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Abstract
Sweat could be a carrier of informative biomarkers for health status identification; therefore, wearable sweat sensors have attracted 
significant attention for research. An external power source is an important component of wearable sensors, however, the current 
power supplies, i.e., batteries, limit further shrinking down the size of these devices and thus limit their application areas and 
scenarios. Herein, we report a stretchable self-powered biosensor with epidermal electronic format that enables the in situ detec-
tion of lactate and glucose concentration in sweat. Enzymatic biofuel cells serve as self-powered sensing modules allowing the 
sweat sensor to exhibit a determination coefficient (R2) of 0.98 with a sensitivity of 2.48 mV/mM for lactate detection, and R2 of 
0.96 with a sensitivity of 0.11 mV/μM for glucose detection. The microfluidic channels developed in an ultra-thin soft flexible 
polydimethylsiloxane layer not only enable the effective collection of sweat, but also provide excellent mechanical properties with 
stable performance output even under 30% stretching. The presented soft sweat sensors can be integrated at nearly any location of 
the body for the continuous monitoring of lactate and glucose changes during normal daily activities such as exercise. Our results 
provide a promising approach to develop next-generation sweat sensors for real-time and in situ sweat analysis.
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Introduction

The development of wearable electronics, especially thin 
and stretchable devices, is increasingly attractive due to their 
promising applications in health monitoring and early dis-
ease diagnostics. Recent advances of skin-integrated elec-
tronics in biophysical signal measurements of temperature 
[1], pulse waves [2], and electrocardiographs (ECG) [3, 4] 
have highlighted the importance of device geometries and 
mechanics. Regarding the measurements of biochemical sig-
nals, parameters of human sweat, including glucose, lactate, 
pH, and inorganic ion levels have shown great relevance 
to physiological information and therefore have attracted 
great attention for research [5–8]. Sweat sensing is a non-
invasive approach of body fluid analysis that can monitor 
the chemical signals of the body and thus reveal the health 
status [5, 9]. Traditional sweat analysis methods mainly 
rely on collecting sweat by gauze pads taped to skin and 
screening biomarkers by benchtop instruments, however, 
these are complex and time consuming. There is a lack of 
miniaturized portable instruments for direct sweat collec-
tion and in situ analysis of multiple biomarkers in sweat, 
which limits the practical development of sweat analysis in 
the area of health monitoring [5, 7]. Hence, innovation in 
wearable devices for in situ sweat collection and analysis 
has been urgent. Furthermore, irrespective of application, 
the lack of suitable power sources is a significant obstacle 
for wearable electronics, as the weight and volume of bat-
teries would largely influence their miniaturization, flex-
ibility, and biocompatibility [10–13]. To date, great efforts 
have been directed toward wearable self-powered sensors, 
such as flexible triboelectric nanogenerators [14–16] and 
piezoelectric nanogenerators [17–19]. These self-powered 
technologies enable the conversion of mechanical energy 
from body motions to sensing signal outputs, thus providing 
an alternative pathway for wearable power management. For 
self-powered biosensors aimed at sweat monitoring, enzy-
matic biofuel cells (EBFCs) could be an ideal candidate by 
catalyzing the redox reaction of biofuels to generate elec-
tricity [5, 10, 20–22]. In such system, the oxidation of bio-
fuels would occur on the bioanodes and electrons would be 
released. Meanwhile, oxygen would be reduced to water on 
the cathode. As enzymes have specific catalytic ability for 
targets, the catalyst reaction would not be disturbed by other 
interferences and their catalytic activity would be retained 
for several weeks at room temperature with good reusability 
[5, 6, 9, 23, 24]. The electrical outputs generated by EBFCs 
are proportional to the ingredient concentration and there-
fore allow them to serve as biosensors [5, 25–28]. Conse-
quently, the question arises as to whether we can integrate 
EBFCs with microfluidic channels into a thin and soft format 
for a self-powered wearable sweat sensing device.

In the present work, we report a class of materials, 
mechanics, and microfluidic designs in skin-integrated elec-
tronics for self-powered, real-time sweat sensing technology. 
The self-powering sensors associate with lactate and glucose 
EBFCs that are constructed on a stretchable circuit support 
by a thin soft polydimethylsiloxane (PDMS)-based microflu-
idic system for monitoring lactate and glucose concentration 
in sweat. PDMS is a commonly used substrate material for 
skin-integrated electronics due to its excellent mechanical 
properties, stable chemical/physical nature, and safety to 
skin [5, 9, 29]. The real-time detection of changes in lactate 
concentration, which could indicate physical stress, may 
help to identify transitions from aerobic to anaerobic states 
[23, 30], while measuring the variation of glucose level in 
sweat may consist the means of tracking blood glucose lev-
els [31, 32]. In this work, graphene spray-coated on gold is 
proposed for better stretchability and a more homogeneous 
distribution than the application of a drop casting method. 
Compared with other self-powered biosensors, especially 
for sensors based on biofuel cells, an integrated device with 
microfluidics technology could collect sweat in situ and 
gather the concentration data of lactate and glucose with 
excellent stretchability and flexibility [33–36] and would in 
turn have wide application prospects in the real-time moni-
toring of health status during daily life activities.

Materials and methods

Fabrication of stretchable self‑powered lactate 
and glucose sensors

The fabrication process of the stretchable self-pow-
ered biosensor was started on quartz glass, which 
was firstly cleaned by acetone, ethanol, and deion-
ized water (DI water, > 18  MΩ  cm) sequentially. Next, 
poly(methylmethacrylate) (PMMA) solution (20 mg/mL, 
chlorobenzene solvent) was spun-coated on the glass and 
baked at 200 °C for 20 min to form a sacrificial layer for the 
transfer printing process. Subsequently, poly(pyromellitic 
dianhydride-co-4,4′-oxydianiline), amic acid solution 
(Sigma-Aldrich) was spin-coated on the PMMA film and 
baked at 250 °C for 30 min to form a thin polyimide (PI, 
2 µm) layer. A thickness of 30 nm Cr and 180 nm Au were 
sequentially deposited on the PI film via electron-beam 
evaporation. Next, the flexible circuits were defined by pho-
tolithography as follows: first, photoresist coating (PR, AZ 
5214, AZ Electronic Materials, USA) was applied at 3000 r/
min for 30 s followed by soft bake at 110 °C for 5 min; then, 
the PR pattern was defined by ultraviolet light exposure for 
5 s and rinsing in the developer solution (AZ 300MIF) for 
60 s defined the PR pattern; subsequently, wet etching by 
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gold etchant (iodine  (I2)/potassium iodide (KI) solution) for 
90 s and rinsing by acetone and DI water to remove the 
residual PR [37]. The stretchable serpentine interconnects 
were defined by the dry etching of PI by reactive ion etching 
(RIE, Oxford Plasma-Therm 790 RIE system) with oxygen 
gas under 200 W RF power for 8 min. Following immersion 
in acetone for 12 h to remove the sacrificial layer, the pattern 
was picked up by poly(vinyl alcohol) (PVA) tapes for trans-
fer printing. A thin stretchable PDMS layer (170 µm, 30:1, 
Sylgard 184, Dow Corning Corporation, USA) served as the 
receiving substrate, which was fabricated by spin-coating 
at 600 r/min for 30 s and baking at 110 °C for 5 min. Prior 
to the transfer printing process, the PVA tape and PDMS 
substrate were exposed to UV-ozone (UVO) for 5 min to cre-
ate chemical groups enhancing the bonding strength. Then, 
the PVA tape was attached on the PDMS substrate and the 
sample was immersed in water to remove PVA and form the 
stretchable electrodes and interconnects.

For the biofuel cell-based biosensors part, 50 µL gra-
phene suspension (5 mg/mL, ethanol solvent) was spray-
coated on the prepared four Au electrodes on a 100 °C 
hot plate for accelerating the volatilization of ethanol and 
the immobilization of graphene. Here, the graphene layer 
served as a host for enzymes and the electron transfer chan-
nel from enzymes to electrode. The graphene-coated elec-
trodes were then treated with UVO for 5 min to improve 
their hydrophilicity. The catalytic inks of bioanodes were 
prepared by sequentially mixing 2 µL lactate oxidase (LOx, 
1 U/µL) or glucose oxidase (GOx, 2.5 U/µL), 1 μL bovine 
serum albumin (BSA, 10 mg/mL) and 2 μL glutaraldehyde 
(2% w/v). The catalytic ink of biocathodes was prepared 
by a similar procedure, but replacing oxidases with laccase 
(Lac). After dropping catalytic inks on the graphene layer 
and drying in a refrigerator at 4 °C, 2 μL chitosan (1% w/v) 
was dropped onto the enzyme-coated electrode for encap-
sulation. Finally, the obtained biosensors were stored in the 
refrigerator overnight.

Fabrication of flexible microfluidic device

The fabrication of microfluidic system was based on photo-
lithography and replica molding of PDMS. Firstly, the mold 
was developed by patterning SU-8 photoresist (SU-8 2015, 
Microchem) with a thickness of 30 μm on a 4″ silicon wafer, 
which was sequentially cleaned by isopropyl alcohol, ace-
tone, DI water and a final rinse with isopropyl alcohol. After 
baking at 95 °C for 5 min on a hot plate, the baked SU-8 
photoresist with silicone wafer was exposed to UV light 
through mounting to a photomask, followed by post baking 
at 95 °C for 3 min. The exposed substrate was immersed 
in the developer solution (SU-8 developer, Microchem) 
for 5 min to remove any unexposed photoresist. The mold 
was salinized by depositing a molecular layer of Trichloro 

(1H,1H,2H,2H-perfluorooctyl) silane (Sigma-Aldrich, St. 
Louis, MO, USA) to facilitate the release of PDMS from 
the mold master in the later steps. After the mold fabrica-
tion, the PDMS monomer was mixed with the curing agent 
in a weight ratio of 20:1; and the mixture was degassed in 
a vacuum environment for 3–5 min. The degassed PDMS 
mixture was poured onto the control layer mold with a 
thickness of 150 μm. After baking in an oven at 80 °C for 
20 min, the PDMS substrate was chopped and peeled off its 
mold. The inlet was obtained by punching holes of 0.5 mm 
diameter, and the outlet was fabricated by cutting the extra 
PDMS at the end of the microchannels. The PDMS substrate 
was finally bonded onto the self-powered sensor module 
layer using oxygen plasma treatment (energy: 5 kJ; Harrick 
plasma cleaner PDC002) for further sweat collection and 
analysis.

Characterization

The material and electrode surface characterization tasks 
were performed by scanning electron microscopy (SEM, 
FEI Quanta 250). The open-circuit potential (OCP) was 
measured by the data acquisition (DAQ)/multimeter sys-
tem (PowerLab 16/35, AD Instruments) with a constant 
sampling frequency of 100 Hz. The polarization curve of 
biofuel cells was evaluated by the I/V measurement from 
OCP to zero by a Keysight B1500A semiconductor analyzer. 
The current density was calculated through the electrode 
area (0.07065  cm2), and the power density was obtained by 
multiplying current density by potential. The device test-
ing procedure on volunteers was conducted with their full 
informed consent.

Results and discussion

Epidermal stretchable self‑powered biosensor 
for sweat monitoring

The schematic diagram of a stretchable epidermal self-pow-
ered sweat sensor is illustrated in Fig. 1a, which consists 
of four self-power biosensors and a microfluidics system. 
As shown in Figs. 1a and 1b, the construction of biosen-
sors adopts a multilayer stacking layout. A thin soft PDMS 
layer (170 µm) serves as the substrate, and Au electrodes 
with serpentine traces (180 nm) supported by a 2 μm thick 
PI define the stretchable electrodes and connection cables. 
In the biosensors, the catalyst layer includes enzymes and 
sprayed graphene, which is responsible for catalyzing the 
reactions of lactate, glucose, and oxygen, and thus generat-
ing electricity. Another layer of PI (2 μm thick) on top of the 
Au circuits serves as encapsulation for short circuit preven-
tion. The pads in the biosensor’s response for the catalyst are 
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designed with a diameter of 3 mm, while the interconnecting 
filamentary serpentine has a line width of 200 µm. The ser-
pentine interconnection and island-bridge design utilize the 
mechanical guidelines in stretchable electronics and there-
fore greatly enhance the stretchability of the sweat sensors. 
Figures 1a and  1c show the design of the microfluidic sys-
tem, where the microchannels are developed on a PDMS thin 
layer with a channel width of 100 µm that can collect sweat 
directly from the skin. Two separate inlets of the micro-
fluidic system allow sweat to accumulate and flow to the 
corresponding bioanodes and biocathode in different cham-
bers for lactate and glucose sensing (Fig. 1e). Subsequently, 
sweat flows out of the chambers via the microchannels and 
gathers to the outlet (Figs. 1d and 1f). The overall dimen-
sion of the integrated device is 15 mm × 10 mm × 0.34 mm 
(length × width × thickness) and its weight is only 90 mg, 
showing the ultra-thin and light-weighted features, which 
enable conformal and tight attachment to the human skin 
(Figs. 1g–1i and S1) [38]. Furthermore, as the biosensor 
and microfluidic system are both constructed on the soft 
and ultra-thin PDMS substrate, the integrated device can be 

stretched, twisted (over 45°), and bent (over 15°) to accom-
modate realistic body motions (Fig. 1j).

Self‑powered biosensor characterization

The enzymatic biofuel cell design plays an essential role 
in achieving self-powering behaviors. The principles and 
schematic illustrations of the biofuel cell-based biosensors 
are shown in Fig. 2a. In the bioanode, lactate in sweat is 
oxidized by LOx into pyruvate, while GOx oxidizes glucose 
into gluconic acid. At the same time, electrons are released 
in the oxidation reaction. In the biocathode, oxygen is 
reduced into water  (H2O) by Lac and electrons are obtained. 
As a result, the OCP values of EBFCs exhibit strong correla-
tion with the lactate or glucose concentration in sweat. As 
shown in Figs. 2b and S2a, the distribution of spray-coated 
graphene on the metallic electrodes is highly uniform and 
thus guarantees the great sensing uniformity. Here, distrib-
uted graphene facilitates the electron transfer between the 
active center of enzymes and metallic electrode surfaces. 
After UVO treatment, catalytic ink becomes well-dispersed 

Fig. 1  Overview of the epider-
mal and stretchable self-pow-
ered sweat sensor. a Schematic 
illustration of a self-powered 
sweat sensor for lactate and 
glucose analysis. b, c Design 
sketches of the sweat sensor and 
the microfluidic system. d–f 
Micrographs of the chamber 
outlet, chamber inlet and the 
overall outlet of the microfluidic 
system. g, h Optical images of 
the self-powered sensor and the 
microfluidic system. i Optical 
image of the device attached 
to the back of hands. j Optical 
images of the biosensor under 
stretching, twisting, and bend-
ing
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and enzymes can be tightly immobilized on the graphene 
layer (Figs. 2b and S2b–S2d). Figures 2c–2f show the per-
formance of the self-powered sensors in lactate and glucose 
sensing. As illustrated in Fig. 2c, the OCP of the lactate 
EBFCs increases with the rise of lactate concentration in the 
electrolyte (0.01 M phosphate buffered saline (PBS) buffer), 
indicating that the biosensor has good response to lactate 
concentrations ranging from 0 to 15 mM. Figure 2d presents 
the OCP of the sensor as a function of various concentra-
tions of lactate, revealing an apparent linear relationship 
between the OCP of lactate concentration. The sensitivity 
of 2.48 mV/mM and the determination coefficient (R2) of 
0.98 in the lactate EBFCs show the excellent performance 
of the lactate sensor. Figure 2e depicts the representative 
OCP responses of glucose EBFCs for glucose in the PBS 
buffer for 0–150 µM glucose concentrations in the solution. 
Similarly to the lactate sensors, a linear relationship between 
the OCP and glucose concentration with a sensitivity of 

0.11 mV/μM and an R2 of 0.96 can be obtained, indicating 
the great performance of the glucose sensors.

Characterization of mechanical properties

In order to investigate the mechanical properties of the self-
powered biosensors, a comprehensive characterization of 
the device is conducted herein, involving the study of OCP, 
current density and power density versus various stretching 
strains (from 0 to 30%). Since 30% is the typical maximum 
strain level for the human skin, we only study the perfor-
mance differences of the sensors under 30% stretching [15, 
39]. Figure 3a shows the optical images of the device under 
0%, 10%, 20%, and 30% stretching, which indicate that no 
fractures and breaks occur to the interconnects due to the 
advanced serpentine design. Figures 3b–3e depict the elec-
trical outputs of lactate and glucose sensing in the device 
under different stretching levels. The concentration of lactate 
and glucose are fixed at 15 mM and 150 µM, respectively. 

Fig. 2  Electrical characteriza-
tions of the self-powered sen-
sors. a Schematic illustration of 
the biofuel cell-based biosensor. 
b Enlarged optical image of the 
biosensor device. c Real-time 
electrical response of the sensor 
to various lactate concentra-
tions and d the corresponding 
calibration curve. e Real-time 
electrical response of the sensor 
to various glucose concentra-
tions in phosphate buffer and f 
the corresponding calibration 
curve
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The corresponding OCP of the devices without any stretch-
ing is 337.4 mV for lactate sensors and 195.8 mV for glu-
cose sensors, with a maximum current density (MCD) and 
power density (MPD) of 644.7 µA/cm2 and 39.5 µW/cm2 
for lactate sensors and 41.5 µA/cm2 and 2.16 µW/cm2 for 
glucose sensors, respectively (Figs. S3 and 3). Hardly any 
change of OCP can be found in these sensors when the 
stretching level is less than 20%, while 30% stretching only 
causes negligible OCP reduction. As a result, the OCP and 
MPD of the devices exhibit highly stable behaviors even 
under stretching states, specifically, values of 324.68 mV, 
36.8 µW/cm2 and 191.08 mV, 1.9 µW/cm2 respectively for 
lactate and glucose sensors under 30% stretching. Both OCP 
and MPD for lactate and glucose sensors can maintain over 
88% of their performance under 30% stretching as compared 
to the initial values without stretching.

Microfluidic device design and characterization

In the proposed design, a microfluidic system serves as 
the on-skin sweat collection platform that contains two 
regions with two chambers (3 mm in diameter) for lactate 
and glucose sensing each and a microchannel of 100 μm 

width for sweat flowing (Fig. S4a). The inlet channel 
with a diameter of 0.5 mm connects the microchambers 
to allow sweat flowing in (Fig. S4b). Generally, this hole 
diameter can cover 2–3 sweat glands on the palm based 
on estimation [40]. Therefore, sweat could be drawn into 
the microchannel by hydraulic pressure from osmolality 
differences between sweat and plasma created by glands 
[41], and the collected sweat fluid guided through a bifur-
cation nozzle could in turn flow to each chamber. The rate 
of sweat fluid flow through each chamber is the same due 
to the symmetrical design, thus enabling the analysis of 
lactate and glucose with high time consistency [5, 29]. 
The computational analysis (COMSOL Multiphysics, 
COMSOL, Burlington, MA) of the velocity profiling of 
the sweat fluid going through bifurcation shows a homo-
geneous distribution, allowing for a similar rate of sweat 
fluid flow from the skin into the microchambers (Fig. S4c). 
The circle shape design of the microchamber can avoid the 
formation of ‘dead space’ during air degassing, leading to 
more accurate analysis. As shown in Fig. S4d, the result of 
simulated 3D velocity of the sweat fluid going through the 
microchannel indicates that the sweat fluid always flows 
along the center of the microchannel without any shifting 

Fig. 3  Mechanical charac-
terizations of the self-powered 
sensors. a Optical images of the 
self-powered biosensor under 
0%, 10%, 20%, and 30% stretch-
ing. b, c Open-circuit potential 
and power density of the lactate 
biofuel cell under 0%, 10%, 
20%, and 30% stretching in 
15 mM lactate electrolyte. d, 
e Open-circuit potential and 
maximum power density of the 
glucose biofuel cell under 0%, 
10%, 20%, and 30% stretching 
in 150 µM glucose electrolyte
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movement. As illustrated in Fig. S5, we also recorded the 
air degassing procedure; nearly 99% of the area could be 
filled by sweat fluid within 1 min and air could be removed 
entirely at 33 min. Therefore, this microfluidic system 
allows the efficient collection of sweat.

In situ and real‑time sweat analysis

The epidermal self-powered sweat sensors were tested on 
the human body for in situ and real-time sweat analysis. As 
shown in Fig. 4a, the soft sweat sensors can be attached in 
various body locations, including the forehead, chest, and 

Fig. 4  On-body real-time per-
spiration analysis. a Schematic 
Illustration of the sensors 
mounted on various locations of 
a test subject. b Optical image 
of the test subject on a station-
ary cycling. c Continuous moni-
toring of lactate and glucose 
concentration in perspiration 
during exercise. d Comparison 
of lactate and glucose concen-
tration in perspiration applied to 
different body location during 
exercise. e Comparison of lac-
tate and glucose concentration 
in perspiration attached on the 
back of different subjects during 
exercise
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back. Real-time lactate and glucose concentration monitor-
ing could be performed on a subject during constant-load 
exercise on a cycle ergometer, as shown in Fig. 4b. Figure 4c 
presents the glucose and lactate concentration data in real-
time for the testing subject during exercise for 1200 s, where 
the sweat sensors are attached to the back of the subject. 
During the exercise, with continued perspiration, the glucose 
and lactate concentration both gradually decreased, which 
is due to the dilution effect of the increase of sweat rate 
[6, 41]. In addition, the lactate and glucose concentrations 
were measured in three different body locations (Fig. 4a) 
after 0.5 h of continuous exercise, with the results summa-
rized in Fig. 4d. The figure compares these levels with their 
initial levels before exercise. The concentrations of lactate 
and glucose at different body areas were almost the same on 
different test locations, and obvious decrease could be found 
after 0.5 h of perspiration. Next, the change of lactate and 
glucose levels in the sweat were tested on three subjects dur-
ing exercise by attaching the sensor to the back of volunteers 
to identify its universality (Fig. 4e). Obviously, the change 
trends of lactate and glucose levels were similar for different 
subjects. These results indicate that the soft self-powered 
biosensor exhibits great effectiveness and application poten-
tial for in situ and real-time sweat analysis.

Conclusions

In this paper, we have presented a newly developed epi-
dermal, stretchable self-powered biosensor to achieve the 
in situ detection of lactate and glucose concentrations in 
human sweat. A careful selection of materials and device 
structures enables biofuel cells serving as accurate sens-
ing components to avoid using additional power supplies. 
The combination of an advanced mechanical design con-
sisting of stretchable electronics, a microfluidic system, 
and biosensors allows the self-powered sweat sensing 
device to exhibit excellent sweat collection capability 
and sensing accuracy even under great levels of stretch-
ing. Measurements by the sensors on volunteers show the 
real-time response to lactate and glucose level changes, 
indicating the application potential of the proposed biosen-
sor in wearable sweat sensing and healthcare monitoring 
scenarios.
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