investigated by time-domain terahertz spectroscopy. Appl Phys Lett, 93(4):042116-042118.

[68]Zhu YM, Unuma T, Shibata K, et al., 2008b. Power dissipation spectra and terahertz intervalley transfer gain in bulk GaAs under high electric fields. Appl Phys Lett, 93(23): 232102.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE