Full Text:  <1306>

Summary:  <194>

CLC number: TP391

On-line Access: 2023-07-24

Received: 2022-08-11

Revision Accepted: 2023-07-24

Crosschecked: 2022-11-28

Cited: 0

Clicked: 876

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhixiong HUANG

https://orcid.org/0000-0002-2080-8678

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Filter-cluster attention based recursive network for low-light enhancement


Author(s):  Zhixiong HUANG, Jinjiang LI, Zhen HUA, Linwei FAN

Affiliation(s):  School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; more

Corresponding email(s):  hzxcyanwind@163.com, lijinjiang@gmail.com-

Key Words:  Low-light enhancement; Filter-cluster attention; Dense connection pyramid; Recursive network


Share this article to: More <<< Previous Paper|Next Paper >>>

Zhixiong HUANG, Jinjiang LI, Zhen HUA, Linwei FAN. Filter-cluster attention based recursive network for low-light enhancement[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200344

@article{title="Filter-cluster attention based recursive network for low-light enhancement",
author="Zhixiong HUANG, Jinjiang LI, Zhen HUA, Linwei FAN",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2200344"
}

%0 Journal Article
%T Filter-cluster attention based recursive network for low-light enhancement
%A Zhixiong HUANG
%A Jinjiang LI
%A Zhen HUA
%A Linwei FAN
%J Frontiers of Information Technology & Electronic Engineering
%P 1028-1044
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2200344"

TY - JOUR
T1 - Filter-cluster attention based recursive network for low-light enhancement
A1 - Zhixiong HUANG
A1 - Jinjiang LI
A1 - Zhen HUA
A1 - Linwei FAN
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1028
EP - 1044
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2200344"


Abstract: 
The poor quality of images recorded in low-light environments affects their further applications. To improve the visibility of low-light images, we propose a recurrent network based on filter-cluster attention (FCA), the main body of which consists of three units: difference concern, gate recurrent, and iterative residual. The network performs multi-stage recursive learning on low-light images, and then extracts deeper feature information. To compute more accurate dependence, we design a novel FCA that focuses on the saliency of feature channels. FCA and self-attention are used to highlight the low-light regions and important channels of the feature. We also design a dense connection pyramid (DenCP) to extract the color features of the low-light inversion image, to compensate for the loss of the image’s color information. Experimental results on six public datasets show that our method has outstanding performance in subjective and quantitative comparisons.

基于过滤-群聚注意力的低光增强递归网络

黄志雄1,3,李晋江2,3,华臻1,3,范琳伟4
1山东工商学院信息与电子工程学院,中国烟台市,264005
2山东工商学院计算机科学与技术学院,中国烟台市,264005
3山东工商学院山东省高等学校未来智能计算协同创新中心,中国烟台市,264005
4山东财经大学计算机科学与技术学院,中国济南市,250014
摘要:在低光环境下拍摄的图像质量不佳,影响其进一步应用。为提升低光图像可视性,提出一种基于过滤-群聚注意力(FCA)的递归网络,其中主体由3个单元组成:差异关注、门控递归以及迭代残差。该网络对低光图像进行多阶段递归学习,进而提取更深层次特征信息。为算得更加精确的相关性,设计了一种关注特征通道突出性的FCA。FCA与自注意力被用以突出特征的低光区域与重要通道。此外,设计了密集连接金字塔(DenCP)来提取低光反转图的色彩特征,使图像的色彩信息损失得以补偿。在6种公开数据集上的实验结果表明,本文方法在视觉和指标上有着突出表现。

关键词组:低光增强;过滤-群聚注意力;密集连接金字塔;递归网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdullah-Al-Wadud M, Kabir H, Dewan MAA, et al., 2007. A dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron, 53(2):593-600.

[2]Aradi S, 2022. Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Trans Intell Transp Syst, 23(2):740-759.

[3]Bychkovsky V, Paris S, Chan E, et al., 2011. Learning photographic global tonal adjustment with a database of input/output image pairs. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.97-104.

[4]Celik T, Tjahjadi T, 2011. Contextual and variational contrast enhancement. IEEE Trans Image Process, 20(12):3431-3441.

[5]Chen BH, Wu YL, Shi LF, 2019. A fast image contrast enhancement algorithm using entropy-preserving mapping prior. IEEE Trans Circ Syst Video Technol, 29(1):38-49.

[6]Cheng HD, Shi XJ, 2004. A simple and effective histogram equalization approach to image enhancement. Dig Signal Process, 14(2):158-170.

[7]Cho K, van Merriënboer B, Gulcehre C, et al., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proc Conf on Empirical Methods in Natural Language Processing, p.1724-1734.

[8]Guo CL, Li CY, Guo JC, et al., 2020. Zero-reference deep curve estimation for low-light image enhancement. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1780-1789.

[9]Guo XJ, Li Y, Ling HB, 2017. LIME: low-light image enhancement via illumination map estimation. IEEE Trans Image Process, 26(2):982-993.

[10]Hao SJ, Han X, Guo YR, et al., 2020. Low-light image enhancement with semi-decoupled decomposition. IEEE Trans Multim, 22(12):3025-3038.

[11]Hochreiter S, Schmidhuber J, 1997. Long short-term memory. Neur Comput, 9(8):1735-1780.

[12]Huang G, Liu Z, van der Maaten L, et al., 2017. Densely connected convolutional networks. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2261-2269.

[13]Huang ZX, Li JJ, Hua Z, et al., 2022. Underwater image enhancement via adaptive group attention-based multiscale cascade transformer. IEEE Trans Instrum Meas, 71:5015618.

[14]Jiang YF, Gong XY, Liu D, et al., 2021. EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans Image Process, 30:2340-2349.

[15]Jung E, Yang N, Cremers D, 2020. Multi-frame GAN: image enhancement for stereo visual odometry in low light. Proc 3rd Annual Conf on Robot Learning, p.651-660.

[16]Kingma DP, Ba J, 2014. Adam: a method for stochastic optimization. Proc 3rd Int Conf on Learning Representations.

[17]Lee C, Lee C, Kim CS, 2012. Contrast enhancement based on layered difference representation. 19th IEEE Int Conf on Image Processing, p.965-968.

[18]Lee C, Lee C, Kim CS, 2013. Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans Image Process, 22(12):5372-5384.

[19]Li CL, Tang SQ, Yan JW, et al., 2020. Low-light image enhancement based on quasi-symmetric correction functions by fusion. Symmetry, 12(9):1561.

[20]Li JJ, Feng XM, Hua Z, 2021. Low-light image enhancement via progressive-recursive network. IEEE Trans Circ Syst Video Technol, 31(11):4227-4240.

[21]Li L, Wang RG, Wang WM, et al., 2015. A low-light image enhancement method for both denoising and contrast enlarging. IEEE Int Conf on Image Processing, p.3730-3734.

[22]Li MD, Liu JY, Yang WH, et al., 2018. Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans Image Process, 27(6):2828-2841.

[23]Li PL, Liang JL, Zhang MH, 2021. A degradation model for simultaneous brightness and sharpness enhancement of low-light image. Signal Process, 189:108298.

[24]Lim KL, Jiang XD, Yi CY, 2020. Deep clustering with variational autoencoder. IEEE Signal Process Lett, 27:231-235.

[25]Liu L, Ouyang WL, Wang XG, et al., 2020. Deep learning for generic object detection: a survey. Int J Comput Vis, 128(2):261-318.

[26]Liu RS, Ma L, Zhang JA, et al., 2021. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10556-10565.

[27]Liu YJ, Wang ZN, Zeng Y, et al., 2021. PD-GAN: perceptual-details GAN for extremely noisy low light image enhancement. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1840-1844.

[28]Loh YP, Chan CS, 2019. Getting to know low-light images with the exclusively dark dataset. Comput Vis Image Underst, 178:30-42.

[29]Lore KG, Akintayo A, Sarkar S, 2017. LLNet: a deep autoencoder approach to natural low-light image enhancement. Patt Recogn, 61:650-662.

[30]Lv FF, Li Y, Lu F, 2021. Attention guided low-light image enhancement with a large scale low-light simulation dataset. Int J Comput Vis, 129(7):2175-2193.

[31]Ma L, Liu RS, Zhang JA, et al., 2022. Learning deep context-sensitive decomposition for low-light image enhancement. IEEE Trans Neur Netw Learn Syst, 33(10):5666-5680.

[32]Mittal A, Soundararajan R, Bovik AC, 2013. Making a “completely blind” image quality analyzer. IEEE Signal Process Lett, 20(3):209-212.

[33]Peng T, Su LL, Zhang RH, et al., 2020. A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles. Expert Syst Appl, 141:112953.

[34]Ren WQ, Liu SF, Ma L, et al., 2019. Low-light image enhancement via a deep hybrid network. IEEE Trans Image Process, 28(9):4364-4375.

[35]Ren XT, Li MD, Cheng WH, et al., 2018. Joint enhancement and denoising method via sequential decomposition. IEEE Int Symp on Circuits and Systems, p.1-5.

[36]Shiau YH, Chen PY, Yang HY, et al., 2015. A low-cost hardware architecture for illumination adjustment in real-time applications. IEEE Trans Intell Transp Syst, 16(2):934-946.

[37]Singh H, Kumar A, Balyan LK, et al., 2017. A novel optimally gamma corrected intensity span maximization approach for dark image enhancement. 22nd Int Conf on Digital Signal Processing, p.1-5.

[38]Singh N, Bhandari AK, 2021. Principal component analysis-based low-light image enhancement using reflection model. IEEE Trans Instrum Meas, 70:70:5012710.

[39]Wang LW, Liu ZS, Siu WC, et al., 2020. Lightening network for low-light image enhancement. IEEE Trans Image Process, 29:7984-7996.

[40]Wang QL, Wu BG, Zhu PF, et al., 2020. ECA-Net: efficient channel attention for deep convolutional neural networks. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11531-11539.

[41]Wang SH, Luo G, 2018. Naturalness preserved image enhancement using a priori multi-layer lightness statistics. IEEE Trans Image Process, 27(2):938-948.

[42]Wang SH, Zheng J, Hu HM, et al., 2013. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process, 22(9):3538-3548.

[43]Wang W, Sun N, Ng MK, 2019. A variational gamma correction model for image contrast enhancement. Inv Probl Imag, 13(3):461-478.

[44]Wang YF, Liu HM, Fu ZW, 2019. Low-light image enhancement via the absorption light scattering model. IEEE Trans Image Process, 28(11):5679-5690.

[45]Wei C, Wang WJ, Yang WH, et al., 2018. Deep retinex decomposition for low-light enhancement. British Machine Vision Conf, Article 155.

[46]Wu XM, Liu XH, Hiramatsu K, et al., 2017. Contrast-accumulated histogram equalization for image enhancement. IEEE Int Conf on Image Processing, p.3190-3194.

[47]Xie EZ, Ding J, Wang WH, et al., 2021. DetCo: unsupervised contrastive learning for object detection. IEEE/CVF Int Conf on Computer Vision, p.8372-8381.

[48]Xu CR, Peng ZZ, Hu XZ, et al., 2020. FPGA-based low-visibility enhancement accelerator for video sequence by adaptive histogram equalization with dynamic clip-threshold. IEEE Trans Circ Syst I Regul Papers, 67(11):3954-3964.

[49]Xu K, Yang X, Yin BC, et al., 2020. Learning to restore low-light images via decomposition-and-enhancement. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2278-2287.

[50]Xu YD, Yang C, Sun BB, et al., 2021. A novel multi-scale fusion framework for detail-preserving low-light image enhancement. Inform Sci, 548:378-397.

[51]Yan XA, Liu Y, Jia MP, 2020a. Multiscale cascading deep belief network for fault identification of rotating machinery under various working conditions. Knowl-Based Syst, 193:105484.

[52]Yan XA, Liu Y, Xu YD, et al., 2020b. Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition. Energy Conv Manag, 225:113456.

[53]Yang B, Cao XL, Yuen C, et al., 2021. Offloading optimization in edge computing for deep-learning-enabled target tracking by Internet of UAVs. IEEE Int Things J, 8(12):9878-9893.

[54]Yang WH, Wang WJ, Huang HF, et al., 2021a. Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE Trans Image Process, 30:2072-2086.

[55]Yang WH, Wang SQ, Fang YM, et al., 2021b. Band representation-based semi-supervised low-light image enhancement: bridging the gap between signal fidelity and perceptual quality. IEEE Trans Image Process, 30:3461-3473.

[56]Ying ZQ, Li G, Ren YR, et al., 2017. A new low-light image enhancement algorithm using camera response model. IEEE Int Conf on Computer Vision Workshops, p.3015-3022.

[57]Yu SY, Zhu H, 2019. Low-illumination image enhancement algorithm based on a physical lighting model. IEEE Trans Circ Syst Video Technol, 29(1):28-37.

[58]Zamir SW, Arora A, Khan S, et al., 2020. Learning enriched features for real image restoration and enhancement. Proc 16th European Conf on Computer Vision, p.492-511.

[59]Zhang L, Zhang L, Mou XQ, et al., 2011. FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process, 20(8):2378-2386.

[60]Zhang TL, Li JJ, Fan H, 2022. Progressive edge-sensing dynamic scene deblurring. Comput Visual Media, 8(3):495-508.

[61]Zhang YH, Zhang JW, Guo XJ, 2019. Kindling the darkness: a practical low-light image enhancer. Proc 27th ACM Int Conf on Multimedia, p.1632-1640.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE