Full Text:  <2788>

Summary:  <283>

CLC number: TP13

On-line Access: 2022-10-26

Received: 2021-11-29

Revision Accepted: 2022-10-26

Crosschecked: 2021-12-21

Cited: 0

Clicked: 2117

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xuyang Lou

https://orcid.org/0000-0002-7499-1308

Zhiqian LIU

https://orcid.org/0000-0003-3302-6840

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems


Author(s):  Zhiqian LIU, Xuyang LOU, Jiajia JIA

Affiliation(s):  Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China

Corresponding email(s):  Louxy@jiangnan.edu.cn

Key Words:  Lipschitz nonlinear system; Dynamic output-feedback control; Event-triggered control; Global asymptotic stability


Share this article to: More <<< Previous Paper|Next Paper >>>

Zhiqian LIU, Xuyang LOU, Jiajia JIA. Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2100552

@article{title="Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems",
author="Zhiqian LIU, Xuyang LOU, Jiajia JIA",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2100552"
}

%0 Journal Article
%T Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems
%A Zhiqian LIU
%A Xuyang LOU
%A Jiajia JIA
%J Frontiers of Information Technology & Electronic Engineering
%P 1684-1699
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2100552"

TY - JOUR
T1 - Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems
A1 - Zhiqian LIU
A1 - Xuyang LOU
A1 - Jiajia JIA
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1684
EP - 1699
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2100552"


Abstract: 
This paper investigates the problem of dynamic output-feedback control for a class of Lipschitz nonlinear systems. First, a continuous-time controller is constructed and sufficient conditions for stability of the nonlinear systems are presented. Then, a novel event-triggered mechanism is proposed for the Lipschitz nonlinear systems in which new event-triggered conditions are introduced. Consequently, a closed-loop hybrid system is obtained using the event-triggered control strategy. Sufficient conditions for stability of the closed-loop system are established in the framework of hybrid systems. In addition, an upper bound of a minimum inter-event interval is provided to avoid the Zeno phenomenon. Finally, numerical examples of a neural network system and a genetic regulatory network system are provided to verify the theoretical results and to show the superiority of the proposed method.

一类Lipschitz非线性系统的事件触发动态输出反馈控制

刘智倩,楼旭阳,贾佳佳
江南大学轻工过程先进控制教育部重点实验室,中国无锡市,214122
摘要:本文研究一类Lipschitz非线性系统的动态输出反馈控制问题。首先,针对该系统设计了一个连续时间控制器,并且给出了系统稳定的充分条件。其次,针对该Lipschitz非线性系统提出一种新的事件触发机制,在该触发机制中引入了新的事件触发条件,并构建了事件触发控制下的闭环混杂系统。在混杂系统框架下建立了闭环系统稳定的充分条件。此外,给出了最小事件间隔的上界,以避免Zeno现象。最后,通过在神经网络系统和基因调控网络系统中的数值仿真验证了理论结果及所提方法的优越性。

关键词组:Lipschitz非线性系统;动态输出反馈控制;事件触发控制;全局渐近稳定

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdelrahim M, Postoyan R, Daafouz J, et al., 2016. Stabilization of nonlinear systems using event-triggered output feedback controllers. IEEE Trans Automat Contr, 61(9):2682-2687.

[2]Andrieu V, Praly L, 2009. A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica, 45(8):1789-1798.

[3]Angulo MT, Moog CH, Liu YY, 2019. A theoretical framework for controlling complex microbial communities. Nat Commun, 10(1):1045.

[4]Casey R, de Jong H, Gouzé JL, 2006. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J Math Biol, 52(1):27-56.

[5]Chen J, Chen BM, Sun J, 2019. Complex system and intelligent control: theories and applications. Front Inform Technol Electron Eng, 20(1):1-3.

[6]Chen PN, Cheng DZ, Jiang ZP, 2006. A constructive approach to local stabilization of nonlinear systems by dynamic output feedback. IEEE Trans Automat Contr, 51(7):1166-1171.

[7]Collins EG, Selekwa MAF, Walker RB, et al., 2006. A stacked model structure for off-line parameter variation estimation in multi-equilibria nonlinear systems. Eur J Contr, 12(4):353-364.

[8]Dong JX, Yang GH, 2008. Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme. IEEE Trans Syst Man Cybern B Cybern, 38(4):1166-1175.

[9]Donkers MCF, Heemels WPMH, 2012. Output-based event-triggered control with guaranteed L-gain and improved and decentralized event-triggering. IEEE Trans Automat Contr, 57(6):1362-1376.

[10]Ekramian M, 2020. Static output feedback problem for Lipschitz nonlinear systems. J Franklin Inst, 357(3):1457-1472.

[11]Goebel R, Sanfelice RG, Teel AR, 2012. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, Princeton, USA.

[12]Gu Z, Huan Z, Yue D, et al., 2018. Event-triggered dynamic output feedback control for networked control systems with probabilistic nonlinearities. Inform Sci, 457-458:99-112.

[13]Hamid SR, Nazir MS, Rehan M, et al., 2019. New results on regional observer-based stabilization for locally Lipschitz nonlinear systems. Chaos Solit Fract, 123:173-184.

[14]Kammogne AST, Kountchou MN, Kengne R, et al., 2020. Polynomial robust observer implementation based passive synchronization of nonlinear fractional-order systems with structural disturbances. Front Inform Technol Electron Eng, 21(9):1369-1386.

[15]Khalil HK, 2014. Nonlinear Control, Global Edition. Pearson Education, USA.

[16]Li FF, Sun JT, 2010. Asymptotic stability of a genetic network under impulsive control. Phys Lett A, 374(31-32):3177-3184.

[17]Liu S, Song Y, Wei GL, et al., 2017. Event-triggered dynamic output feedback RMPC for polytopic systems with redundant channels: input-to-state stability. J Franklin Inst, 354(7):2871-2892.

[18]Liu W, Wang ZM, Dai HH, et al., 2016. Dynamic output feedback control for fast sampling discrete-time singularly perturbed systems. IET Contr Theory Appl, 10(15):1782-1788.

[19]Meslem N, Prieur C, 2015. Event-based controller synthesis by bounding methods. Eur J Contr, 26:12-21.

[20]Molaei B, 2008. Optimization of dynamic output feedback controller for piecewise affine systems: an LMI approach. J Circ Syst Comput, 17(2):263-277.

[21]Nesic D, Teel AR, Carnevale D, 2009. Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems. IEEE Trans Automat Contr, 54(3):619-624.

[22]Park JH, 2005. On design of dynamic output feedback controller for GCS of large-scale systems with delays in interconnections: LMI optimization approach. Appl Math Comput, 161(2):423-432.

[23]Peng C, Yang TC, 2013. Event-triggered communication and H control co-design for networked control systems. Automatica, 49(5):1326-1332.

[24]Pertew AM, Marquez HJ, Zhao Q, 2006. H observer design for Lipschitz nonlinear systems. IEEE Trans Automat Contr, 51(7):1211-1216.

[25]Pham TP, Sename O, Dugard L, 2019. Unified H observer for a class of nonlinear Lipschitz systems: application to a real ER automotive suspension. IEEE Contr Syst Lett, 3(4):817-822.

[26]Qian CJ, Lin W, 2001. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans Automat Contr, 46(7):1061-1079.

[27]Qiu JL, 2007. Exponential stability of impulsive neural networks with time-varying delays and reaction–diffusion terms. Neurocomputing, 70(4-6):1102-1108.

[28]Rehan M, Jameel A, Ahn CK, 2018. Distributed consensus control of one-sided Lipschitz nonlinear multiagent systems. IEEE Trans Syst Man Cybern Syst, 48(8):1297-1308.

[29]Sanchez EN, Perez JP, 2003. Input-to-state stabilization of dynamic neural networks. IEEE Trans Syst Man Cybern A Syst Hum, 33(4):532-535.

[30]Shu F, Zhai JY, 2020. Event-triggered practical finite-time output feedback stabilisation for switched non-linear time-delay systems. IET Contr Theory Appl, 14(6):824-833.

[31]Tabuada P, 2007. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Automat Contr, 52(9):1680-1685.

[32]Theodosis D, Dimarogonas DV, 2019. Event-triggered control of nonlinear systems with updating threshold. IEEE Contr Syst Lett, 3(3):655-660.

[33]Wang ZD, Qiao H, Burnham KJ, 2002. On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters. IEEE Trans Automat Contr, 47(4):640-646.

[34]Yu H, Antsaklis PJ, 2013. Event-triggered output feedback control for networked control systems using passivity: achieving L2 stability in the presence of communication delays and signal quantization. Automatica, 49(1):30-38.

[35]Zhang JH, Feng G, 2014. Event-driven observer-based output feedback control for linear systems. Automatica, 50(7):1852-1859.

[36]Zhang XM, Han QL, 2016. A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans Cybern, 46(12):2745-2757.

[37]Zhang XM, Han QL, 2017. Event-triggered H control for a class of nonlinear networked control systems using novel integral inequalities. Int J Robust Nonl Contr, 27(4):679-700.

[38]Zhang Z, Li HP, Shi Y, et al., 2020. Cooperative optimal control for Lipschitz nonlinear systems over generally directed topologies. Automatica, 122:109279.

[39]Zhou J, Wen CY, Li TS, 2012. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans Automat Contr, 57(10):2627-2633.

[40]Zuo ZY, Lin ZL, Ding ZT, 2016. Truncated prediction output feedback control of a class of Lipschitz nonlinear systems with input delay. IEEE Trans Circ Syst II Expr Briefs, 63(8):788-792.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE