CLC number: TN929.5
On-line Access: 2023-01-21
Received: 2022-05-20
Revision Accepted: 2023-01-21
Crosschecked: 2022-08-30
Cited: 0
Clicked: 403
Zhou TONG, Na LI, Huimin ZHANG, Quan ZHAO, Yun ZHAO, Junshuai SUN, Guangyi LIU. Dynamic user-centric multi-dimensional resource allocation for a wide-area coverage signaling cell based on DQN[J]. Frontiers of Information Technology & Electronic Engineering , 2023, 24(10): 154-163. @article{title="Dynamic user-centric multi-dimensional resource allocation for a wide-area coverage signaling cell based on DQN", %0 Journal Article TY - JOUR
基于DQN的广域覆盖信令小区以用户为中心的动态多维资源分配中国移动通信有限公司研究院未来研究院,中国北京市,100053 摘要:通信行业的快速发展催生了更多新业务与新应用。6G网络面临更严苛、更多样的需求。在保证高速率、低时延等性能要求的同时,5G网络中存在的高能耗问题也成为6G网络需要解决的问题之一。广域覆盖信令小区技术顺应未来无线接入网的发展趋势,具有低网络能耗、高资源利用率的优势。在广域覆盖信令小区中,多维资源按需分配是保证用户极致性能需求的重要技术手段,其效果将直接影响网络资源使用效率。本文构建以用户为中心的无线资源动态分配模型,并提出一种基于深度Q网络的资源动态分配算法。该算法可根据用户上报的数据速率和时延等需求,实现动态灵活的接纳控制及多维资源分配。仿真结果表明,所提算法可有效提高长时间尺度下网络平均用户体验,在资源分配过程中保证高速率和低能耗。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Gang J, Friderikos V, 2019. Inter-tenant resource sharing and power allocation in 5G virtual networks. IEEE Trans Veh Technol, 68(8):7931-7943. ![]() [2]Ji CY, Bi MH, Zhou Z, et al., 2021. Online bandwidth resources allocation algorithm for multi-tenancy PON based on deep reinforcement learning. Opt Commun Technol, 45(9):36-39 (in Chinese). ![]() [3]Kalil M, Al-Dweik A, Sharkh MFA, et al., 2017. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks. IEEE Access, 5(1):20814-20827. ![]() [4]Lin MT, Zhao YP, 2020. Artificial intelligence-empowered resource management for future wireless communications: a survey. China Commun, 17(3):58-77. ![]() [5]Liu GY, Deng J, Zheng QB, et al., 2022a. Native intelligence for 6G mobile network: technical challenges, architecture and key features. J China Univ Posts Telecommun, 29(1):27-40. ![]() [6]Liu GY, Li N, Deng J, et al., 2022b. The SOLIDS 6G mobile network architecture: driving forces, features, and functional topology. Engineering, 8(1):42-59. ![]() [7]Luo Y, Shi ZP, Zhou X, et al., 2014. Dynamic resource allocations based on Q-learning for D2D communication in cellular networks. 11th Int Computer Conf on Wavelet Active Media Technology and Information Processing, p.385-388. ![]() [8]Lü YP, Jia XD, Lu Y, et al., 2021. A deep Q-learning based resource allocation algorithm in indoor wireless networks. Comput Eng Sci, 43(7):1250-1255 (in Chinese). ![]() [9]Ren YJ, Sun YH, Peng MG, 2021. Deep reinforcement learning based computation offloading in fog enabled Industrial Internet of Things. IEEE Trans Ind Inform, 17(7):4978-4987. ![]() [10]Xu H, Tong Z, Shen H, et al., 2021. Dynamic communication and computation resource allocation algorithm for end-to-end slicing in mobile networks. 3rd Int Conf on Artificial Intelligence for Communications and Networks, p.251-267. ![]() [11]Zhang TK, Wang XF, Yang LW, et al., 2021. A SFC deployment and computation resource allocation joint algorithm in mobile networks. J Beijing Univ Posts Telecommun, 44(1):7-13 (in Chinese). ![]() [12]Zhao QY, Grace D, Vilhar A, et al., 2015. Using K-means clustering with transfer and Q learning for spectrum, load and energy optimization in opportunistic mobile broadband networks. Int Symp on Wireless Communication Systems, p.116-120. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>