Full Text:  <2530>

Summary:  <1270>

CLC number: TN248

On-line Access: 2021-03-08

Received: 2020-07-24

Revision Accepted: 2020-11-25

Crosschecked: 2021-01-18

Cited: 0

Clicked: 3966

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Pinghua Tang

https://orcid.org/0000-0003-2285-9812

Ting Zhao

https://orcid.org/0000-0002-7695-9133

Yuliang Mao

https://orcid.org/0000-0003-1391-914X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser


Author(s):  Pinghua Tang, Mulin Luo, Ting Zhao, Yuliang Mao

Affiliation(s):  Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; more

Corresponding email(s):  pinghuatang@xtu.edu.cn, 1011773923@qq.com, zthaza@126.com, ylmao@xtu.edu.cn

Key Words:  Erbium-doped fiber lasers, Graphene, Saturable absorption, Passive mode-locking


Share this article to: More <<< Previous Paper|Next Paper >>>

Pinghua Tang, Mulin Luo, Ting Zhao, Yuliang Mao. Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2000372

@article{title="Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser",
author="Pinghua Tang, Mulin Luo, Ting Zhao, Yuliang Mao",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2000372"
}

%0 Journal Article
%T Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser
%A Pinghua Tang
%A Mulin Luo
%A Ting Zhao
%A Yuliang Mao
%J Frontiers of Information Technology & Electronic Engineering
%P 303-311
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2000372"

TY - JOUR
T1 - Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser
A1 - Pinghua Tang
A1 - Mulin Luo
A1 - Ting Zhao
A1 - Yuliang Mao
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 303
EP - 311
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2000372"


Abstract: 
We demonstrate the generation of noise-like pulses (NLPs) and soliton rains in a graphene saturable absorber mode-locked erbium-doped fiber laser. Typical NLPs are obtained at a proper pump power and in a cavity polarization state. The soliton rain operation with multiple solitons can be achieved by finely adjusting the cavity polarization state. In addition, distinctive multi-soliton interactions are observed and investigated, including the fundamental mode-locking and multiple pulses. The experimental results can help further understand nonlinear pulse dynamics in ultrafast optics.

基于石墨烯锁模的掺铒环形光纤激光器中类噪声脉冲和孤子雨的产生

唐平华1,罗木林1,赵婷2,毛宇亮1
1湘潭大学物理与光电工程学院,微纳能源材料与器件湖南省重点实验室,中国湘潭市,411105
2南京晓庄学院电子工程学院,中国南京市,211171
摘要:本文研究了基于石墨烯可饱和吸收体锁模的掺铒光纤激光器中类噪声脉冲以及孤子雨的产生。在合适的泵浦功率和腔偏振态下,实验获得典型的类噪声脉冲。通过精细调节腔偏振态,激光器可实现多孤子的孤子雨状态运转。此外,观察并研究了独特的多孤子相互作用,包括基频锁模和多脉冲。实验结果有助于进一步理解超快光学中的非线性脉冲动力学过程。

关键词组:掺铒光纤激光器;石墨烯;可饱和吸收体;被动锁模

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmad H, Samion MZ, Sharbirin AS, et al., 2017. Dual-wavelength, passively Q-switched thulium-doped fiber laser with N-doped graphene saturable absorber. Optik, 149:391-397.

[2]Ahmed MHM, Latiff AA, Arof H, et al., 2016. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber. Laser Phys Lett, 13(9):095104.

[3]Bao QL, Zhang H, Wang Y, et al., 2009. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 19(19):3077-3083.

[4]Chouli S, Grelu P, 2010. Soliton rains in a fiber laser: an experimental study. Phys Rev A, 81(6):063829.

[5]Goloborodko V, Keren S, Rosenthal A, et al., 2003. Measuring temperature profiles in high-power optical fiber components. Appl Opt, 42(13):2284-2288.

[6]Gordon JP, 1992. Dispersive perturbations of solitons of the nonlinear Schrödinger equation. J Opt Soc Am B, 9(1):91-97.

[7]Jeong Y, Vazquez-Zuniga LA, Lee S, et al., 2014. On the formation of noise-like pulses in fiber ring cavity configurations. Opt Fiber Technol, 20(6):575-592.

[8]Kasim N, Latiff AA, Rusdi MFM, et al., 2018. Short-pulsed Q-switched Thulium doped fiber laser with graphene oxide as a saturable absorber. Optik, 168:462-466.

[9]Kobtsev S, Kukarin S, Smirnov S, et al., 2014. Cascaded SRS of single- and double-scale fiber laser pulses in long extra-cavity fiber. Opt Expr, 22(17):20770-20775.

[10]Li D, Xue H, Qi M, et al., 2017. Graphene actively Q-switched lasers. 2D Mater, 4(2):025095.

[11]Li J, Zhang ZL, Du L, et al., 2019. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T=F, O, or OH) mode-locked fiber laser. Photon Res, 7(3):260-264.

[12]Liu J, Chen Y, Tang PH, et al., 2015. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser. Opt Expr, 23(5):6418-6427.

[13]Liu J, Wu JD, Chen HL, et al., 2021. Short-pulsed Raman fiber laser and its dynamics. Sci China Phys Mech Astron, 64(1):214201.

[14]Luo AP, Luo ZC, Liu H, et al., 2015. Noise-like pulse trapping in a figure-eight fiber laser. Opt Expr, 23(8):10421-10427.

[15]Luo ZC, Liu M, Liu H, et al., 2013. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt Lett, 38(24):5212-5215.

[16]Ma CY, Huang WC, Wang YZ, et al., 2020. MXene saturable absorber enabled hybrid mode-locking technology: a new routine of advancing femtosecond fiber lasers performance. Nanophotonics, 9(8):2451-2458.

[17]Ma R, Rao YJ, Zhang WL, et al., 2019. Multimode random fiber laser for speckle-free imaging. IEEE J Sel Top Quant Electron, 25(1):0900106.

[18]Martinez A, Fuse K, Xu B, et al., 2010. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. Opt Expr, 18(22):23054-23061.

[19]Meng YC, Zhang SM, Li XL, et al., 2012. Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser. Opt Expr, 20(6):6685-6692.

[20]Nelson LE, Jones DJ, Tamura K, et al., 1997. Ultrashort-pulse fiber ring lasers. Appl Phys B, 65(2):277-294.

[21]Ng EK, Lau KY, Lee HK, et al., 2020. Saturable absorber incorporating graphene oxide polymer composite through dip coating for mode-locked fiber laser. Opt Mater, 100:109619.

[22]Niang A, Amrani F, Salhi M, et al., 2014. Rains of solitons in a figure-of-eight passively mode-locked fiber laser. Appl Phys B, 116(3):771-775.

[23]Ning QY, Liu H, Zheng XW, et al., 2014. Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser. Opt Expr, 22(10):11900-11911.

[24]Ozgören K, Oktem B, Yilmaz S, et al., 2011. 83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining. Opt Expr, 19(18):17647-17652.

[25]Pawliszewska M, Martynkien T, Przewłoka A, et al., 2018. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt Lett, 43(1):38-41.

[26]Popa D, Sun Z, Hasan T, et al., 2011. Graphene Q-switched, tunable fiber laser. Appl Phys Lett, 98(7):073106.

[27]Popa D, Jiang Z, Bonacchini GE, et al., 2017. A stable, power scaling, graphene-mode-locked all-fiber oscillator. Appl Phys Lett, 110(24):243102.

[28]Sheng QW, Feng M, Xin W, et al., 2013. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Opt Expr, 21(12):14859-14866.

[29]Shi Z, Cao R, Khan K, et al., 2020. Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett, 12:99.

[30]Smirnov SV, Kobtsev SM, Kukarin SV, 2014. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser. Opt Expr, 22(1):1058-1064.

[31]Song YF, Li L, Zhang H, et al., 2013. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt Expr, 21(8):10010-10018.

[32]Song YF, Chen S, Zhang Q, et al., 2016. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt Expr, 24(23):25933-25942.

[33]Soto-Crespo JM, Akhmediev N, Grelu P, et al., 2003. Quantized separations of phase-locked soliton pairs in fiber lasers. Opt Lett, 28(19):1757-1759.

[34]Tang PH, Qin ZP, Liu J, et al., 2015. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm. Opt Lett, 40(21):4855-4858.

[35]Tang PH, Wu M, Wang QK, et al., 2016. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator. IEEE Photon Technol Lett, 28(14):1573-1576.

[36]Tang YL, Yu XC, Li XH, et al., 2014. High-power thulium fiber laser Q switched with single-layer graphene. Opt Lett, 39(3):614-617.

[37]Wang ZH, Wang Z, Liu YG, et al., 2016. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser. Opt Expr, 24(13):14709-14716.

[38]Woodward RI, Howe RCT, Hu G, et al., 2015. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photon Res, 3(2):A30-A42.

[39]Yun L, 2017. Switchable dual-wavelength conventional soliton delivered from a graphene-mode-locked fiber laser. Optik, 145:549-554.

[40]Zaytsev A, Lin CH, You YJ, et al., 2013. Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers. Opt Expr, 21(13):16056-16062.

[41]Zeng C, Cui YD, Guo J, 2015. Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser. Opt Commun, 347:44-49.

[42]Zhang H, Tang DY, Zhao LM, et al., 2009. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Expr, 17(20):17630-17635.

[43]Zhang H, Lu SB, Zheng J, et al., 2014. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt Expr, 22(6):7249-7260.

[44]Zhao CJ, Zhang H, Qi X, et al., 2012. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl Phys Lett, 101(21):211106.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE