Full Text:  <2859>

Summary:  <1533>

CLC number: 

On-line Access: 2022-03-09

Received: 2021-02-01

Revision Accepted: 2021-08-17

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4072

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fei MAO

https://orcid.org/0000-0001-5840-4436

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Emerging role of protein modification in inflammatory bowel disease


Author(s):  Gaoying WANG, Jintao YUAN, Ji LUO, Dickson Kofi Wiredu OCANSEY, Xu ZHANG, Hui QIAN, Wenrong XU, Fei MAO

Affiliation(s):  Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; more

Corresponding email(s):  maofei2003@ujs.edu.cn

Key Words:  Inflammatory bowel disease (IBD); Protein modification; Neddylation; Sumoylation; Glycosylation; Acetylation


Share this article to: More |Next Paper >>>

Gaoying WANG, Jintao YUAN, Ji LUO, Dickson Kofi Wiredu OCANSEY, Xu ZHANG, Hui QIAN, Wenrong XU, Fei MAO. Emerging role of protein modification in inflammatory bowel disease[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2100114

@article{title="Emerging role of protein modification in inflammatory bowel disease",
author="Gaoying WANG, Jintao YUAN, Ji LUO, Dickson Kofi Wiredu OCANSEY, Xu ZHANG, Hui QIAN, Wenrong XU, Fei MAO",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2100114"
}

%0 Journal Article
%T Emerging role of protein modification in inflammatory bowel disease
%A Gaoying WANG
%A Jintao YUAN
%A Ji LUO
%A Dickson Kofi Wiredu OCANSEY
%A Xu ZHANG
%A Hui QIAN
%A Wenrong XU
%A Fei MAO
%J Journal of Zhejiang University SCIENCE B
%P 173-188
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2100114"

TY - JOUR
T1 - Emerging role of protein modification in inflammatory bowel disease
A1 - Gaoying WANG
A1 - Jintao YUAN
A1 - Ji LUO
A1 - Dickson Kofi Wiredu OCANSEY
A1 - Xu ZHANG
A1 - Hui QIAN
A1 - Wenrong XU
A1 - Fei MAO
J0 - Journal of Zhejiang University Science B
SP - 173
EP - 188
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2100114"


Abstract: 
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-‍κB (NF-‍κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-‍‍1β), tumor necrosis factor-α(TNF‍-‍α), and interferon-‍γ(IFN-‍γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.

蛋白质修饰在炎症性肠病中作用研究进展

摘要:炎症性肠病(inflammatory bowel disease,IBD)的发病涉及许多因素,包括环境、微生物和免疫系统的改变。尽管对IBD的研究不断深入,但具体的发病机制尚不清楚。蛋白质修饰是指蛋白质生物合成后的化学修饰,也称为翻译后修饰(post-translational modification,PTM),使蛋白质的性质和功能发生变化。由于蛋白质可以通过乙酰化、甲基化和磷酸化等不同方式进行修饰,因此不同修饰状态的蛋白质的功能也会有所不同。蛋白质不同状态之间的转换或修饰位点的变化可以调节蛋白质的特性和功能,如NEDD8蛋白修饰、SUMO化修饰、糖基化和乙酰化等修饰可以通过改变肠道菌群、调节免疫细胞、调节细胞因子(如IL-1β、TNF-α、IFN-γ),最终维持肠上皮屏障的稳定性。在这篇综述中,我们关注当前对PTM的理解,并描述其在IBD发病机制中的调节作用。

关键词组:炎症性肠病(IBD);蛋白质修饰;NEDD8蛋白修饰;SUMO化修饰;糖基化;乙酰化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AnanthakrishnanAN, 2015. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol, 12(4):205-217.

[2]BaezaJ, SmalleganMJ, DenuJM, 2016. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci, 41(3):231-244.

[3]Barbier-TorresL, DelgadoTC, García-RodríguezJL, et al., 2015. Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget, 6(4):2509-2523.

[4]BaumgartDC, CardingSR, 2007. Inflammatory bowel disease: cause and immunobiology. Lancet, 369(9573):1627-1640.

[5]BrownSJ, MillerAM, CowanPJ, et al., 2004. Altered immune system glycosylation causes colitis in α1,2-fucosyltransferase transgenic mice. Inflamm Bowel Dis, 10(5):546-556.

[6]CarusoR, MarafiniI, FranzèE, et al., 2014. Defective expression of SIRT1 contributes to sustain inflammatory pathways in the gut. Mucosal Immunol, 7(6):1467-1479.

[7]ColganSP, TaylorCT, 2010. Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol, 7(5):281-287.

[8]CoskunM, OlsenJ, SeidelinJB, et al., 2011. MAP kinases in inflammatory bowel disease. Clin Chim Acta, 412(7-8):513-520.

[9]CurtisVF, EhrentrautSF, ColganSP, 2015a. Actions of adenosine on cullin neddylation: implications for inflammatory responses. Comput Struct Biotechnol J, 13:273-276.

[10]CurtisVF, EhrentrautSF, CampbellEL, et al., 2015b. Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in mucosal inflammatory responses. FASEB J, 29(1):208-215.

[11]DalmassoG, NguyenHTT, FaïsT, et al., 2019. Crohn’s disease-associated adherent-invasive Escherichia coli manipulate host autophagy by impairing SUMOylation. Cells, 8(1):35.

[12]DemarqueMD, NacerddineK, Neyret-KahnH, et al., 2011. Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice. Gastroenterology, 140(1):286-296.

[13]DemetriouM, GranovskyM, QuagginS, et al., 2001. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature, 409(6821):733-739.

[14]DiasAM, DouradoJ, LagoP, et al., 2014. Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Hum Mol Genet, 23(9):2416-2427.

[15]DiasAM, CorreiaA, PereiraMS, et al., 2018. Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc Natl Acad Sci USA, 115(20):E4651-E4660.

[16]DierckxT, VerstocktB, VermeireS, et al., 2019. GlycA, a nuclear magnetic resonance spectroscopy measure for protein glycosylation, is a viable biomarker for disease activity in IBD. J Crohns Colitis, 13(3):389-394.

[17]DocenaG, RovedattiL, KruidenierL, et al., 2010. Down-regulation of p38 mitogen-activated protein kinase activation and proinflammatory cytokine production by mitogen-activated protein kinase inhibitors in inflammatory bowel disease. Clin Exp Immunol, 162(1):108-115.

[18]EhrentrautSF, ColganSP, 2012. Implications of protein post-translational modifications in IBD. Inflamm Bowel Dis, 18(7):1378-1388.

[19]EhrentrautSF, KominskyDJ, GloverLE, et al., 2013. Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. J Immunol, 190(1):392-400.

[20]EhrentrautSF, CurtisVF, WangRX, et al., 2016. Perturbation of neddylation-dependent NF-‍‍κB responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation. Mol Biol Cell, 27(23):3687-3694.

[21]EmbadeN, Fernández-RamosD, Varela-ReyM, et al., 2012. Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology, 55(4):1237-1248.

[22]EnchevRI, SchulmanBA, PeterM, 2015. Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol, 16(1):30-44.

[23]FlothoA, MelchiorF, 2013. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem, 82:357-385.

[24]FosterSL, MedzhitovR, 2009. Gene-specific control of the TLR-induced inflammatory response. Clin Immunol, 130(1):7-15.

[25]FritahS, LhocineN, GolebiowskiF, et al., 2014. Sumoylation controls host anti-bacterial response to the gut invasive pathogen Shigella flexneri. EMBO Rep, 15(9):965-972.

[26]FujiiH, ShinzakiS, IijimaH, et al., 2016. Core fucosylation on T cells, required for activation of T-cell receptor signaling and induction of colitis in mice, is increased in patients with inflammatory bowel disease. Gastroenterology, 150(7):1620-1632.

[27]FujimotoK, KinoshitaM, TanakaH, et al., 2017. Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal Immunol, 10(2):446-459.

[28]GlorianV, AllègreJ, BertheletJ, et al., 2017. DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues. Cell Death Dis, 8(5):e2816.

[29]GodbersenJC, HumphriesLA, DanilovaOV, et al., 2014. The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NF-‍κB activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin Cancer Res, 20(6):1576-1589.

[30]GotoY, ObataT, KunisawaJ, et al., 2014. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 345(6202):1254009.

[31]GrigorianA, TorossianS, DemetriouM, 2009. T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev, 230(1):232-246.

[32]GrigorianA, MkhikianH, DemetriouM, 2012. Interleukin-2, interleukin-7, T cell-mediated autoimmunity, and N-glycosylation. Ann N Y Acad Sci, 1253(1):49-57.

[33]GrimmV, RiedelCU, 2016. Manipulation of the microbiota using probiotics. In: Schwiertz A (Ed.), Microbiota of the Human Body: Implications in Health and Disease. Springer, Cham, p.109-117.

[34]GrootjansJ, KaserA, KaufmanRJ, et al., 2016. The unfolded protein response in immunity and inflammation. Nat Rev Immunol, 16(8):469-484.

[35]HaglundK, DikicI, 2005. Ubiquitylation and cell signaling. EMBO J, 24(19):3353-3359.

[36]HanK, WangQY, CaoHL, et al., 2016. The NEDD8-activating enzyme inhibitor MLN4924 induces G2 arrest and apoptosis in T-cell acute lymphoblastic leukemia. Oncotarget, 7(17):23812-23824.

[37]HanZJ, FengYH, GuBH, et al., 2018. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol, 52(4):1081-1094.

[38]HanićM, Trbojević-AkmačićI, LaucG, 2019. Inflammatory bowel disease—glycomics perspective. Biochim Biophys Acta Gen Subj, 1863(10):1595-1601.

[39]HannounZ, MaarifiG, Chelbi-AlixMK, 2016. The implication of SUMO in intrinsic and innate immunity. Cytokine Growth Factor Rev, 29:3-16.

[40]HayRT, 2005. SUMO: a history of modification. Mol Cell, 18(1):1-12.

[41]HeML, TanB, VasanK, et al., 2017. SIRT1 and AMPK pathways are essential for the proliferation and survival of primary effusion lymphoma cells. J Pathol, 242(3):309-321.

[42]HibberdAA, LyraA, OuwehandAC, et al., 2017. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol, 4(1):e000145.

[43]HondaK, LittmanDR, 2016. The microbiota in adaptive immune homeostasis and disease. Nature, 535(7610):75-84.

[44]HoriT, OsakaF, ChibaT, et al., 1999. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene, 18(48):6829-6834.

[45]JohnsonJL, JonesMB, RyanSO, et al., 2013. The regulatory power of glycans and their binding partners in immunity. Trends Immunol, 34(6):290-298.

[46]JoshiHJ, NarimatsuY, SchjoldagerKT, et al., 2018. SnapShot: O-glycosylation pathways across kingdoms. Cell, 172(3):632-632.e2.

[47]KamitaniT, KitoK, NguyenHP, et al., 1997. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem, 272(45):28557-28562.

[48]KhouryJ, IblaJC, NeishAS, et al., 2007. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J Clin Invest, 117(3):703-711.

[49]KimDY, KwonE, HartleyPD, et al., 2013. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol Cell, 49(4):632-644.

[50]KochS, NusratA, 2012. The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol Mech Dis, 7:35-60.

[51]KominskyDJ, CampbellEL, ColganSP, 2010. Metabolic shifts in immunity and inflammation. J Immunol, 184(8):4062-4068.

[52]KudelkaMR, StowellSR, CummingsRD, et al., 2020. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol, 17(10):597-617.

[53]KumarA, WuHX, Collier-HyamsLS, et al., 2007. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J, 26(21):4457-4466.

[54]LetterioJJ, RobertsAB, 1998. Regulation of immune responses by TGF-‍β. Annu Rev Immunol, 16:137-161.

[55]LiuJ, QianC, CaoXT, 2016. Post-translational modification control of innate immunity. Immunity, 45(1):15-30.

[56]LiuZH, ShenTY, ZhangP, et al., 2010. Protective effects of Lactobacillus plantarum against epithelial barrier dysfunction of human colon cell line NCM460. World J Gastroenterol, 16(45):5759-5765.

[57]LiuZH, ShenTY, ZhangP, et al., 2011a. Lactobacillus plantarum surface layer adhesive protein protects intestinal epithelial cells against tight junction injury induced by enteropathogenic Escherichia coli. Mol Biol Rep, 38(5):3471-3480.

[58]LiuZH, ZhangP, MaYL, et al., 2011b. Lactobacillus plantarum prevents the development of colitis in IL-10-deficient mouse by reducing the intestinal permeability. Mol Biol Rep, 38(2):1353-1361.

[59]MabbAM, MiyamotoS, 2007. SUMO and NF-κB ties. Cell Mol Life Sci, 64(15):1979-1996.

[60]MajumdarD, TiernanJP, LoboAJ, et al., 2012. Keratins in colorectal epithelial function and disease. Int J Exp Pathol, 93(5):305-318.

[61]MelhemH, HansmannelF, BressenotA, et al., 2016. Methyl-deficient diet promotes colitis and SIRT1-mediated endoplasmic reticulum stress. Gut, 65(4):595-606.

[62]MengJ, LiuXG, ZhangP, et al., 2016. Rb selectively inhibits innate IFN-‍βproduction by enhancing deacetylation of IFN-βpromoter through HDAC1 and HDAC8. J Autoimmun, 73:42-53.

[63]MilhollenMA, TraoreT, Adams-DuffyJ, et al., 2010. MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-‍‍‍‍κB-dependent lymphoma. Blood, 116(9):1515-1523.

[64]MitchellJP, CarmodyRJ, 2018. NF-‍κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol, 335:41-84.

[65]MkhikianH, GrigorianA, LiCF, et al., 2011. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun, 2:334.

[66]MonteleoneG, KumberovaA, CroftNM, et al., 2001. Blocking Smad7 restores TGF-‍β1 signaling in chronic inflammatory bowel disease. J Clin Invest, 108(4):601-609.

[67]MonteleoneG, PalloneF, MacDonaldTT, 2004. Smad7 in TGF-‍β‍-mediated negative regulation of gut inflammation. Trends Immunol, 25(10):513-517.

[68]MonteleoneG, del Vecchio BlancoG, MonteleoneI, et al., 2005. Post-transcriptional regulation of Smad7 in the gut of patients with inflammatory bowel disease. Gastroenterology, 129(5):1420-1429.

[69]MuniandyK, GothaiS, BadranKMH, et al., 2018. Suppression of proinflammatory cytokines and mediators in LPS-induced RAW 264.7 macrophages by stem extract of Alternanthera sessilis via the inhibition of the NF-‍‍‍κB pathway. J Immunol Res, 2018:3430684.

[70]MustfaSA, SinghM, SuhailA, et al., 2017. SUMOylation pathway alteration coupled with downregulation of SUMO E2 enzyme at mucosal epithelium modulates inflammation in inflammatory bowel disease. Open Biol, 7(6):170024.

[71]NavaP, KochS, LaukoetterMG, et al., 2010. Interferon-‍γregulates intestinal epithelial homeostasis through convergingβ‍-catenin signaling pathways. Immunity, 32(3):392-402.

[72]NeishAS, GewirtzAT, ZengH, et al., 2000. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science, 289(5484):1560-1563.

[73]OvedS, MosessonY, ZwangY, et al., 2006. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem, 281(31):21640-21651.

[74]PanZQ, KentsisA, DiasDC, et al., 2004. Nedd8 on cullin: building an expressway to protein destruction. Oncogene, 23(11):1985-1997.

[75]PerdomoOJ, CavaillonJM, HuerreM, et al., 1994. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med, 180(4):1307-1319.

[76]PereiraMS, AlvesI, VicenteM, et al., 2018. Glycans as key checkpoints of T cell activity and function. Front Immunol, 9:2754.

[77]PorterAG, JänickeRU, 1999. Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 6(2):99-104.

[78]QinHL, ZhangZW, HangXM, et al., 2009. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol, 9:63.

[79]RabutG, PeterM, 2008. Function and regulation of protein neddylation. EMBO Rep, 9(10):969-976.

[80]RauschP, RehmanA, KünzelS, et al., 2011. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA, 108(47):19030-19035.

[81]RazaA, CrothersJW, McGillMM, et al., 2017. Anti-inflammatory roles of p38α MAPK in macrophages are context dependent and require IL-10. J Leukoc Biol, 102(5):1219-1227.

[82]RibetD, HamonM, GouinE, et al., 2010. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature, 464(7292):1192-1195.

[83]RodriguezRM, Lopez-LarreaC, Suarez-AlvarezB, 2015. Epigenetic dynamics during CD4+ T cells lineage commitment. Int J Biochem Cell Biol, 67:75-85.

[84]RyanSO, CobbBA, 2012. Roles for major histocompatibility complex glycosylation in immune function. Semin Immunopathol, 34(3):425-441.

[85]SaulVV, NiedenthalR, PichA, et al., 2015. SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. Biochim Biophys Acta, 1853(1):136-143.

[86]SchreinerP, NeurathMF, NgSC, et al., 2019. Mechanism-based treatment strategies for IBD: cytokines, cell adhesion molecules, JAK inhibitors, gut flora, and more. Inflamm Intest Dis, 4(3):79-96.

[87]SchwechheimerC, 2018. NEDD8—its role in the regulation of Cullin-RING ligases. Curr Opin Plant Biol, 45:112-119.

[88]SeddaS, FranzèE, BevivinoG, et al., 2018. Reciprocal regulation between Smad7 and Sirt1 in the gut. Front Immunol, 9:1854.

[89]ShakespearMR, HaliliMA, IrvineKM, et al., 2011. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol, 32(7):335-343.

[90]SilvaJPB, Navegantes-LimaKC, OliveiraALB, et al., 2018. Protective mechanisms of butyrate on inflammatory bowel disease. Curr Pharm Des, 24(35):4154-4166.

[91]ŠimurinaM, de HaanN, VučkovićF, et al., 2018. Glycosylation of immunoglobulin G associates with clinical features of inflammatory bowel diseases. Gastroenterology, 154(5):1320-1333.e10.

[92]SinghAK, KhareP, ObaidA, et al., 2018. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun, 9:4515.

[93]SinghUP, SinghNP, BusbeeB, et al., 2012. Alternative medicines as emerging therapies for inflammatory bowel diseases. Int Rev Immunol, 31(1):66-84.

[94]SkellyMJ, MalikSI, le BihanT, et al., 2019. A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity. Proc Natl Acad Sci USA, 116(34):17090-17095.

[95]SommerF, AdamN, JohanssonMEV, et al., 2014. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS ONE, 9(1):e85254.

[96]SongH, HuaiWW, YuZX, et al., 2016. MLN4924, a first-in-class NEDD8-activating enzyme inhibitor, attenuates IFN-β production. J Immunol, 196(7):3117-3123.

[97]SoucyTA, SmithPG, MilhollenMA, et al., 2009. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 458(7239):732-736.

[98]SrikanthB, VaidyaMM, KalraiyaRD, 2010. O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18. J Biol Chem, 285(44):34062-34071.

[99]StickleNH, ChungJ, KlcoJM, et al., 2004. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol, 24(8):3251-3261.

[100]SugiharaK, MorhardtTL, KamadaN, 2019. The role of dietary nutrients in inflammatory bowel disease. Front Immunol, 9:3183.

[101]SuzukiK, YamadaT, YamazakiK, et al., 2018. Intestinal epithelial cell-specific deletion of α-mannosidase II ameliorates experimental colitis. Cell Struct Funct, 43(1):25-39.

[102]TamirA, EichlerJ, 2017. N-glycosylation is important for proper Haloferax volcanii S-layer stability and function. Appl Environ Microbiol, 83(6):e03152-16.

[103]TheodoratouE, CampbellH, VenthamNT, et al., 2014. The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol, 11(10):588-600.

[104]TokuhiraN, KitagishiY, SuzukiM, et al., 2015. PI3K/AKT/PTEN pathway as a target for Crohn’s disease therapy (Review). Int J Mol Med, 35(1):10-16.

[105]TsukamotoS, 2016. Search for inhibitors of the ubiquitin-proteasome system from natural sources for cancer therapy. Chem Pharm Bull, 64(2):112-118.

[106]VeldhoenM, 2017. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol, 18(6):612-621.

[107]VenthamNT, KennedyNA, NimmoER, et al., 2013. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology, 145(2):293-308.

[108]VerdinE, OttM, 2015. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol, 16(4):258-264.

[109]VerhelstX, DiasAM, ColombelJF, et al., 2020. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology, 158(1):95-110.

[110]VermaS, MohapatraG, AhmadSM, et al., 2015. Salmonella engages host microRNAs to modulate SUMOylation: a new arsenal for intracellular survival. Mol Cell Biol, 35(17):2932-2946.

[111]VermaV, CroleyF, SadanandomA, 2018. Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth-defence balance. Mol Plant Pathol, 19(6):1537-1544.

[112]WadzinskiTJ, SteinauerA, HieL, et al., 2018. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nat Chem, 10(6):644-652.

[113]WangGY, YuanJT, CaiX, et al., 2020. HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice. Clin Transl Med, 10(2):e113.

[114]WangM, KaufmanRJ, 2016. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature, 529(7586):326-335.

[115]WangR, WangGH, 2019. Protein modification and autophagy activation. In: Qin ZH (Ed.), Autophagy: Biology and Diseases: Basic Science. Springer, Singapore, p.237-259.

[116]WeberA, WasiliewP, KrachtM, 2010. Interleukin-1 (IL-1) pathway. Sci Signal, 3(105):cm1.

[117]WeiG, WeiL, ZhuJF, et al., 2009. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity, 30(1):155-167.

[118]WolfertMA, BoonsGJ, 2013. Adaptive immune activation: glycosylation does matter. Nat Chem Biol, 9(12):776-784.

[119]WuYB, QiuW, XuXW, et al., 2018. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. Am J Transl Res, 10(7):2026-2036.

[120]XiaPY, WangS, XiongZ, et al., 2015. IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation. Nat Commun, 6:8132.

[121]XirodimasDP, SavilleMK, BourdonJC, et al., 2004. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell, 118(1):83-97.

[122]XirodimasDP, SundqvistA, NakamuraA, et al., 2008. Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep, 9(3):280-286.

[123]YangY, GuanJ, ShaikhAS, et al., 2018. Histone acetyltransferase Mof affects the progression of DSS-induced colitis. Cell Physiol Biochem, 47(5):2159-2169.

[124]YangYF, HeY, WangXX, et al., 2017. Protein SUMOylation modification and its associations with disease. Open Biol, 7(10):170167.

[125]YavvariPS, VermaP, MustfaSA, et al., 2019. A nanogel based oral gene delivery system targeting SUMOylation machinery to combat gut inflammation. Nanoscale, 11(11):4970-4986.

[126]YinMM, YanXB, WengWH, et al., 2018. Micro integral membrane protein (MIMP), a newly discovered anti-inflammatory protein of Lactobacillus plantarum, enhances the gut barrier and modulates microbiota and inflammatory cytokines. Cell Physiol Biochem, 45(2):474-490.

[127]YouBH, ChaeHS, SongJ, et al., 2017. α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-‍κB and MAPK pathways. Int Immunopharmacol, 49:212-221.

[128]ZhangMM, ZhouLX, WangYM, et al., 2019. Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3. Int Immunol, 31(8):499-514.

[129]ZhangQ, ZhaoK, ShenQC, et al., 2015. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature, 525(7569):389-393.

[130]ZhaoYC, SunY, 2013. Cullin-RING ligases as attractive anti-cancer targets. Curr Pharm Des, 19(18):3215-3225.

[131]ZhaoYC, MorganMA, SunY, 2014. Targeting neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal, 21(17):2383-2400.

[132]ZhongXS, WinstonJH, LuoXJ, et al., 2018. Neonatal colonic inflammation epigenetically aggravates epithelial inflammatory responses to injury in adult life. Cell Mol Gastroenterol Hepatol, 6(1):65-78.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE