Full Text:  <2327>

Suppl. Mater.: 

Summary:  <1481>

CLC number: Q812

On-line Access: 2018-09-04

Received: 2018-01-23

Revision Accepted: 2018-03-18

Crosschecked: 2018-08-07

Cited: 0

Clicked: 3456

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145


Author(s):  Yan-Fang Zhao, dan-Dan Lu, Andreas Bechthold, Zheng Ma, Xiao-Ping Yu

Affiliation(s):  Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; more

Corresponding email(s):  mazheng520@163.com, yuxiaoping19630306@163.com

Key Words:  otrA gene; Streptomyces coelicolor; Actinorhodin; Morphological differentiation; actII-orf4


Share this article to: More <<< Previous Paper|Next Paper >>>

Yan-Fang Zhao, dan-Dan Lu, Andreas Bechthold, Zheng Ma, Xiao-Ping Yu. Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1800046

@article{title="Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145",
author="Yan-Fang Zhao, dan-Dan Lu, Andreas Bechthold, Zheng Ma, Xiao-Ping Yu",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B1800046"
}

%0 Journal Article
%T Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145
%A Yan-Fang Zhao
%A dan-Dan Lu
%A Andreas Bechthold
%A Zheng Ma
%A Xiao-Ping Yu
%J Journal of Zhejiang University SCIENCE B
%P 708-717
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B1800046"

TY - JOUR
T1 - Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145
A1 - Yan-Fang Zhao
A1 - dan-Dan Lu
A1 - Andreas Bechthold
A1 - Zheng Ma
A1 - Xiao-Ping Yu
J0 - Journal of Zhejiang University Science B
SP - 708
EP - 717
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B1800046"


Abstract: 
otrA resembles elongation factor G (EF-G) and is considered to be an oxytetracycline (OTC)-resistance determinant in Streptomyces rimosus. In order to determine whether otrA also conferred resistance to OTC and other aminoglycosides to Streptomyces coelicolor, the otrA gene from S. rimosus M527 was cloned under the control of the strong ermE* promoter. The resulting plasmid, pIB139-otrA, was introduced into S. coelicolor M145 by intergeneric conjugation, yielding the recombinant strain S. coelicolor M145-OA. As expected S. coelicolor M145-OA exhibited higher resistance levels specifically to OTC and aminoglycosides gentamycin, hygromycin, streptomycin, and spectinomycin. However, unexpectedly, S. coelicolor M145-OA on solid medium showed an accelerated aerial mycelia formation, a precocious sporulation, and an enhanced actinorhodin (Act) production. Upon growth in 5-L fermentor, the amount of intra- and extracellular Act production was 6-fold and 2-fold higher, respectively, than that of the original strain. Consistently, reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the transcriptional level of pathway-specific regulatory gene actII-orf4 was significantly enhanced in S. coelicolor M145-OA compared with in S. coelicolor M145.

天蓝色链霉菌M145中otrA基因的表达对菌株形态分化、放线紫红素合成及氨基糖苷类抗生素抗性的影响

目的:将来源于龟裂链霉菌(Streptomyces rimosus)M527的otrA基因在天蓝色链霉菌M145中异源表达,通过考察宿主菌对土霉素以及氨基糖苷类抗生素的抗性、放线紫红素的合成、菌株形态等方面的变化鉴定otrA基因的功能.
创新点: S. rimosus中的otrA基因与转录延伸因子EF-G具有很高的同源性,被认为是土霉素的抗性基因之一,但其具体的生物学功能目前尚未有研究报道.本文首次实现otrA基因在天蓝色链霉菌M145中的异源表达,不仅提高了宿主对土霉素以及氨基糖苷类抗生素的抗性,还促进了菌株产孢和放线紫红素的合成,从而初步证实了OTRA生物学功能.
方法:克隆来源于S. rimosus M527的otrA基因,将其置于链霉菌整合型载体pIB139强启动子PermE*的下游,构建重组质粒pIB139-otrA;通过接合转移将其转入天蓝色链霉菌M145获得重组菌M145-OA,实现otrA基因在天蓝色链霉菌M145中的异源表达;通过扫描电镜观察菌株的形态变化;通过含有不同浓度的不同抗生素的抗性平板筛选测试菌株的抗性水平变化;通过5-L发酵罐发酵实验考察次级代谢产物放线紫红素的合成能力变化;通过荧光定量PCR考察放线紫红素合成途径中的调控基因actII-orf4的转录水平变化.
结论:来源于S. rimosus M527的otrA基因在天蓝色链霉菌M145中实现异源表达.一方面对宿主天蓝色链霉菌形态分化、放线紫红素产量的影响表明otrA可能作为一种类似延伸因子的发挥重要作用;另一方面宿主对土霉素及氨基糖苷类抗生素抗性的提高可能归因于OTRA对核糖体的保护作用.

关键词组: otrA基因;天蓝色链霉菌;放线紫红素;形态分化;actII-orf4

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Baltz RH, 2016. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol, 43(2-3):343-370.

[2]Binnie C, Warren M, Butler MJ, 1989. Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis. J Bacteriol, 171(2):887-895.

[3]Blair JMA, Webber MA, Baylay AJ, et al., 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol, 13(1):42-51.

[4]Borodina I, Siebring J, Zhang J, et al., 2008. Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Biol Chem, 283(37):25186-25199.

[5]Chandra G, Chater KF, 2014. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev, 38(3):345-379.

[6]Chater KF, Biró S, Lee KJ, et al., 2010. The complex extracellular biology of Streptomyces. FEMS Microbiol Rev, 34(2):171-198.

[7]Chen YH, Smanski MJ, Shen B, 2010. Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol, 86(1):19-25.

[8]Chopra I, Roberts M, 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65(2):232-260.

[9]Chu XH, Zhen ZJ, Tang ZY, et al., 2012. Introduction of extra copy of oxytetracycline resistance gene otrB enhances the biosynthesis of oxytetracycline in Streptomyces rimosus. J Bioproces Biotech, 2:1000117.

[10]Coze F, Gilard F, Tcherkez G, et al., 2013. Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. PLoS ONE, 8(12):e84151.

[11]Cundliffe E, Demain AL, 2010. Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol, 37(7):643-672.

[12]Doi Y, Arakawa Y, 2007. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis, 45(1):88-94.

[13]Doyle D, McDowall KJ, Butler MJ, et al., 1991. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol Microbiol, 5(12):2923-2933.

[14]Guo MJ, Zheng ZJ, Yao GF, et al., 2012. Method for increasing oxytetracycline yield of Streptomyces rimosus. China Patent 201110107321:A.

[15]Hesketh A, Sun J, Bibb M, 2001. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol, 39(1):136-144.

[16]Hu SH, Yuan SX, Qu H, et al., 2016. Antibiotic resistance mechanisms of Myroides sp. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(3):188-199.

[17]Kieser T, Bibb MJ, Buttner MJ, et al., 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK.

[18]Lee SK, Mo SJ, Suh JW, 2012. An ABC transporter complex containing S-adenosylmethionine (SAM)-induced ATP-binding protein is involved in antibiotics production and SAM signaling in Streptomyces coelicolor M145. Biotechnol Lett, 34(10):1907-1914.

[19]Liu J, Li J, Dong H, et al., 2017. Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol, 101(14):5773-5783.

[20]Lu DD, Ma Z, Xu XH, et al., 2016. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum. J Basic Microbiol, 56(8):929-933.

[21]Ma Z, Luo S, Xu XH, et al., 2016. Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628. J Ind Microbiol Biotechnol, 43(4):463-471.

[22]Mak S, Xu Y, Nodwell JR, 2014. The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol Microbiol, 93(3):391-402.

[23]Malla S, Niraula NP, Liou K, et al., 2010. Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res, 165(4):259-267.

[24]Niu GQ, Chater KF, Tian YQ, et al., 2016. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev, 40(4):554-573.

[25]Petković H, Cullum J, Hranueli D, et al., 2006. Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev, 70(3):704-728.

[26]Pickens LB, Tang Y, 2010. Oxytetracycline biosynthesis. J Biol Chem, 285(36):27509-27515.

[27]Piddock LJV, 2006. Multidrug-resistance efflux pumps? Not just for resistance. Nat Rev Microbiol, 4(8):629-636.

[28]Prakash D, Nawani NN, 2014. A rapid and improved technique for scanning electron microscopy of actinomycetes. J Microbiol Methods, 99:54-57.

[29]Sambrook J, Russell DW, 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York, USA.

[30]Takano H, Nishiyama T, Amano SI, et al., 2016. Streptomyces metabolites in divergent microbial interactions. J Ind Microbiol Biotechnol, 43(2-3):143-148.

[31]Thaker M, Spanogiannopoulos P, Wright GD, 2010. The tetracycline resistome. Cell Mol Life Sci, 67(3):419-431.

[32]Wang GJ, Hosaka T, Ochi K, 2008. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol, 74(9):2834-2840.

[33]Wang T, Bai LQ, Zhu DQ, et al., 2012. Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes. Enzyme Microb Technol, 50(1):5-9.

[34]Xu XH, Wang J, Bechthold A, et al., 2017. Selection of an efficient promoter and its application in toyocamycin production improvement in Streptomyces diastatochromogenes 1628. World J Microbiol Biotechnol, 33(2):30.

[35]Yin SL, Wang XF, Shi MX, et al., 2017. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci, 60(9):992-999.

[36]Yu L, Yan XY, Wang L, et al., 2012. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol, 12:52.

[37]List of electronic supplementary materials

[38]Fig. S1 Phenotypic verification of seven randomly recombinant strains of S. coelicolor M145-OA

[39]Fig. S2 PCR analysis of otrA gene from S. coelicolor M145-OA

[40]Fig. S3 Morphological analyses of S. rimosus M527 and S. rimosus M527-OA on MS medium

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE