CLC number:
On-line Access: 2023-01-10
Received: 2022-03-19
Revision Accepted: 2022-08-05
Crosschecked: 2023-01-16
Cited: 0
Clicked: 328
Lijie WEI, Yi JIANG, Peng GAO, Jingyi ZHANG, Xuan ZHOU, Shenglan ZHU, Yuting CHEN, Huiting ZHANG, Yuanyuan DU, Chenyun FANG, Jiaqi LI, Xuan GAO, Mengzhou HE, Shaoshuai WANG, Ling FENG, Jun YU. Role of melatonin receptor 1B gene polymorphism and its effect on the regulation of glucose transport in gestational diabetes mellitus[J]. Journal of Zhejiang University Science B, 2023, 24(6): 78-88. @article{title="Role of melatonin receptor 1B gene polymorphism and its effect on the regulation of glucose transport in gestational diabetes mellitus", %0 Journal Article TY - JOUR
褪黑素受体1B基因多态性及其对葡萄糖转运的调控在妊娠期糖尿病中的作用1华中科技大学同济医学院附属同济医院妇产科,中国武汉,430030 2南昌大学附属第一医院妇产科,中国南昌,330006 3亚琛工业大学医院妇产科,德国亚琛,52074 目的:探讨褪黑素受体1B基因(MTNR1B)rs10830963位点多态性与妊娠期糖尿病(GDM)发生的关联性,以及MT2受体(由MTNR1B基因编码)在滋养细胞葡萄糖摄取和转运过程中的作用及机制。 创新点:本研究探讨了中国中部地区女性人群MTNR1B基因rs10830963位点多态性与GDM发生发展之间的关系,以及MT2受体对滋养细胞中葡萄糖摄取和转运的影响。以此在一定程度上揭示MT2受体介导的褪黑素信号与GDM孕妇的新生儿高出生体重之间的关联性及可能的作用机制。 方法:本研究采用TaqMan-MGB荧光定量聚合酶链反应(qPCR)对rs10930963位点进行基因分型,分析该位点突变与GDM发生及相关代谢指标异常的关联性。采用免疫荧光、蛋白质印迹法(western blot)和qPCR检测GDM和正常孕妇胎盘中MT2受体的表达水平。体外培养滋养细胞系HTR-8/SVneo并给予褪黑素处理,利用western blot检测褪黑素信号对滋养细胞MT2受体、葡萄糖转运体(GLUTs)和激活过氧化物酶增殖物激活受体γ(PPARγ)蛋白表达水平的影响,葡萄糖检测试剂盒检测其对滋养细胞葡萄糖消耗水平的影响。进一步利用小干扰RNA(siRNA)敲低MT2受体,并采用western blot和葡萄糖检测试剂盒分别检测滋养细胞GLUTs和PPARγ的蛋白表达水平和葡萄糖消耗水平,以此探究MT2受体在褪黑素调控葡萄糖摄取和转运中的作用。 结论:MTNR1B基因的rs10830963位点多态性与GDM发生风险增加有关。MT2受体是褪黑素促进葡萄糖摄取和转运的关键受体,该过程可能由PPARγ介导。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ACOG, 2020. Macrosomia: ACOG practice bulletin, number 216. Obstet Gynecol, 135(1):e18-e35. ![]() [2]AlharbiKK, Al-SulaimanAM, ShedaidMKB, et al., 2019. MTNR1B genetic polymorphisms as risk factors for gestational diabetes mellitus: a case-control study in a single tertiary care center. Ann Saudi Med, 39(5):309-318. ![]() [3]AlharbiKK, AlsaikhanAS, AlshammaryAF, et al., 2022. Screening of mitochondrial mutations in Saudi women diagnosed with gestational diabetes mellitus: a non-replicative case-control study. Saudi J Biol Sci, 29(1):360-365. ![]() [4]BeaumontRN, WarringtonNM, CavadinoA, et al., 2018. Genome-wide association study of offspring birth weight in 86577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet, 27(4):742-756. ![]() [5]BellamyL, CasasJP, HingoraniAD, et al., 2009. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet, 373(9677):1773-1779. ![]() [6]BorgesMH, PullockaranJ, CatalanoPM, et al., 2019. Human placental GLUT1 glucose transporter expression and the fetal insulin-like growth factor axis in pregnancies complicated by diabetes. Biochim Biophys Acta Mol Basis Dis, 1865(9):2411-2419. ![]() [7]BrownK, HellerDS, ZamudioS, et al., 2011. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta, 32(12):1041-1049. ![]() [8]BrüningJC, MichaelMD, WinnayJN, et al., 1998. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell, 2(5):559-569. ![]() [9]Castillo-CastrejonM, PowellTL, 2017. Placental nutrient transport in gestational diabetic pregnancies. Front Endocrinol (Lausanne), 8:306. ![]() [10]FadlH, MagnusonA, ÖstlundI, et al., 2014. Gestational diabetes mellitus and later cardiovascular disease: a Swedish population based case-control study. BJOG, 121(12):1530-1536. ![]() [11]FengY, JiangCD, ChangAM, et al., 2019. Interactions among insulin resistance, inflammation factors, obesity-related gene polymorphisms, environmental risk factors, and diet in the development of gestational diabetes mellitus. J Matern Fetal Neonatal Med, 32(2):339-347. ![]() [12]GuanQY, WangZX, CaoJ, et al., 2021. Mechanisms of melatonin in obesity: a review. Int J Mol Sci, 23(1):218. ![]() [13]HaE, YimSV, ChungJH, et al., 2006. Melatonin stimulates glucose transport via insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. J Pineal Res, 41(1):67-72. ![]() [14]HaggartyP, AllstaffS, HoadG, et al., 2002. Placental nutrient transfer capacity and fetal growth. Placenta, 23(1):86-92. ![]() [15]IllsleyNP, BaumannMU, 2020. Human placental glucose transport in fetoplacental growth and metabolism. Biochim Biophys Acta Mol Basis Dis, 1866(2):165359. ![]() [16]James-AllanLB, ArbetJ, TealSB, et al., 2019. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab, 104(9):4225-4238. ![]() [17]KaramitriA, JockersR, 2019. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol, 15(2):105-125. ![]() [18]KhanIA, MovvaS, ShaikNA, et al., 2014. Investigation of Calpain 10 (rs2975760) gene polymorphism in Asian Indians with Gestational Diabetes Mellitus. Meta Gene, 2:299-306. ![]() [19]LiC, ZhouYB, QiaoBL, et al., 2019. Association between a melatonin receptor IB genetic polymorphism and its protein expression in gestational diabetes mellitus. Reprod Sci, 26(10):1382-1388. ![]() [20]LiTJ, NiL, ZhaoZW, et al., 2018. Melatonin attenuates smoking-induced hyperglycemia via preserving insulin secretion and hepatic glycogen synthesis in rats. J Pineal Res, 64(4):e12475. ![]() [21]LiangZX, LiuHK, WangLS, et al., 2020. Maternal MTNR1B genotype, maternal gestational weight gain, and childhood obesity. Am J Clin Nutr, 111(2):360-368. ![]() [22]LiaoW, NguyenMTA, YoshizakiT, et al., 2007. Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab, 293(1):E219-E227. ![]() [23]LingY, LiXM, GuQ, et al., 2011. A common polymorphism rs3781637 in MTNR1B is associated with type 2 diabetes and lipids levels in Han Chinese individuals. Cardiovasc Diabetol, 10:27. ![]() [24]MontaigneD, ButruilleL, StaelsB, 2021. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol, 18(12):809-823. ![]() [25]OwinoS, BuonfiglioDDC, TchioC, et al., 2019. Melatonin signaling a key regulator of glucose homeostasis and energy metabolism. Front Endocrinol (Lausanne), 10:488. ![]() [26]PatelR, RathwaN, PalitSP, et al., 2018. Association of melatonin & MTNR1B variants with type 2 diabetes in Gujarat population. Biomed Pharmacother, 103:429-434. ![]() [27]PettittDJ, BennettPH, KnowlerWC, et al., 1985. Gestational diabetes mellitus and impaired glucose tolerance during pregnancy: long-term effects on obesity and glucose tolerance in the offspring. Diabetes, 34(Suppl 2):119-122. ![]() [28]PoweCE, NodzenskiM, TalbotO, et al., 2018. Genetic determinants of glycemic traits and the risk of gestational diabetes mellitus. Diabetes, 67(12):2703-2709. ![]() [29]RenJ, XiangAH, TrigoE, et al., 2014. Genetic variation in MTNR1B is associated with gestational diabetes mellitus and contributes only to the absolute level of beta cell compensation in Mexican Americans. Diabetologia, 57(7): 1391-1399. ![]() [30]ShenLL, JinY, 2019. Effects of MTNR1B genetic variants on the risk of type 2 diabetes mellitus: a meta-analysis. Mol Genet Genomic Med, 7(5):e611. ![]() [31]SolimanA, LacasseAA, LanoixD, et al., 2015. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J Pineal Res, 59(1):38-46. ![]() [32]StanirowskiPJ, SzukiewiczD, PyzlakM, et al., 2019. Analysis of correlations between the placental expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 and selected maternal and fetal parameters in pregnancies complicated by diabetes mellitus. J Matern Fetal Neonatal Med, 32(4):650-659. ![]() [33]The HAPO Study Cooperative Research Group, 2008. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med, 358(19):1991-2002. ![]() [34]VlassiM, GazouliM, PaltoglouG, et al., 2012. The rs10830963 variant of melatonin receptor MTNR1B is associated with increased risk for gestational diabetes mellitus in a Greek population. Hormones (Athens), 11(1):70-76. ![]() [35]WuYT, ZhangCJ, MolBW, et al., 2021. Early prediction of gestational diabetes mellitus in the Chinese population via advanced machine learning. J Clin Endocrinol Metab, 106(3):e1191-e1205. ![]() [36]XueBZ, KahnBB, 2006. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol, 574(1):73-83. ![]() [37]YaoG, ZhangYF, WangD, et al., 2017. GDM-induced macrosomia is reversed by Cav-1 via AMPK-mediated fatty acid transport and GLUT1-mediated glucose transport in placenta. PLoS ONE, 12(1):e0170490. ![]() [38]ZhangL, YuXY, WuY, et al., 2021. Gestational diabetes mellitus-associated hyperglycemia impairs glucose transporter 3 trafficking in trophoblasts through the downregulation of AMP-activated protein kinase. Front Cell Dev Biol, 9:722024. ![]() [39]ZhouML, JiJS, XieN, et al., 2022. Prediction of birth weight in pregnancy with gestational diabetes mellitus using an artificial neural network. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(5):432-436. ![]() [40]ZhuB, MaZX, ZhuYN, et al., 2021. Reduced glycodeoxycholic acid levels are associated with negative clinical outcomes of gestational diabetes mellitus. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(3):223-232. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>