CLC number:
On-line Access: 2023-01-10
Received: 2022-05-10
Revision Accepted: 2022-07-28
Crosschecked: 2023-01-16
Cited: 0
Clicked: 373
Citations: Bibtex RefMan EndNote GB/T7714
Lin ZHANG, Yuanyuan CAO, Xiaoxiao GUO, Xiaoyu WANG, Xiao HAN, Kouminin KANWORE, Xiaoliang HONG, Han ZHOU, Dianshuai GAO. Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma[J]. Journal of Zhejiang University Science B, 2023, 24(3): 32-49. @article{title="Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma", %0 Journal Article TY - JOUR
缺氧诱导的ROS通过HIF-1α-SERPINE1信号通路促进胶质母细胞瘤恶性进展1徐州医科大学护理学院,中国徐州市,221004 2徐州医科大学神经生物学重点实验室,中国徐州市,221004 3泰州市中医院超声科,中国泰州市,225300 4南京医科大学康达学院基础学院,中国连云港市,222000 5南京医科大学第四临床学院,中国南京市,211166 概要:缺氧作为肿瘤微环境的重要特征,是氧化应激的主要原因,在肿瘤(包括胶质母细胞瘤)的恶性进展中发挥重要作用。缺氧微环境中高水平活性氧(ROS)促进胶质母细胞瘤进展的潜在机制尚不清楚。本研究发现缺氧促进了胶质母细胞瘤细胞增殖、迁移和侵袭以及ROS生成,而这种促进作用可被ROS清除剂N-乙酰半胱氨酸(NAC)和二苯基氯化碘盐(DPI)抑制。缺氧诱导的ROS可激活缺氧诱导因子-1α(HIF-1α)信号,通过上皮-间充质转化(EMT)增强细胞迁移和侵袭。此外,在缺氧条件下,HIF-1α可与丝氨酸蛋白酶抑制剂家族E成员1(SERPINE1)启动子区结合,ROS经HIF-1α上调SERPINE1表达,进而促进胶质母细胞瘤细胞迁移和侵袭。综上所述,本研究揭示了缺氧诱导的ROS通过驱动HIF-1α-SERPINE1信号促进胶质母细胞瘤的缺氧适应,靶向ROS可能成为胶质母细胞瘤治疗的一种有效策略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AndrewAS, KleiLR, BarchowskyA, 2001. Nickel requires hypoxia-inducible factor-1α, not redox signaling, to induce plasminogen activator inhibitor-1. Am J Physiol Lung Cell Mol Physiol, 281(3):L607-L615. ![]() [2]AzimiI, PetersenRM, ThompsonEW, et al., 2017. Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expression, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Sci Rep, 7:15140. ![]() [3]CarreresL, Mercey-RessejacM, KurmaK, et al., 2022. Chronic intermittent hypoxia increases cell proliferation in hepatocellular carcinoma. Cells, 11(13):2051. ![]() [4]ChandelNS, MaltepeE, GoldwasserE, et al., 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA, 95(20):11715-11720. ![]() [5]ChandelNS, McClintockDS, FelicianoCE, et al., 2000. React ![]() [6]ive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J Biol Chem, 275(33):25130-25138. ![]() [7]ChédevilleAL, LourdusamyA, MonteiroAR, et al., 2020. Investigating glioblastoma response to hypoxia. Biomedicines, 8(9):310. ![]() [8]ChenCL, WangSC, LiuP, 2019. Deferoxamine enhanced mitochondrial iron accumulation and promoted cell migration in triple-negative MDA-MB-231 breast cancer cells via a ROS-dependent mechanism. Int J Mol Sci, 20(19):4852. ![]() [9]ChenD, WuYX, QiuYB, et al., 2020. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine, 67:153138. ![]() [10]ChenXT, LiZW, YongHM, et al., 2021. Trim21-mediated HIF-1α degradation attenuates aerobic glycolysis to inhibit renal cancer tumorigenesis and metastasis. Cancer Lett, 508:115-126. ![]() [11]ChiuJ, DawesIW, 2012. Redox control of cell proliferation. Trends Cell Biol, 22(11):592-601. ![]() [12]ChuaYL, DufourE, DassaEP, et al., 2010. Stabilization of hypoxia-inducible factor-1α protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem, 285(41):31277-31284. ![]() [13]DabralS, MueckeC, ValasarajanC, et al., 2019. A RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nat Commun, 10:2130. ![]() [14]Dao TrongP, RöschS, MairbäurlH, et al., 2018. Identification of a prognostic hypoxia-associated gene set in IDH-mutant glioma. Int J Mol Sci, 19(10):2903. ![]() [15]DröseS, 2013. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim Biophys Acta Bioenerget, 1827(5):578-587. ![]() [16]FandreyJ, Gassmann M, 2009. Oxygen sensing and the activation of the hypoxia inducible factor 1 (HIF-1)‒Invited Article. In: Gonzalez C, Nurse CA, Peers C (Eds.), Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, Vol. 648. Springer, Dordrecht, p.197-206. ![]() [17]FinkT, KazlauskasA, PoellingerL, et al., 2002. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood, 99(6):2077-2083. ![]() [18]GeWJ, ZhaoKM, WangXW, et al., 2017. iASPP is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for Keap1 binding. Cancer Cell, 32(5):561-573.6. ![]() [19]HarrisAL, 2002. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer, 2(1):38-47. ![]() [20]HouP, ZhaoY, LiZ, et al., 2014. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis, 5(6):e1287. ![]() [21]HuZZ, DongN, LuD, et al., 2017. A positive feedback loop between ROS and Mxi1-0 promotes hypoxia-induced VEGF expression in human hepatocellular carcinoma cells. Cell Signal, 31:79-86. ![]() [22]HumphriesBA, BuschhausJM, ChenYC, et al., 2019. Plasminogen activator inhibitor 1 (PAI1) promotes actin cytoskeleton reorganization and glycolytic metabolism in triple-negative breast cancer. Mol Cancer Res, 17(5):1142-1154. ![]() [23]HurdTR, DeGennaroM, LehmannR, 2012. Redox regulation of cell migration and adhesion. Trends Cell Biol, 22(2):107-115. ![]() [24]IvanM, KaelinWG, 2017. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol Cell, 66(6):772-779. ![]() [25]JinP, ShinSH, ChunYS, et al., 2018. Astrocyte-derived CCL20 reinforces HIF-1-mediated hypoxic responses in glioblastoma by stimulating the CCR6-NF-κB signaling pathway. Oncogene, 37(23):3070-3087. ![]() [26]KeQD, CostaM, 2006. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol, 70(5):1469-1480. ![]() [27]KesslerJ, HahnelA, WichmannH, et al., 2010. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression. BMC Cancer, 10:605. ![]() [28]KlimovaT, ChandelNS, 2008. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ, 15(4):660-666. ![]() [29]KunschC, MedfordRM, 1999. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res, 85(8):753-766. ![]() [30]LeiJJ, HuoXW, DuanWX, et al., 2014. α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett, 347(1):129-138. ![]() [31]LiSJ, WeiXH, ZhanXM, et al., 2020. Adipocyte-derived leptin promotes PAI-1-mediated breast cancer metastasis in a STAT3/miR-34a dependent manner. Cancers (Basel), 12(12):3864. ![]() [32]LiX, WuP, TangYY, et al., 2020. Down-regulation of miR-181c-5p promotes epithelial-to-mesenchymal transition in laryngeal squamous cell carcinoma via targeting SERPINE1. Front Oncol, 10:544476. ![]() [33]LiX, ZuoHW, ZhangL, et al., 2021. Validating HMMR expression and its prognostic significance in lung adenocarcinoma based on data mining and bioinformatics methods. Front Oncol, 11:720302. ![]() [34]LiXD, DongP, WeiWS, et al., 2019. Overexpression of CEP72 promotes bladder urothelial carcinoma cell aggressiveness via epigenetic CREB-mediated induction of SERPINE1. Am J Pathol, 189(6):1284-1297. ![]() [35]LiZW, HouPF, FanDM, et al., 2017. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ, 24(1):59-71. ![]() [36]LiuL, XiaoS, WangY, et al., 2022. Identification of a novel circular RNA circZNF652/miR-486-5p/SERPINE1 signaling cascade that regulates cancer aggressiveness in glioblastoma (GBM). Bioengineered, 13(1):1411-1423. ![]() [37]LuW, KangYB, 2019. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell, 49(3):361-374. ![]() [38]LukyanovaLD, KirovaYI, GermanovaEL, 2018. The role of succinate in regulation of immediate HIF-1α expression in hypoxia. Bull Exp Biol Med, 164(3):298-303. ![]() [39]MittalM, GuXQ, PakO, et al., 2012. Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med, 52(6):1033-1042. ![]() [40]Miyashita-IshiwataM, el SabehM, ReschkeLD, et al., 2022. Hypoxia induces proliferation via NOX4-mediated oxidative stress and TGF-β3 signaling in uterine leiomyoma cells. Free Radic Res, 56(2):163-172. ![]() [41]MonteiroAR, HillR, PilkingtonGJ, et al., 2017. The role of hypoxia in glioblastoma invasion. Cells, 6(4):45. ![]() [42]NiecknigH, TugS, ReyesBD, et al., 2012. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radic Res, 46(6):705-717. ![]() [43]OlarA, AldapeKD, 2014. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol, 232(2):165-177. ![]() [44]OmuroA, DeAngelisLM, 2013. Glioblastoma and other malignant gliomas: a clinical review. JAMA, 310(17):1842-1850. ![]() [45]PengPH, LaiJCY, HsuKW, et al., 2020. Hypoxia-induced lncRNA RP11-390F4.3 promotes epithelial-mesenchymal transition (EMT) and metastasis through upregulating EMT regulators. Cancer Lett, 483:35-45. ![]() [46]PerilloB, di DonatoM, PezoneA, et al., 2020. ROS in cancer therapy: the bright side of the moon. Exp Mol Med, 52(2):192-203. ![]() [47]PolyakK, WeinbergRA, 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 9(4):265-273. ![]() [48]QuinlanCL, OrrAL, PerevoshchikovaIV, et al., 2012. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem, 287(32):27255-27264. ![]() [49]SchieberM, ChandelNS, 2014. ROS function in redox signaling and oxidative stress. Curr Biol, 24(10):R453-R462. ![]() [50]SchumackerPT, 2011. SIRT3 controls cancer metabolic reprogramming by regulating ROS and HIF. Cancer Cell, 19(3):299-300. ![]() [51]SemenzaGL, 1998. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev, 8(5):588-594. ![]() [52]SemenzaGL, 2014. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol Mech Dis, 9:47-71. ![]() [53]SpencerNY, EngelhardtJF, 2014. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry, 53(10):1551-1564. ![]() [54]SrivastavaC, IrshadK, DikshitB, et al., 2018. FAT1 modulates EMT and stemness genes expression in hypoxic glioblastoma. Int J Cancer, 142(4):805-812. ![]() [55]SubramanianA, TamayoP, MoothaVK, et al., 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545-15550. ![]() [56]SunB, YuL, XuC, et al., 2021. NAD(P)HX epimerase downregulation promotes tumor progression through ROS/HIF-1α signaling in hepatocellular carcinoma. Cancer Sci, 112(7):2753-2769. ![]() [57]TakayamaY, HattoriN, HamadaH, et al., 2016. Inhibition of PAI-1 limits tumor angiogenesis regardless of angiogenic stimuli in malignant pleural mesothelioma. Cancer Res, 76(11):3285-3294. ![]() [58]TangZH, ZhangZH, LinQQ, et al., 2021. HIF-1α/BNIP3-mediated autophagy contributes to the luteinization of granulosa cells during the formation of corpus luteum. Front Cell Dev Biol, 8:619924. ![]() [59]TengF, ZhangJX, ChenY, et al., 2021. LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Mol Oncol, 15(4):1234-1255. ![]() [60]ThieryJP, AcloqueH, HuangRYJ, et al., 2009. Epithelial-mesenchymal transitions in development and disease. Cell, 139(5):871-890. ![]() [61]TsaiJH, YangJ, 2013. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev, 27(20):2192-2206. ![]() [62]VordermarkD, 2005. Significance of hypoxia in malignant glioma. Re: Evanset al. Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 2004;10:8177-84. Clin Cancer Res, 11(10):3966-3968. ![]() [63]WangQ, LuWJ, YinT, et al., 2019. Calycosin suppresses TGF-β-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI-1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. J Exp Clin Cancer Res, 38:240. ![]() [64]WangXW, BustosMA, ZhangXQ, et al., 2020. Downregulation of the ubiquitin-E3 ligase RNF123 promotes upregulation of the NF-κB1 target SerpinE1 in aggressive glioblastoma tumors. Cancers (Basel), 12(5):1081. ![]() [65]WangZL, ShiYP, YingCT, et al., 2021. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene, 40(8):1458-1475. ![]() [66]WatsonJ, 2013. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol, 3(1):120144. ![]() [67]WeidemannA, JohnsonRS, 2008. Biology of HIF-1α. Cell Death Differ, 15(4):621-627. ![]() [68]WillsonJA, ArientiS, SadikuP, et al., 2022. Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood, 139(2):281-286. ![]() [69]WilsonWR, HayMP, 2011. Targeting hypoxia in cancer therapy. Nat Rev Cancer, 11(6):393-410. ![]() [70]WuK, MaoYY, ChenQ, et al., 2021. Hypoxia-induced ROS promotes mitochondrial fission and cisplatin chemosensitivity via HIF-1α/Mff regulation in head and neck squamous cell carcinoma. Cell Oncol (Dordr), 44(5):1167-1181. ![]() [71]XiaLM, MoP, HuangWJ, et al., 2012. The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis, 33(11):2250-2259. ![]() [72]XuBD, BaiZG, YinJ, et al., 2019. Global transcriptomic analysis identifies SERPINE1 as a prognostic biomarker associated with epithelial-to-mesenchymal transition in gastric cancer. PeerJ, 7:e7091. ![]() [73]XuYQ, ChenWC, LiangJ, et al., 2021. The miR-1185-2-3p-GOLPH3L pathway promotes glucose metabolism in breast cancer by stabilizing p53-induced SERPINE1. J Exp Clin Cancer Res, 40:47. ![]() [74]YangJ, AntinP, BerxG, et al., 2020. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 21(6):341-352. ![]() [75]YangJL, MaQ, ZhangMM, et al., 2021. LncRNA CYTOR drives L-OHP resistance and facilitates the epithelial-mesenchymal transition of colon carcinoma cells via modulating miR-378a-5p/SERPINE1. Cell Cycle, 20(14):1415-1430. ![]() [76]YangY, ZhangGM, GuoFZ, et al., 2020. Mitochondrial UQCC3 modulates hypoxia adaptation by orchestrating OXPHOS and glycolysis in hepatocellular carcinoma. Cell Rep, 33(5):108340. ![]() [77]YuLM, ZhangWH, HanXX, et al., 2019. Hypoxia-induced ROS contribute to myoblast pyroptosis during obstructive sleep apnea via the NF-κB/HIF-1αsignaling pathway. Oxid Med Cell Longev, 2019:4596368. ![]() [78]ZhangW, ZhangYW, ZhouWS, et al., 2021. PlGF knockdown attenuates hypoxia-induced stimulation of cell proliferation and glycolysis of lung adenocarcinoma through inhibiting Wnt/β-catenin pathway. Cancer Cell Int, 21:18. ![]() [79]ZhangYS, JinGS, ZhangJW, et al., 2018. Overexpression of STAT1 suppresses angiogenesis under hypoxia by regulating VEGF-A in human glioma cells. Biomed Pharmacother, 104:566-575. ![]() [80]ZhaoQ, ZhangLW, HeQF, et al., 2023. Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(1):50-63. ![]() [81]ZhengH, KangY, 2014. Multilayer control of the EMT master regulators. Oncogene, 33(14):1755-1763. ![]() [82]ZongSQ, TangYF, LiW, et al., 2020. A Chinese herbal formula suppresses colorectal cancer migration and vasculogenic mimicry through ROS/HIF-1α/MMP2 pathway in hypoxic microenvironment. Front Pharmacol, 11:705. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>