Full Text:  <4105>

Summary:  <1912>

CLC number: TM911.4

On-line Access: 2018-11-02

Received: 2017-11-09

Revision Accepted: 2018-04-08

Crosschecked: 2018-10-10

Cited: 0

Clicked: 3990

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Isyraf Aznam

https://orcid.org/0000-0002-9536-8531

Andanastuti Muchtar

https://orcid.org/0000-0002-1599-8964

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells


Author(s):  Isyraf Aznam, Joelle Chia Wen Mah, Andanastuti Muchtar, Mahendra Rao Somalu, Mariyam Jameelah Ghazali

Affiliation(s):  Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; more

Corresponding email(s):  muchtar@ukm.edu.my

Key Words:  Solid oxide fuel cell (SOFC); Electrophoretic deposition (EPD); Suspension stability; Zeta potential; Colloidal


Share this article to: More |Next Paper >>>

Isyraf Aznam, Joelle Chia Wen Mah, Andanastuti Muchtar, Mahendra Rao Somalu, Mariyam Jameelah Ghazali. A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700604

@article{title="A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells",
author="Isyraf Aznam, Joelle Chia Wen Mah, Andanastuti Muchtar, Mahendra Rao Somalu, Mariyam Jameelah Ghazali",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A1700604"
}

%0 Journal Article
%T A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells
%A Isyraf Aznam
%A Joelle Chia Wen Mah
%A Andanastuti Muchtar
%A Mahendra Rao Somalu
%A Mariyam Jameelah Ghazali
%J Journal of Zhejiang University SCIENCE A
%P 811-823
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A1700604"

TY - JOUR
T1 - A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells
A1 - Isyraf Aznam
A1 - Joelle Chia Wen Mah
A1 - Andanastuti Muchtar
A1 - Mahendra Rao Somalu
A1 - Mariyam Jameelah Ghazali
J0 - Journal of Zhejiang University Science A
SP - 811
EP - 823
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A1700604"


Abstract: 
This paper reviews recent progress in electrophoretic deposition (EPD), particularly in solid oxide fuel cells (SOFCs). EPD is a simple, cost-effective, and geometrical flexible colloidal process. With its excellent control of thickness and other morphological characteristics, it is favored for the fabrication of SOFCs because each component layer of an SOFC has different requirements. However, the effectiveness of EPD is closely related to the suspension stability and EPD processing parameters. Maintaining a stable suspension and optimizing the EPD processing parameters are essential to achieve a dense and uniform deposition layer. Key parameters in maintaining the suspension stability are generally categorized into colloidal related parameters, including particle size and solid loading, and suspension media related parameters, including dielectric constant and conductivity. The effects of these parameters are often reflected by the zeta potential of the suspension, which can be manipulated by using charging agents to maintain a stable state. The deposition time and applied voltage are key parameters in optimizing the EPD process through their effects on the deposition rate. The effects of these parameters on particle surface charges and on the EPD mechanism are discussed.

Abstract: This review shows EPD parameters for preparing SOFC and the contents are very useful for readers. Also recent papers on EPD for preparing the SOFC are well cited.

电泳沉积固体氧化物燃料电池关键参数研究综述

目的:电泳沉积是一种简单且具有成本效益的涂层技术. 其出色的形态特征控制,适用于制造需要每个组件层都具有其独特属性的固体氧化物燃料电池. 本文旨在综述电泳沉积的最新进展、制备稳定悬浮液所需的关键因素以及通过电泳沉积技术制造固体氧化物燃料电池所涉及的相关参数.
创新点:1. 分析了维持悬浮液稳定性的关键参数,包括粒径和固体载荷等胶体相关参数以及介电常数和电导率等悬浮介质相关参数. 2. 讨论了这些参数对粒子流动性、电动电位和电泳沉积技术于固体氧化物燃料电池应用的综合效应.
方法:对以往的研究进行综述,并总结电泳沉积技术制造固体氧化物燃料电池组件层的发展(表1),包括稳定悬浮液的制备以及电泳沉积工艺关键参数的优化.
结论:鉴于每个固体氧化物燃料电池组件层都涉及不同类型的材料,且每种材料都需要特定的参数来实现有效沉积,因此,为了获得各组件层所需要的性能,制备悬浮液配方的正确性和电泳沉积工艺的优化显得至关重要.

关键词组:固体氧化物燃料电池;电泳沉积;悬浮稳定性;电动电位;胶体

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdoli H, Alizadeh P, 2012. Electrophoretic deposition of (Mn, Co)3O4 spinel nano powder on SOFC metallic interconnects. Materials Letters, 80:53-55.

[2]Anné G, Vanmeensel K, Vleugels J, et al., 2004. Influence of the suspension composition on the electric field and deposition rate during electrophoretic deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 245(1-3):35-39.

[3]Baharuddin NA, Rahman HA, Muchtar A, et al., 2013. Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(1):11-24.

[4]Baharuddin NA, Muchtar A, Somalu MR, et al., 2016. Influence of sintering temperature on the polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3−δ-SDC carbonate composite cathode. Ceramics-Silikaty, 60(2):115-121.

[5]Bariza Z, Hocine BM, Kafia O, 2007. Studying on the increasing temperature in IT-SOFC: effect of heat sources. Journal of Zhejiang University-SCIENCE A, 8(9):1500-1504.

[6]Bergström L, 1997. Hamaker constants of inorganic materials. Advances in Colloid and Interface Science, 70:125-169.

[7]Besra L, Liu M, 2007. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52(1):1-61.

[8]Besra L, Compson C, Liu ML, 2006. Electrophoretic deposition of YSZ particles on non-conducting porous NiO-YSZ substrates for solid oxide fuel cell applications. Journal of the American Ceramic Society, 89(10):3003-3009.

[9]Besra L, Compson C, Liu ML, 2007. Electrophoretic deposition on non-conducting substrates: the case of YSZ film on NiO-YSZ composite substrates for solid oxide fuel cell application. Journal of Power Sources, 173(1):130-136.

[10]Bieberle-Hütter A, Beckel D, Infortuna A, et al., 2008. A micro-solid oxide fuel cell system as battery replacement. Journal of Power Sources, 177(1):123-130.

[11]Blum L, de Haart LGJ, Malzbender J, et al., 2013. Recent results in Jülich solid oxide fuel cell technology development. Journal of Power Sources, 241:477-485.

[12]Buonomano A, Calise F, D’Accadia MD, et al., 2015. Hybrid solid oxide fuel cells-gas turbine systems for combined heat and power: a review. Applied Energy, 156:32-85.

[13]Chávez-Valdez A, Herrmann M, Boccaccini AR, 2012. Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. Journal of Colloid and Interface Science, 375(1):102-105.

[14]Chen GY, Xin XS, Luo T, et al., 2015. Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications. Journal of Power Sources, 278:230-234.

[15]Chen M, Luo JL, Chuang KT, et al., 2012. Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating. Electrochimica Acta, 63:277-286.

[16]Cherng JS, Wu CC, Yu FA, et al., 2013. Anode morphology and performance of micro-tubular solid oxide fuel cells made by aqueous electrophoretic deposition. Journal of Power Sources, 232:353-356.

[17]Collins C, Lucas J, Buchanan TL, et al., 2006. Chromium volatility of coated and uncoated steel interconnects for SOFCs. Surface and Coatings Technology, 201(7):4467-4470.

[18]Corni I, Ryan MP, Boccaccini AR, 2008. Electrophoretic deposition: from traditional ceramics to nanotechnology. Journal of the European Ceramic Society, 28(7):1353-1367.

[19]Das D, Basu RN, 2013. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates. Materials Research Bulletin, 48(9):3254-3261.

[20]Das D, Basu RN, 2014. Electrophoretic deposition of zirconia thin film on nonconducting substrate for solid oxide fuel cell application. Journal of the American Ceramic Society, 97(11):3452-3457.

[21]Das D, Bagchi B, Basu RN, 2017. Nanostructured zirconia thin film fabricated by electrophoretic deposition technique. Journal of Alloys and Compounds, 693:1220-1230.

[22]Dayaghi AM, Kim KJ, Kim S, et al., 2016. Stainless steel-supported solid oxide fuel cell with La0.2Sr0.8Ti0.9Ni0.1O3−δ/yttria-stabilized zirconia composite anode. Journal of Power Sources, 324:288-293.

[23]de Riccardis MF, Carbone D, Rizzo A, 2007. A novel method for preparing and characterizing alcoholic EPD suspensions. Journal of Colloid and Interface Science, 307(1):109-115.

[24]Diba M, Fam DWH, Boccaccini AR, et al., 2016. Electrophoretic deposition of graphene-related materials: a review of the fundamentals. Progress in Materials Science, 82:83-117.

[25]Evans A, Bieberle-Hütter A, Rupp JLM, et al., 2009. Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources, 194(1):119-129.

[26]Ferrari B, Moreno R, 1996. The conductivity of aqueous Al2O3 slips for electrophoretic deposition. Materials Letters, 28(4-6):353-355.

[27]Ferrari B, Moreno R, 1997. Electrophoretic deposition of aqueous alumina slips. Journal of the European Ceramic Society, 17(4):549-556.

[28]Ferrari B, Moreno R, 2010. EPD kinetics: a review. Journal of the European Ceramic Society, 30(5):1069-1078.

[29]Fong KF, Lee CK, 2014. Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate. Applied Energy, 114:426-433.

[30]Fori B, Taberna PL, Arurault L, et al., 2014. Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate. Journal of Colloid and Interface Science, 413:31-36.

[31]Gondolini A, Mercadelli E, Sangiorgi A, et al., 2017. Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application. Journal of the European Ceramic Society, 37(3):1023-1030.

[32]Greenwood R, Kendall K, 1999. Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. Journal of the European Ceramic Society, 19(4):479-488.

[33]Grillon F, Fayeulle D, Jeandin M, 1992. Quantitative image analysis of electrophoretic coatings. Journal of Materials Science Letters, 11(5):272-275.

[34]Guo XG, Li XM, Lai C, et al., 2015. Cathodic electrophoretic deposition of bismuth oxide (Bi2O3) coatings and their photocatalytic activities. Applied Surface Science, 331: 455-462.

[35]Hamaker HC, Verwey EJW, 1940. The role of the forces between the particles in electrodeposition and other phenomena. Transactions of the Faraday Society, 35:180-185.

[36]Han SJ, Pala Z, Sampath S, 2016. Plasma sprayed manganese-cobalt spinel coatings: process sensitivity on phase, electrical and protective performance. Journal of Power Sources, 304:234-243.

[37]Hanaor D, Michelazzi M, Leonelli C, et al., 2012. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. Journal of the European Ceramic Society, 32(1):235-244.

[38]He RJ, Hu P, Zhang XH, et al., 2013. Preparation of high solid loading, low viscosity ZrB2-SiC aqueous suspensions using PEI as dispersant. Ceramics International, 39(3):2267-2274.

[39]Huang WH, Gopalan S, Pal UB, et al., 2008. Evaluation of electrophoretically deposited CuMn1.8O4 spinel coatings on Crofer 22 APU for solid oxide fuel cell interconnects. Journal of the Electrochemical Society, 155(11):B1161-B1167.

[40]Irankhah R, Raissi B, Maghsoudipour A, et al., 2016. NiFe2O4 spinel protection coating for high-temperature solid oxide fuel cell interconnect application. Journal of Materials Engineering and Performance, 25(4):1515-1525.

[41]Irshad M, Siraj K, Raza R, et al., 2016. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences, 6(3):75.

[42]Itagaki Y, Watanabe S, Yamaji T, et al., 2012. Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell. Journal of Power Sources, 214:153-158.

[43]Itagaki Y, Shinohara K, Yamaguchi S, et al., 2015. Anodic performance of bilayer Ni-YSZ SOFC anodes formed by electrophoretic deposition. Journal of the Ceramic Society of Japan, 123(4):235-238.

[44]Jalilvand G, Faghihi-Sani MA, 2013. Fe doped Ni-Co spinel protective coating on ferritic stainless steel for SOFC interconnect application. International Journal of Hydrogen Energy, 38(27):12007-12014.

[45]Kalinina EG, Pikalova EY, Menshikova AV, et al., 2016a. Electrophoretic deposition of a self-stabilizing suspension based on a nanosized multi-component electrolyte powder prepared by the laser evaporation method. Solid State Ionics, 288:110-114.

[46]Kalinina EG, Efimov AA, Safronov AP, 2016b. The influence of nanoparticle aggregation on formation of ZrO2 electrolyte thin films by electrophoretic deposition. Thin Solid Films, 612:66-71.

[47]Kalinina EG, Samatov OM, Safronov AP, 2016c. Stable suspensions of doped ceria nanopowders for electrophoretic deposition of coatings for solid oxide fuel cells. Inorganic Materials, 52(8):858-864.

[48]Kim HJ, Kim M, Neoh KC, et al., 2016. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells. Journal of Power Sources, 327:401-407.

[49]Koelmans H, 1995. Suspensions in non-aqueous media. Philips Research Reports, 10:161-193.

[50]Kovalev LV, Yarmolich MV, Petrova ML, et al., 2014. Double perovskite Sr2FeMoO6 films prepared by electrophoretic deposition. ACS Applied Materials and Interfaces, 6(21):19201-19206.

[51]Krüger HG, Knote A, Schindler U, et al., 2004. Composite ceramic metal coatings by means of combined electrophoretic deposition. Journal of Materials Science, 39(3):839-844.

[52]Kumar DCJ, Liu Y, Ganley J, et al., 2012. Transition metal doping of manganese cobalt spinel oxides for coating SOFC interconnects. In: Salazar-Villalpando MD, Neelameggham NR, Guillen DP, et al. (Eds.), Energy Technology 2012: Carbon Dioxide Management and Other Technologies. Wiley, Hoboken, USA.

[53]Kumar SS, Nalluri A, Balaji N, et al., 2017. Solution precursor plasma spray process: a promising route for the fabrication of Mn-Co oxide based protective coating for SOFC. Surface and Coatings Technology, 324:26-35.

[54]Lawlor V, 2013. Review of the micro-tubular solid oxide fuel cell (part II: cell design issues and research activities). Journal of Power Sources, 240:421-441.

[55]Lee S, Chu CL, Tsai MJ, et al., 2010. High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Applied Surface Science, 256(6):1817-1824.

[56]Li J, Zhitomirsky I, 2008. Electrophoretic deposition of manganese oxide nanofibers. Materials Chemistry and Physics, 112(2):525-530.

[57]Li J, Zhitomirsky I, 2009. Cathodic electrophoretic deposition of manganese dioxide films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348(1-3):248-253.

[58]Li J, Gao N, Cao GY, et al., 2009. Predictive control of a direct internal reforming SOFC using a self recurrent wavelet network model. Journal of Zhejiang University-SCIENCE A, 11(1):61-70.

[59]Li K, Wang X, Jia LC, et al., 2014. High performance Ni-Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process. International Journal of Hydrogen Energy, 39(34):19747-19752.

[60]Liang H, Pang XM, Xu MX, et al., 2007. Dispersion mechanisms of aqueous silicon nitride suspensions at high solid loading. Materials Science and Engineering: A, 465(1-2):13-21.

[61]Liu Y, Chen DY, 2009. Protective coatings for Cr2O3-forming interconnects of solid oxide fuel cells. International Journal of Hydrogen Energy, 34(22):9220-9226.

[62]López-Robledo MJ, Silva-Treviño J, Molina T, et al., 2013. Colloidal stability of gadolinium-doped ceria powder in aqueous and non-aqueous media. Journal of the European Ceramic Society, 33(2):297-303.

[63]Mah JCW, Muchtar A, Somalu MR, et al., 2017. Formation of sol–gel derived (Cu, Mn, Co)3O4 spinel and its electrical properties. Ceramics International, 43(10):7641-7646.

[64]Mahato N, Banerjee A, Gupta A, et al., 2015. Progress in material selection for solid oxide fuel cell technology: a review. Progress in Materials Science, 72:141-337.

[65]Mahmud LS, Muchtar A, Somalu MR, 2017. Challenges in fabricating planar solid oxide fuel cells: a review. Renewable and Sustainable Energy Reviews, 72:105-116.

[66]Majhi SM, Behura SK, Bhattacharjee S, et al., 2011. Anode supported solid oxide fuel cells (SOFC) by electrophoretic deposition. International Journal of Hydrogen Energy, 36(22):14930-14935.

[67]Marcano D, Mauer G, Vaßen R, et al., 2017. Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD). Surface and Coatings Technology, 318:170-177.

[68]Masi A, Bellusci M, McPhail SJ, et al., 2017. Cu-Mn-Co oxides as protective materials in SOFC technology: the effect of chemical composition on mechanochemical synthesis, sintering behaviour, thermal expansion and electrical conductivity. Journal of the European Ceramic Society, 37(2):661-669.

[69]Matsuda M, Hashimoto M, Matsunaga C, et al., 2016. Electrophoretic fabrication of a-b plane oriented La2NiO4 cathode onto electrolyte in strong magnetic field for low-temperature operating solid oxide fuel cell. Journal of the European Ceramic Society, 36(16):4077-4082.

[70]Mehmeti A, McPhail SJ, Pumiglia D, et al., 2016. Life cycle sustainability of solid oxide fuel cells: from methodological aspects to system implications. Journal of Power Sources, 325:772-785.

[71]Menzler NH, Han F, van Gestel T, et al., 2013. Application of thin-film manufacturing technologies to solid oxide fuel cells and gas separation membranes. International Journal of Applied Ceramic Technology, 10(3):421-427.

[72]Minh NQ, 2004. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 174(1-4):271-277.

[73]Mirzaei M, Simchi A, Faghihi-Sani MA, et al., 2016. Electrophoretic deposition and sintering of a nanostructured manganese-cobalt spinel coating for solid oxide fuel cell interconnects. Ceramics International, 42(6):6648-6656.

[74]Ovtar S, Lisjak D, Drofenik M, 2012. The influence of processing parameters on the orientation of barium ferrite platelets during electrophoretic deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 403:139-147.

[75]Piccardo P, Gannon P, Chevalier S, et al., 2007. ASR evaluation of different kinds of coatings on a ferritic stainless steel as SOFC interconnects. Surface and Coatings Technology, 202(4-7):1221-1225.

[76]Powers RW, 1975. The electrophoretic forming of beta-alumina ceramic. Journal of the Electrochemical Society, 122(4):490-500.

[77]Rahman HA, Muchtar A, Muhamad N, et al., 2011. Influence of processing parameters on electrophoretically deposited La0.6Sr0.4Co0.2Fe0.8O3−δ films. Key Engineering Materials, 462-463:148-153.

[78]Rahman HA, Muchtar A, Muhamad N, et al., 2013. La0.6Sr0.4Co0.2Fe0.8O3−δ–SDC carbonate composite cathodes for low-temperature solid oxide fuel cells. Materials Chemistry and Physics, 141(2-3):752-757.

[79]Rezugina E, Thomann AL, Hidalgo H, et al., 2010. Ni-YSZ films deposited by reactive magnetron sputtering for SOFC applications. Surface and Coatings Technology, 204(15):2376-2380.

[80]Sakka Y, Uchikoshi T, 2010. Forming and microstructure control of ceramics by electrophoretic deposition (EPD). KONA Powder and Particle Journal, 28:74-90.

[81]Santillán MJ, Caneiro A, Quaranta N, et al., 2009. Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). Journal of the European Ceramic Society, 29(6):1125-1132.

[82]Sarkar P, Nicholson PS, 1996. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8):1987-2002.

[83]Sarkar P, De D, Rho H, 2004. Synthesis and microstructural manipulation of ceramics by electrophoretic deposition. Journal of Materials Science, 39(3):819-823.

[84]Schafbauer W, Menzler NH, Buchkremer HP, 2014. Tape casting of anode supports for solid oxide fuel cells at Forschungszentrum Jülich. International Journal of Applied Ceramic Technology, 11(1):125-135.

[85]Singh B, Ghosh S, Aich S, et al., 2017. Low temperature solid oxide electrolytes (LT-SOE): a review. Journal of Power Sources, 339:103-135.

[86]Smeacetto F, de Miranda A, Polo SC, et al., 2015. Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application. Journal of Power Sources, 280:379-386.

[87]Somalu MR, Muchtar A, Daud WRW, et al., 2017. Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable and Sustainable Energy Reviews, 75:426-439.

[88]Stöver D, Hathiramani D, Vaßen R, et al., 2006. Plasma_ sprayed components for SOFC applications. Surface and Coatings Technology, 201(5):2002-2005.

[89]Suarez G, Nguyen NTK, Rendtorff NM, et al., 2016. Electrophoretic deposition for obtaining dense lanthanum silicate oxyapatite (LSO). Ceramics International, 42(16):19283-19288.

[90]Sun ZH, Gopalan S, Pal UB, et al., 2017. Cu1.3Mn1.7O4 spinel coatings deposited by electrophoretic deposition on Crofer 22 APU substrates for solid oxide fuel cell applications. Surface and Coatings Technology, 323:49-57.

[91]Talebi T, Haji M, Raissi B, et al., 2010. YSZ electrolyte coating on NiO-YSZ composite by electrophoretic deposition for solid oxide fuel cells (SOFCs). International Journal of Hydrogen Energy, 35(17):9455-9459.

[92]Tanaka T, Kamiko H, Akiba K, et al., 2017. Energetic analyses of installing SOFC co-generation systems with EV charging equipment in Japanese cafeteria. Energy Conversion and Management, 153:435-445.

[93]Tietz F, Buchkremer HP, Stöver D, 2002. Components manufacturing for solid oxide fuel cells. Solid State Ionics, 152-153:373-381.

[94]Timurkutluk B, Timurkutluk C, Mat MD, et al., 2016. A review on cell/stack designs for high performance solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 56:1101-1121.

[95]van Tassel J, Randall CA, 2004. Potential for integration of electrophoretic deposition into electronic device manufacture; demonstrations using silver/palladium. Journal of Materials Science, 39(3):867-879.

[96]Verde M, Peiteado M, Caballero AC, et al., 2012. Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions. Journal of Colloid and Interface Science, 373(1):27-33.

[97]Will J, Hruschka MKM, Gubler L, et al., 2001. Electrophoretic deposition of zirconia on porous anodic substrates. Journal of the American Ceramic Society, 84(2):328-332.

[98]Wu J, Yan D, Pu J, et al., 2012. The investigation of interaction between La0.9Sr0.1MnO3 cathode and metallic interconnect for solid oxide fuel cell at reduced temperature. Journal of Power Sources, 202:166-174.

[99]Xiao JH, Zhang WY, Xiong CY, et al., 2016. Oxidation behavior of Cu-doped MnCo2O4 spinel coating on ferritic stainless steels for solid oxide fuel cell interconnects. International Journal of Hydrogen Energy, 41(22):9611-9618.

[100]Yamamoto O, 2000. Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 45(15-16):2423-2435.

[101]Yang RJ, Lee MC, Chang JC, et al., 2012. Fabrication and characterization of a Sm0.2Ce0.8O1.9 electrolyte film by the spin-coating method for a low-temperature anode-supported solid oxide fuel cells. Journal of Power Sources, 206:111-118.

[102]Ye LH, Wen KC, Zhang ZX, et al., 2016. Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices. Advanced Energy Materials, 6(7):1502018.

[103]Yu FA, Wu CC, Yeh TH, et al., 2015. Effects of layer thickness on the performance of micro-tubular solid oxide fuel cells made by sequential aqueous electrophoretic deposition. International Journal of Hydrogen Energy, 40(40):14072-14076.

[104]Zarabian M, Yar AY, Vafaeenezhad S, et al., 2013. Electrophoretic deposition of functionally-graded NiO-YSZ composite films. Journal of the European Ceramic Society, 33(10):1815-1823.

[105]Zarbov M, Schuster I, Gal-Or L, 2004. Methodology for selection of charging agents for electrophoretic deposition of ceramic particles. Journal of Materials Science, 39(3):813-817.

[106]Zhang H, Zhan ZL, Liu XB, 2011. Electrophoretic deposition of (Mn, Co)3O4 spinel coating for solid oxide fuel cell interconnects. Journal of Power Sources, 196(19):8041-8047.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE