Full Text:  <3883>

Summary:  <1574>

CLC number: TP391.9

On-line Access: 2020-07-10

Received: 2019-02-28

Revision Accepted: 2019-09-16

Crosschecked: 2020-06-10

Cited: 0

Clicked: 5843

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Liang Hou

https://orcid.org/0000-0003-0887-627X

Jun Liang

https://orcid.org/0000-0003-1115-0824

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Representation learning via a semi-supervised stacked distance autoencoder for image classification


Author(s):  Liang Hou, Xiao-yi Luo, Zi-yang Wang, Jun Liang

Affiliation(s):  College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):  jliang@zju.edu.cn

Key Words:  Autoencoder, Image classification, Semi-supervised learning, Neural network


Share this article to: More <<< Previous Paper|Next Paper >>>

Liang Hou, Xiao-yi Luo, Zi-yang Wang, Jun Liang. Representation learning via a semi-supervised stacked distance autoencoder for image classification[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1900116

@article{title="Representation learning via a semi-supervised stacked distance autoencoder for image classification",
author="Liang Hou, Xiao-yi Luo, Zi-yang Wang, Jun Liang",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.1900116"
}

%0 Journal Article
%T Representation learning via a semi-supervised stacked distance autoencoder for image classification
%A Liang Hou
%A Xiao-yi Luo
%A Zi-yang Wang
%A Jun Liang
%J Frontiers of Information Technology & Electronic Engineering
%P 1005-1018
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.1900116"

TY - JOUR
T1 - Representation learning via a semi-supervised stacked distance autoencoder for image classification
A1 - Liang Hou
A1 - Xiao-yi Luo
A1 - Zi-yang Wang
A1 - Jun Liang
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1005
EP - 1018
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.1900116"


Abstract: 
image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the “distance” information between samples from different categories. The model is called a semi-supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.

半监督堆叠距离自动编码器的表征学习在图像分类上的应用

侯亮,罗潇逸,汪子扬,梁军
浙江大学控制科学与工程学院,中国杭州市,310027

摘要:图像分类是深度学习的重要应用。在典型分类任务中,分类精度与通过深度学习方法提取的特征密切相关。自动编码器是一种特殊神经网络,常用于降维和特征提取。本文所提方法基于传统的自动编码器,将不同类别样本之间的"距离"信息纳入其中。该模型被称为半监督距离自动编码器。首先以无监督方式对每一层进行预训练。在随后的监督训练中,将优化的参数设置为初始值。为获得更好性能,使用堆叠式模型代替具有单一隐含层的传统自动编码器结构。开展一系列实验测试不同模型在几个数据集上的性能,包括MNIST数据集、街景门牌号码(SVHN)数据集、德国交通标志识别基准(GTSRB)和CIFAR-10数据集。将所提半监督距离自动编码器方法分别与传统自动编码器、稀疏自动编码器和监督自动编码器比较,实验结果证明该模型有效。

关键词组:自动编码器;图像分类;半监督学习;神经网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bengio Y, 2009. Learning deep architectures for AI. Found Trends Mach Learn, 2(1):1-127.

[2]Bengio Y, Courville A, Vincent P, 2013. Representation learning: a review and new perspectives. IEEE Trans Patt Anal Mach Intell, 35(8):1798-1828.

[3]Bianco S, Buzzelli M, Schettini R, 2018. Multiscale fully convolutional network for image saliency. J Electron Imag, 27(5):051221.

[4]Deng J, Zhang ZX, Marchi E, et al., 2013. Sparse autoencoder- based feature transfer learning for speech emotion recognition. Humaine Association Conf on Affective Computing and Intelligent Interaction, p.511-516.

[5]Du F, Zhang JS, Ji NN, et al., 2018. Discriminative representation learning with supervised auto-encoder. Neur Process Lett, 49(2):507-520.

[6]Feng SW, Duarte MF, 2018. Graph autoencoder-based unsupervised feature selection with broad and local data structure preservation. Neurocomputing, 312:310-323.

[7]Glorot X, Bengio Y, 2010. Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res, 9:249-256.

[8]Gong YC, Lazebnik S, Gordo A, et al., 2013. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans Patt Anal Mach Intell, 35(12):2916-2929.

[9]Haralick RM, Shanmugam K, Dinstein I, 1973. Textural features for image classification. IEEE Trans Syst Man Cybern, SMC-3(6):610-621.

[10]He XT, Peng YX, Zhao JJ, 2018. Fast fine-grained image classification via weakly supervised discriminative localization. IEEE Trans Circ Syst Video Technol, 29(5): 1394-1407.

[11]He XT, Peng YX, Zhao JJ, 2019. Which and how many regions to gaze: focus discriminative regions for fine- grained visual categorization. Int J Comput Vis, 127(9): 1235-1255.

[12]Hinton GE, 2007. Learning multiple layers of representation. Trends Cogn Sci, 11(10):428-434.

[13]Hinton GE, Salakhutdinov RR, 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507.

[14]Kingma DP, Welling M, 2016. Auto-encoding variational Bayes. https://arxiv.org/abs/1312.6114

[15]Meng LH, Ding SF, Zhang N, et al., 2018. Research of stacked denoising sparse autoencoder. Neur Comput Appl, 30(7): 2083-2100.

[16]Meng QX, Catchpoole D, Skillicom D, et al., 2017. Relational autoencoder for feature extraction. Int Joint Conf on Neural Networks, p.364-371.

[17]Peng YX, He XT, Zhao JJ, 2018. Object-part attention model for fine-grained image classification. IEEE Trans Image Process, 27(3):1487-1500.

[18]Rahmani MH, Almasganj F, Ali Seyyedsalehi S, 2018. Audio- visual feature fusion via deep neural networks for automatic speech recognition. Dig Signal Process, 82(5): 54-63.

[19]Rifai S, Vincent P, Muller X, et al., 2011. Contractive auto- encoders: explicit invariance during feature extraction. Proc 28th Int Conf on Machine Learning, p.833-840.

[20]Santana E, Emigh M, Principe JC, 2016. Information theoretic- learning auto-encoder. Int Joint Conf on Neural Networks.

[21]Sun Y, Chen Y, Wang XG, et al., 2014. Deep learning face representation by joint identification-verification. Proc 27th Int Conf on Neural Information Processing, p.1988- 1996.

[22]Sun YN, Xue B, Zhang MJ, et al., 2017. A particle swarm optimization-based flexible convolutional autoencoder for image classification. IEEE Trans Neur Netw Learn Syst, 30(8):2295-2309.

[23]Taherkhani A, Cosma G, Mcginnity TM, 2018. Deep-FS: a feature selection algorithm for deep Boltzmann machines. Neurocomputing, 322:22-37.

[24]Tang JH, Li ZC, Wang M, et al., 2015. Neighborhood discriminant hashing for large-scale image retrieval. IEEE Trans Image Process, 24(9):2827-2840.

[25]Tolstikhin I, Bousquet O, Gelly S, et al., 2017. Wasserstein auto-encoders. https://arxiv.org/abs/1711.01558

[26]Vincent P, Larochelle H, Lajoie I, et al., 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res, 11(12):3371-3408.

[27]Wang W, Huang Y, Wang YZ, et al., 2014. Generalized autoencoder: a neural network framework for dimensionality reduction. IEEE Conf on Computer Vision and Pattern Recognition.

[28]Wu J, Cai ZH, Zhu XQ, 2013. Self-adaptive probability estimation for Naive Bayes classification. Int Joint Conf on Neural Networks.

[29]Xu WD, Sun HZ, Deng C, et al., 2016. Variational autoencoders for semi-supervised text classification. https://arxiv.org/abs/1603.02514

[30]Zhang TS, Wang W, Ye H, et al., 2016. Fault detection for ironmaking process based on stacked denoising autoencoders. American Control Conf, p.3261-3267.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE