
Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 135

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Profiling and annotation combinedmethod for multimedia

application specificMPSoCperformance estimation∗

Kai HUANG†1, Xiao-xu ZHANG1, Si-wen XIU†‡2, Dan-dan ZHENG1, Min YU1, De MA3,
Kai HUANG4, Gang CHEN4, Xiao-lang YAN1

(1Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China)

(2College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China)

(3Microelectronics CAD Center, MOE Key Lab of RF Circuits and Systems,

Hangzhou Dianzi University, Hangzhou 310018, China)

(4Department of Informatics VI, Technical University Munich, Garching 85748, Germany)
†E-mail: huangk@vlsi.zju.edu.cn; xiusw@vlsi.zju.edu.cn

Received July 5, 2014; Revision accepted Oct. 22, 2014; Crosschecked Dec. 30, 2014

Abstract: Accurate and fast performance estimation is necessary to drive design space exploration and thus
support important design decisions. Current techniques are either time consuming or not accurate enough. In
this paper, we solve these problems by presenting a hybrid method for multimedia multiprocessor system-on-chip
(MPSoC) performance estimation. A general coverage analysis tool GNU gcov is employed to profile the execution
statistics during the native simulation. To tackle the complexity and keep the analysis and simulation manageable,
the orthogonalization of communication and computation parts is adopted. The estimation result of the computation
part is annotated to a transaction accurate model for further analysis, by which a gradual refinement of MPSoC
performance estimation is supported. The implementation and its experimental results prove the feasibility and
efficiency of the proposed method.

Key words: MPSoC, Gradual refinement, Native simulation, Performance estimation, Profiling, Annotation, Gcov
doi:10.1631/FITEE.1400239 Document code: A CLC number: TP36; TN47

1 Introduction

Performance estimation is becoming a very im-
portant and challenging task in heterogeneous multi-
processor system-on-chip (MPSoC) design (Posadas
et al., 2004). Accurate and fast performance esti-
mation in an earlier stage is necessary to drive de-
sign space exploration, which would avoid costly de-
sign process iterations (Gerin et al., 2009) and fit
‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (No. 61100074), the National Science and Technol-
ogy Major Project of China (No. 2012ZX01039-004), and the
Fundamental Research Funds for the Central Universities, China

ORCID: Kai HUANG (first author), http://orcid.org/0000-
0002-5034-7171; Si-wen XIU, http://orcid.org/0000-0003-0400-
8037
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

tight time-to-market and time window constraints.
Since MPSoC is becoming more and more com-
plex, several abstract models have been employed
(Jerraya and Wolf, 2004). Performance estimation
should take a different focus on different abstrac-
tion levels and be gradually refined. This idea is
inspired by previous research (Keutzer et al., 2000;
Jerraya et al., 2006; Huang et al., 2009). Huang
et al. (2009) introduced a gradual refinement flow us-
ing five different abstraction levels, which are, from
high to low, Simulink combined algorithm and archi-
tecture model (CAAM), virtual architecture (VA),
transaction accurate (TA), virtual prototype (VP),
and field-programming gate array (FPGA) emula-
tion. Fig. 1 shows an example of the refinements of

Guo Yunlong
CrossMark

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1400239&domain=pdf&date_stamp=2015-04-16

136 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

port portport port

HdSApp

CPU SS3
Thread Main 2

App

Thread Main 1

Abstract channels

port portport port

HdSApp

CPU SS2
Thread Main 2

App

Thread Main 1

port portport port

HdSApp

CPU SS1
Thread Main 2

App

Thread Main 1

Abstract thread/
abstract channel

HdS API

portport port

HdSApp

CPU SS1
Thread Main2

App

Thread main1

T1 T2

Host
+BFM PIC Mem

Local bus

NI
Mail
box Timer

CPU SS3

+BFM PIC Mem

Local bus

NI
Mail
box Timer

HdS API

Software main

Abstract CPU+BFM
HAL API

OSComm.
library

Host
+BFM PIC Mem

Local bus

NIMail
box Timer

Interconnecting BusInterconnecting bus

ISS PIC Mem

Local bus

NI
Mail
box Timer

CPU SS3

Interconnecting BusInterconnecting bus

ISS PIC Mem

Local bus

NI
Mail
box Timer

T2

ISS PIC Mem

Virtual architecture model
Transaction accurate

model Virtual prototype model

Software
codes

Simulink CAAM model

F3 F4

F1 F2

F0

F6 Z−1 F8

F5 F7

F9 F10

F11 F13F12
F15 Z−1

Z−1

Processor 1

Processor 2 Processor 3

F14

FPGA model

CPU SS3
CPU SS2

CPU SS1

T1 T2

NIMail
box Timer

Local bus

CPU SS3
CPU SS2

CPU SS1

HdS API

Software main

Abstract CPU+BFM
HAL API

OSComm.
library

T1 T2

port

Fig. 1 An example of the refinements of the software model

MPSoC design flow with all these abstraction mod-
els (or levels). In this paper, CAAM is defined
as a software and hardware combined model, built
from an abstract clock synchronous model (ACSM)
(Han et al., 2006). Compared with data-driven syn-
chronous data flow (SDF), Kahn process networks
(KPN), and other functional models, ACSM is a syn-
chronous model with capability to describe both data
flow and control structure. To some extent, ACSM is
close to homogeneous SDF (HSDF) with additional
control tokens.

A critical issue for MPSoC performance estima-
tion is to evaluate the expected performance early in
the design process without actual hardware imple-
mentation (Yang et al., 2010), and using abstraction
level models leads to the results in seconds for cases
in which cycle-accurate simulation takes tens of min-
utes or hours (Han et al., 2009). The VP model is
not suitable for performance estimation because of
low simulation speed and low abstraction level, and
neither is the FPGA model because of the low level
and difficult implementation. As to the Simulink
CAAM model, architecture mapping has not been
decided, so it is too abstract to analyze. The VA
and TA models are the most attractive for MPSoC
performance estimation.

At the VA level, HW/SW partitioning and re-
source allocation are made explicit, and the alloca-
tion of threads/tasks to a subsystem is also fixed
(Jerraya et al., 2006), which makes VA the high-
est level that is suitable for performance estimation.

The VA model is composed of some abstract CPU
subsystems communicating with each other via ab-
stract communication channels (Huang et al., 2009)
whose computation part is explicit while the com-
munication part is not. The TA model goes further,
detailing the local architecture of each subsystem in
MPSoC and making the communication model ex-
plicit (Han et al., 2009). The computation parts
of the VA model and the TA model are almost the
same, while the communication part of the VA model
is represented by send_data/receive_data and that
of the TA model by write_mem/read_mem because
its memory subsystem and communication channels
are made explicit.

Current MPSoC involves two different kinds:
general-purpose multicore architecture like Cortex
A9, and application-specific MPSoC like application-
specific instruction-set processor (ASIP) based MP-
SoC or fine-grained processing element (PE) based
system-on-chip. This study aims at multimedia ap-
plication specific MPSoC performance estimation.
The hardware platform used in this study employs
simple processor architecture and explicit memory
hierarchy. In such an architecture, communication
overhead plays an important role, and this should be
simulated explicitly in TA-level simulation. Com-
putation load is less important and can be ab-
stracted taking advantage of VA-level native simu-
lation. Moreover, Keutzer et al. (2000) showed that
orthogonalization of computation and communica-
tion is essential to master system design complexity,

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 137

which inspires us to separate the focuses of perfor-
mance estimation at different abstraction levels. We
thus propose a VA and TA combined strategy to
profile computation load during VA simulation and
annotate it to TA simulation, so as to achieve good
trade-offs between estimation speed and accuracy.

This paper focuses on how to calculate the exe-
cution time with MPSoC abstraction models rapidly
and accurately. We use a GNU compiler collection
(GCC) profiling tool GNU gcov to collect the exe-
cution statistics of the given C code during simu-
lation. GNU gcov is traditionally used to optimize
the application code itself by rewriting the hot spots
for more efficient execution on the target machine
(GNU, 2013). Inspired by Karuri et al. (2005), here
we use it in connection with a C compiler to gener-
ate statistics about the execution frequencies of code
lines. To make the simulation fast, we employ native
simulation where the applications are executed on a
workstation or server with x86 CPU (Gerin et al.,
2009). Jerraya et al. (2006) showed that native sim-
ulation with the VA model can achieve 100 times
the speed of the TA model with only a 15% accuracy
loss. Thereby, we can estimate the performance with
the MPSoC VA model at high speed, and the result
of its computation part can be annotated to the TA
model. Thus, only the communication part needs
to be analyzed for a more accurate estimation at the
TA level. We call the annotation flow ‘gradual refine-
ment of performance estimation’. Our contributions
are summarized as follows:

1. We propose a profiling and annotation com-
bined flow for multimedia MPSoC performance esti-
mation from the VA level to the TA level.

2. We propose a profiling based method for VA-
level native simulation. GNU gcov is employed to
profile the execution statistics of the given C code
during native simulation, and runtime performance
analysis is supported, which enables accurate and
fast VA-level performance estimation.

3. We propose an annotation based simulation
method for TA-level transaction accurate simula-
tion. Only the communication latency is refined,
which enables more efficient TA-level performance
estimation.

2 Related work
In the past few years, different techniques have

been proposed for heterogeneous MPSoC perfor-

mance estimation, and most of them fall into three
categories: execution-driven simulation, analytic
method, and a hybrid of both.

Execution-driven simulation is usually used for
design verification. For the hardware part, simula-
tion performance depends on the abstraction level,
and for the software part, instruction-set-simulator
(ISS) is the simplest technique (Fummi et al., 2004;
Benini et al., 2005; Filho et al., 2008). Even though
ISS simulation benefits from high accuracy in con-
trast to other approaches, it suffers from such a low
simulation speed, costly setup, and lack of flexibil-
ity that it can be employed only in the final stage
of the development when the design space has been
significantly narrowed down.

To speed up the estimation process, some ana-
lytic methods are introduced which remove the need
for the cumbersome simulation. They usually con-
sider all possible paths in the control flow graph
(CFG), and are widely used to calculate the worst-
case execution time (WCET) (Wilhelm et al., 2008)
for real-time systems. SymTA/S (Richter et al.,
2003; Henia et al., 2005) is a formal representative
compositional approach, which uses schedulability
analysis techniques. Modular performance analysis
(Wandeler et al., 2006; Huang et al., 2012) is another
compositional approach, which relies on real-time
calculus. Madl et al. (2007) and Yang et al. (2010)
both used an exhaustive enumeration approach to
enumerate all possible event execution paths and
then verified them. These analytic approaches com-
pute the delays instead of simulating them, and trade
accuracy for estimation cost and speed, which are
more valuable in the early design phases. However,
one problem is their limited ability to carry out the
real workload scenarios. The other drawback is that
they rely only on worst-case analysis, the results of
which are too conservative.

Recently, some hybrid methods have been pro-
posed to resolve performance issues by combining
advantages of simulation-based and analytic ap-
proaches. Oyamada et al. (2007; 2008) employed a
cycle-accurate simulator to extract the execution re-
sults of a given application, which are used as the
input for neural networks (NNs) for training and
utilization. This kind of NN method can easily
adapt to the non-linear behavior such as pipelines,
branch prediction, and caches, and the estimation
speed is fairly fast. However, it needs a training

138 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

process that is costly and considerably long, and any
architecture modification would require a new one.
Piscitelli and Pimentel (2012) interleaved analytic
performance estimations with simulations, provid-
ing trade-off between speed and accuracy, but their
focus is only on design space exploration on system-
level mapping. To speed up the simulation part, na-
tive simulation approaches have been proposed (Gao
et al., 2008; Gerin et al., 2008; Shen et al., 2012),
where software runs on the host machine natively,
whose execution time is usually calculated through
delay-annotation. Schnerr et al. (2008) applied back-
annotation of WCET/BCET values. Unfortunately,
the WCET/BCET values are not accurate enough
for the real workload as mentioned above. Kirch-
steiger et al. (2008) first obtained the target assem-
bly codes from the target cross-compiler, and then
analyzed them and generated delay information for
each C-code statement according to the target pro-
cessor datasheet. After that, the delay information is
annotated to the original C code, which is finally exe-
cuted natively to calculate the real delay. The delay-
annotation techniques could replace the ISS with a
faster and more accurate delay-annotated software
model. However, software codes have to be largely
modified with delay insertion and the pipeline model
is coarse.

Our work aims at combining the advantages of
analytical and simulation techniques, and providing
high speed and accuracy for efficient performance
estimation. The key idea is to profile the execution
information and calculate the computation load dur-
ing VA level native simulation, and the results can
be annotated to the TA model, by which the per-
formance estimation is able to be gradually refined.
Compared with previous techniques, ours inserts few
extra codes into the original program codes, and can
provide runtime analysis.

3 Annotation based method at the
transaction accurate level

To gradually refine the MPSoC performance es-
timation, we use an annotation method among dif-
ferent abstraction levels of MPSoC.

The VA model consists of some abstract CPU
subsystems communicating with each other via
abstract channels, while interconnect components,
memories, and memory mapping are not decided,

which makes the processors take the responsibility
for all the data transfers of send_data/receive_data
functions. The TA model details the local architec-
ture of each subsystem in MPSoC and makes the
communication protocol explicit. CPU subsystems
communicate with each other via memory subsys-
tems and cycle-accurate communication channels.
Each CPU subsystem of the TA model is composed of
an abstract CPU that provides bus functional model
(BFM) functions and translates them to SystemC
signal-level transactions, local buses and memories,
a mailbox for data synchronization among the CPU
subsystems, an interrupt controller (INTC) to man-
age external interrupts generated from the mailbox,
local memories, a network interface (NI) to convert
global addresses to local addresses to allow remote
access from other CPU subsystems, and possibly a
direct memory access (DMA) to take responsibility
for data transfers between the local memories and
the global memory, which reduces the burden on
the processor. Thereby, the communication parts
of both intra- and inter-CPU-subsystem are refined
and become closer to the real chip. Performance es-
timation should then be made again to refine the
result. Since the architecture of each CPU subsys-
tem has already been decided at the VA level, the
computation cost of VA is as accurate as that of TA,
which leads us to annotate the VA performance re-
sults of the computation part back to TA. Details
about TA-level simulation and how communication
works can be found in the literature (Jerraya et al.,
2006; Han et al., 2009; Huang et al., 2009).

Fig. 2 illustrates an example of the annotation
flow from VA to TA. When prf_end (a profiling API
function, explained in Section 4) is called, in the ana-
lyzing process the performance results are calculated
and the corresponding codes generated for TA level
performance estimation. If the message type of this
prf_end is assigned 0 (computation), the compu-
tation part is commented out, being replaced by
function prf_annotation, which is used only for TA
level performance estimation, whose parameter is the
cycle count cost of the corresponding computation
part.

Fig. 3 illustrates a TA platform using our pro-
filing and annotation based performance estimation
method, whose essence is to use computation cost ob-
tained from VA and estimate the communication cost
using cycle approximate simulation. For hardware,

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 139

except for CPUs, all other components are imple-
mented with cycle-accurate SystemC models, using
a bus function model (BFM) and Linux shared mem-
ory for communication. For software, it is not nec-
essary to run the computation part, whose cost is
annotated and directly profiled. However, the com-
munication part needs to be executed and profiled,
because it has some peripheral configuration oper-
ations, such as DMA register configuration. Since
our purpose is to estimate the performance instead
of running a verification, the exact read/write data
are not important and are substituted by fake ones.

As shown in Fig. 3, the execution time (e.g.,
time1 and time4) of the computation part is ob-

1: status_t send_data(...)
2: {
3: prf_beg (...);
4: ...
n: cnt += prf_end(...);
n+1:}

1: status_t receive_data(...)
2: {
3: prf_beg (...);
4: ...
n: cnt += prf_end (...);
n+1:}

1: int T1_main(){
2: for(;;){
3: receive_data(port0,&E0);
4: prf_beg(...);
5: F1(E0,&E1,&E2);
6: F2(E1,&E3,&E4);
7: F3(E2,E4,&E5,&E6);
8: F4(E3,E5,&E7);
9: cnt += prf_end(2,0,5,8);
10: send_data(port1,&E7);
11: prf_beg(...);
12: F5(E6,&E8);
13: cnt += prf_end(2,0,12,12);
14: send_data(port2,&E8);
15: ...

1: int T1_main(){
2: for(;;){
3: read_mem(addr1,size1,...);
4: //prf_beg(...);
5: //F1(E0,&E1,&E2);
6: //F2(E1,&E3,&E4);
7: //F3(E2,E4,&E5,&E6);
8: //F4(E3,E5,&E7);
9: prf_annotation(xxxxxxx);
10: write_mem(addr2,size2,...);
11: //prf_beg(...);
12: //F5(E6,&E8);
13: prf_annotation(xxxx);
14: write_mem(addr3,size3,...);
15: ...

1: status_t write_mem(...)
2: {
3: prf_beg (...);
4: ...
n: cnt += prf_end(...);
n+1:}

1: status_t read_mem(...)
2: {
3: prf_beg (...);
4: ...
n: cnt += prf_end (...);
n+1:}

level ATlevel AV

Annotation
to TA

Fig. 2 Annotation flow from the virtual architecture
(VA) level to the transaction accurate (TA) level

tained in advance from the VA level, and the commu-
nication configuration time (e.g., time2 and time5)
is obtained by runtime profiling and analyzing.
By adding them, the execution time between two
read/write operations (e.g., time3 obtained by time1
plus time2, and time6 obtained by time4 plus time5)
is obtained and sent to the BFM in hardware sim-
ulation of the TA model through the Linux shared
memory. By this means, the native simulation of
application software cooperates with the hardware
simulation of a communication model, which com-
bines computation cost with communication latency
for the overall performance estimation of the system.

Thanks to our annotation technique, the soft-
ware codes generated during the performance esti-
mation at the VA level can be reused at the TA level
and only the communication part needs to be refined
or rewritten, which makes it faster and more efficient
for performance estimation.

4 Profiling based method at the virtual
architecture level

4.1 Workflow

Profiling and simulation are a pair of inherent
techniques for acquiring performance information of
an application (Patel and Rajawat, 2011). We ap-
ply native simulation to achieve fast execution speed,
and use a mature profiling tool, GNU gcov, to obtain
accurate information. Based on these two novel tech-
niques, we can analyze the pipeline in a fine-grained
way at runtime.

Abstract
CPU

CPU1
subsystem

Global interconnect

CPUn
subsystem

Bridge

G
M

E
M

0

G
M

E
M

1

G
M

E
M

2

G
M

E
M

3

Bus

MEM subsystem

SystemC cycle-approximate model for communication

BFM

Abstract
CPU
BFM

Hardware
FIFOProcessor signals

processing

Control & data
processing

Ctrl Data

Addr
Interrupt

WData RData
Status

Local bus interface & interrupt interface

Linux IPC

Semaphore

BFM

read(addr, rdata, type)

bus_write(addr, type)
wait(time6)
bus_read(addr, type)
wait(time3)1

2

3

4

time2
+ = time3

prf_annotation(time1)

time5
+ = time6

prf_annotation(time4)

write(addr, wdata, type)

HDS API

Threads 1, 2, …, N
Main

Thread / communication library (HdS)

HAL API

Fig. 3 Profiling and annotation based transaction accurate platform

140 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

Fig. 4 presents the four main steps of our estima-
tion method: (1) profiling API insertion, (2) double
compilation, (3) runtime performance analysis, and
(4) result annotation.

Inst Delay/
pipeline

Inst delay/
pipeline

(1)

(2)

(3)

(4)

Fig. 4 Workflow of the performance estimation
method in this study

In the API insertion phase, some profiling API
functions are inserted into the multithread codes
generated by Simulink at the Simulink CAAM level.
Thanks to the API insertion (Section 4.3), the pro-
filing and analysis can be done together at runtime,
which makes our method more efficient.

In the double compilation phase, the multi-
thread codes generated in the API insertion phase
are compiled into an executable binary for profiling
(EBP) by using GCC coverage parameters (gcov, re-
fer to Section 4.2). Some extra files of gcov are gener-
ated. In addition, an executable binary for analysis
(EBA) is generated from the pipeline analyzer (Sec-
tion 4.4) by the GCC compiler. As the full name
implies, EBP is responsible for native simulation
while EBA for performance analysis, the generation
of which is called ‘compilation for runtime analysis’
in this study. Meanwhile, a target executable binary
is generated and then disassembled to the target dis-
assembled codes using the tool chain of the target
CPU architecture, such as the cross compiler and
disassembler, the process of which is called ‘compi-
lation for analysis materials’.

4.2 Gcov

In the runtime performance analysis and anno-
tation phases, both of the generated binary executa-
bles are run on the host machine. The performance
results are generated, recorded, updated, and anno-
tated according to the calling of the API functions.
Section 4.3 shows more details.

To ease the native simulation, we adopt a gen-
eral profiling tool GNU gcov. It belongs to source
code level profiling which is the most widespread,
and is suitable for our Simulink based design flow
because the multithread codes to be analyzed are
usually in form of C or C++. By using gcov, we can
find some basic performance statistics, such as how
often each line of code is executed, and which lines
of code are actually executed.

Two files generated by gcov play an important
part in our estimation process, named .gcno and
.gcov files. As shown in Fig. 5, the .gcno notes file
(here tmp.gcno) is generated when the source file is
compiled by a GCC compiler with gcov. It contains
information to reconstruct the basic block graphs
and assign source line numbers to blocks. During
the native simulation, gcov creates a log file named
sourcefile.gcov (here foo.c.gcov) which indicates how
many times each line of a source file sourcefile.c (here
foo.c) has been executed (GNU, 2013). The coverage
log file (.gcov) makes it possible to estimate the exe-
cution time of a given application. However, to ana-
lyze the performance of the application on the target
platform, we employ the target cross the compiler
and disassembler to generate the disassembled code
where each C-code statement is mapped to its corre-
sponding assembly instructions of the target archi-
tecture while keeping the source line number. Given
the coverage log and the disassembled code, we can
analyze the running status of the target pipeline ac-
cording to the datasheet of the target processor, and
estimate how much computing time each section of
the codes uses. The pipeline analyzer will be ex-
plained in Section 4.4.

However, there are two restrictions on the gcov
profiling based analysis method. One is that GCC
compiler optimization should not be used if high
accuracy performance estimation is desired. Once
GCC compiler optimization is used, the mapping be-
tween C-code statements and their assembly codes
is probably disturbed, which makes the pipeline

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 141

foo.c.gcov

gcov

Native
simulationfoo.gcno

foo.exe

GCC compiler

foo.asm

Target
tool chain

foo.c

Pipeline
analyzer

Datasheet

Performance result

...
/tmp/example/foo.c:4
if(x != 3)
80ea: e4681007subi r3, r8, 8
80ee: 9360 ld.w r3,(r3,0x0)
80f0: 3b43 cmpnei r3, 3
80f2: 0c0a bf r3, 0x8106

/tmp/example/foo.c:5
y = x*x;
80f4: e4481003 subi r2, r8, 4
80f8: e4681007 subi r3, r8, 8
80fc: 9320 ld.w r1,(r3,0x0)
80fe: 9360 ld.w r3,(r3,0x0)
8100: 7cc4 mult r3, r1
8102: b260 st.w r3,(r2,0x0)
8104: 0408 br 0x8114

/tmp/example/foo.c:7
else
...

-: 0: Source: tmp.c
-: 0: Graph: tmp.gcno
-: 0: Data: tmp.gcda
-: 0: Runs: 1
-: 0: Programs:1
-: 1:// for the paper
5: 2:void foo (int x, int y)
function main called 5 returned 1
block executed 100%
-: 3:{
5: 4: if(x! = 3)
branch 0 taken 60% (fallthrough)
branch 1 taken 40%
3: 5: y = x*x;
-: 6:
-: 7: else
2: 8: y = x + 2;
-: 9:}

// for the paper
void foo (int x, int y)
{
 if(x != 3)
 y = x*x;

 else
 y = x + 2;
}

Fig. 5 GNU gcov based profiling and analyzing method

analyzer not function well. With our experience
from the experiments, the estimation error caused
by GCC optimization is about 3%–54% according to
the optimization level. If we use the optimization
level (-O1, -O2, -Os) less than (-O3), the estimation
error is not more than 12%, which is suitable for
architecture exploration with horizontal comparison
between different architectures in most cases. We do
not suggest using a high optimization level (-O3) in
our work since then a too inaccurate result can be
avoided. The other restriction is that some program-
ming rules must be followed. Since gcov accumulates
statistics by line, it works best with a coding style
that places only one statement on each line. How-
ever, rules like this are often violated. To solve the
problem, we adopt a code normalizer to modify the
man-made codes.

There are four kinds of codes that are modified
by the code normalizer:

1. Multiple assignment statements in one line.
As shown in Fig. 6a, they are distributed to multi-
ple lines, guaranteeing that there is one assignment
statement in one line at the most, which is a basic
rule of the code normalizer.

2. Assignment statement with ternary condi-
tional operator ‘?:’. As shown in Fig. 6b, the state-
ment is reconstructed in the form of ‘if/else’ condi-
tional assignment.

3. Conditional branches in the same source code
line. As shown in Fig. 6c, they are distributed.

4. Control structure and assignment statement
in one line. As shown in Fig. 6d, they are also
distributed.

(a)

(b)

(c)
if(x)
 y = a;
else
 y = b;

a = (b>0) ? c : d;

a = b+c;
d = e*f;

while(x!=1) {y++;}

if (x) y = a; else
y = b;

if(b>0)
 a = c;
else
 a = d;

(d)

a = b+c; d = e*f;

while(x!=1)
{
 y++;
}

Fig. 6 Cases of the code normalizer: (a) two uncorre-
lated assignment statements in a single line distribute
into two lines; (b) ternary-statement translates into
standard conditional statements; (c) condition state-
ments in a single line distribute into several lines;
(d) control structure and assignment statement dis-
tribute into different lines

4.3 Profiling API functions

4.3.1 Definition

The main purpose of profiling API functions is
to manage performance estimation tasks required for
native simulation.

Function anl_fork is called at the beginning of
the native simulation, when some environment vari-
ables need to be initialized or configured. It is used
to fork a new child process where the EBP runs from
the parent process in which the EBA runs. We call
the parent process the profiling process and the child
process the analyzing process. The analyzing pro-
cess then keeps waiting for a profiling API call from

142 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

a profiling process as soon as the environment is set
up.

Functions prf_beg and prf_end are used as
starting and ending points for the profiling task, re-
spectively. The function prf_beg is able to clean
the previous profiling states and prepare a new en-
vironment for the subsequent profiling task, and the
function prf_end is used to send a message to the
analyzing process to activate it. prf_end is the most
important API function, because it is the only one
that enables interaction between the profiling pro-
cess and the analyzing process. As shown in Fig. 7,
function prf_end carries the following information
for performance analysis: CPU ID is used to inform
the analyzing process which processor architecture
shall be chosen. Message type is employed to indi-
cate whether the codes to be analyzed belong to the
computation or communication part. The number of
the start line and that of the end line are also given
to specify the portion of the codes to be analyzed.
Last but not the least, prf_end is also responsible
for the annotation.

CAAM level VA level

1: status_t send_data(port_t *port,void *_src)
2: {
3: prf_beg (...);
4: ...
n: cnt += prf_end(port->...->cpu_id,1,4,n-1);
n+1:}

1: status_t receive_data(port_t *port, void *_dest)
2: {
3: prf_beg (...);
4: ...
n: cnt += prf_end (port->...->cpu_id,1,4,n-1);
n+1:}

int prf_end(){
 int cid; // CPU id

 bool mtp; // message type
// computation: 0
// communication: 1

 int sln; // start line number

 int eln; // end line number
 ...
}

int prf_end(){
 int cid; // CPU id

 bool mtp; // message type
// computation: 0
// communication: 1

 int sln; // start line number

 int eln; // end line number
 ...
}

int prf_end(){
 int cid; // CPU id

 bool mtp; // message type
// computation: 0
// communication: 1

 int sln; // start line number

 int eln; // end line number
 ...
}

1: int T1_main(){
2: for(;;){
3: receive_data(port0,&E0);
4: prf_beg(...);
5: F1(E0,&E1,&E2);
6: F2(E1,&E3,&E4);
7: F3(E2,E4,&E5,&E6);
8: F4(E3,E5,&E7);
9: cnt += prf_end(2,0,5,8);
10: send_data(port1,&E7);
11: prf_beg(...);
12: F5(E6,&E8);
13: cnt += prf_end(2,0,12,12);
14: send_data(port2,&E8);
15: ...

Profiling API functions

Simulink model

F1 F2

F3

F4

Thread 1

E0

E1

E2

E3

E4 E5

E6

E7

E8F5

Processor 2

Comm: prf_beg
 prf_end

Comp: prf_beg
prf_end

Port 2

Port 0

Port 1

Fig. 7 Profiling API functions insertion

Function anl_join is used to complete the
analyzing process before terminating the whole
simulation.

4.3.2 Insertion

Fig. 8 shows how to insert the profiling API
functions into the generated software code stack at
the VA level and TA level, respectively. At the VA
level, API function calls for the performance of com-
putation are inserted into application thread codes
directly, while those calls for the performance of com-
munication are inserted into the abstract communi-

VA-level SW stack

Inserting API call

Comp: prf_beg
prf_end

int T1_main(){
for(;;){

receive_data(port0,&E0);
F5(E0,&E1,&E2);
F7(E1,&E3,&E4);
F9(E2,E4,&E5,&E6);
F11(E3,E5,&E7);
send_data(port1,&E7);
F10(E6,&E8);
send_data(port2,&E8);

}
}

HdS_API

Ex
pl

ic
it

Abstract thread/
abstract channels

A
bs

tr
ac

t

HAL_API

Abstract CPU
(BFM)

main

HdS_API

Multithread
library

Communication
library

Thread T0

Comm:prf_beg
prf_end

Sync: prf_beg
prf_end

OS: prf_beg
prf_end

T1 Tn

TA-level SW stack

Fig. 8 Profiling API functions insertion of software
code stack

cation library, like send_data and receive_data. At
the TA level, the same application thread codes are
reused while some main hardware dependent soft-
ware (HdS) codes are refined for the target plat-
form. Thereby, API function calls for the perfor-
mance of communication are inserted into the real
communication library, and some other API func-
tion calls for the delay cost of synchronization are
also inserted into some event functions in this library,
like sent_event and receive_event. Moreover, some
special API function calls are inserted into the multi-
thread library to calculate OS performance and total
idle time of one processor when no thread is running.

Fig. 7 shows how to insert functions prf_beg
and prf_end from the Simulink CAAM level to the
VA level in more detail. From the viewpoint of the
Simulink CAAM level, prf_beg and prf_end are in-
serted into the starting and ending points of one port
in the Simulink thread model, respectively. From the
viewpoint of the VA model, prf_beg/prf_end has
been inserted at the top/bottom of each communi-
cation or computation block. We take as an example
the computation block that consists of F1, F2, F3,
and F4. At the VA level, a prf_beg has been in-
serted at line 4 right on top of F1 and a prf_end
has been inserted at line 9 right after F4. The CPU
ID is assigned 2 according to the Simulink model,
the message type is assigned 0 which indicates it is
a computation block, and the portion of the codes
to be analyzed is specified from line 5 to line 8. For
the communication block, the API insertion makes
no difference except for the CPU ID that will be
derived from the Simulink structure.

4.3.3 Profiling and analyzing

During the native simulation, the profiling pro-
cess and the analyzing process run on the host

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 143

machine. Fig. 9 shows the runtime analysis phase
controlled by the API function call.

Fig. 9 Runtime analysis phase

After the initialization, the profiling process be-
gins to search down the codes to be analyzed. If
a prf_beg is called, some previous profiling data
are cleaned, and the subsequent codes are profiled
until the corresponding prf_end is called. Obvi-
ously, prf_beg and prf_end always come in pairs.
When prf_end is called, the profiling process sends
messages and the profiling result (files suffixed by
.gcov) to the analyzing process for further analysis.
The profiling process keeps snooping and handling
the function calling for prf_beg and prf_end un-
til anl_join is called, which terminates the whole
simulation.

As for the analyzing process, it is forked when
anl_fork is called. After initialization, it keeps wait-
ing for function calling for prf_end. When prf_end
is called, the analyzing process invokes the pipeline
analyzer to estimate the performance of the codes

to be analyzed, with the profiling result provided by
the profiling process and the disassembled codes pro-
vided by the compilation for analysis materials. The
analyzing process keeps waiting for and handling the
analysis requests until anl_join is called.

4.4 Pipeline analyzer

As mentioned above, the pipeline analyzer is
used to calculate the cycle cost of each assembly in-
struction during the analyzing process. In this sub-
section, we show the functions and the workflow of
the pipeline analyzer in detail. As shown in Fig. 10,
the pipeline analyzer consists of three parts: cover-
age parser, instruction-set lookup-table (ISLT), and
pipeline parser. The coverage parser is employed to
extract the inputs, the ISLT provides the database
for analyzing, and the pipeline parser is employed to
generate the outputs.

4.4.1 Coverage parser

The coverage parser is designed to parse the in-
formation carried by the API function prf_end, such
as the codes to be analyzed and the corresponding
processor model that is executing them, and to ex-
tract the execution statistics of each line of the codes
from the .gcov files. Meanwhile, the corresponding
assembly instructions are extracted from the disas-
sembled codes generated by the target tool chain of
the given processor architecture. If there is no func-
tion call in the current line, the pipeline parser is
called to calculate the performance result. If the
current statement calls another function, the cover-
age parser also parses the .gcov file of this function
for the pipeline parser.

4.4.2 Instruction-set lookup-table

To calculate the accurate cycle cost of each as-
sembly instruction, the ISLT is employed. This is
extracted from the datasheets of all the processor
architectures provided in the design. Three primary
influences are taken into consideration: instruction,
pipeline, and memory latency. For instance, Ta-
ble 1 takes ISLT for the CK803 processor (without
I/D cache). CK803 (C-SKY Microsystems, 2013) is
a low-power, high-performance, and three-pipeline-
stage processor, and some frequently used instruc-
tions in the C-SKY V2 instruction set that is used by
CK803 are listed. For each instruction, its execution

144 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

Instruction-set
lookup-table

Performance
result

Pipeline
recoder

API call
Coverage

parser

Pipeline
parser

T1_main.c.gcov-: 0: Source: T1_main.c
-: 0: Graph: T1_main.gcno
-: 0: Data: T1_main.gcda
-: 0: Runs: 4
-: 0: Programs:1
1: 1: int T1_main(){
function T1_main called 1 returned 100%
blocks executed 100%
4: 2: for(;;){
branch 0 taken 100%
branch 1 taken 0% (fallthrough)
4: 3: receive_data(port0,&E0);
call 0 returned 100%
4: 4: prf_beg(...);
call0 returned 100%
4: 5: F1(E0,&E1,&E2);
call 0 returned 100%
4: 6: F2(E1,&E3,&E4);
call 0 returned 100%
4: 7: F3(E2,E4,&E5,&E6);
call 0 returned 100%
4: 8: F4(E3,E5,&E7);
call 0 returned 100%
4: 9: cnt += prf_end (2,0,5,8);
call 0 returned 100%
4: 10: send_data(port1,&E7);
call 0 returned 100%
...

...
function F1 called 4 returned 100% blocks
executed 100%
4: 4: void F1(int d,int *a,int *b){
4: 5: if(d>0) {
Branch 0 taken 75% (fallthrough)
Branch 1 taken 25%
3: 6: *a = d*d + 32*d - 1;
3: 7: *b = *a*d – 16*d;
-: 8: }else{
1: 9: *a = 16*d + 512;
1: 10: *b = *a*d + 32*d – 1;
-: 11: }
-: 12: }

F1.c.gcov

...
/tmp/work/func1.c:6

*a = d * d + 32*d - 1;
80d4: e4681003 subi r3, r8, 4
80d8: 9360 ld.w r3,(r3,0x0)
80da: e443001f addi r2, r3, 32
80de: e4681003 subi r3, r8, 4
80e2: 9360 ld.w r3,(r3,0x0)
80e4: 7cc8 mult r3, r2
80e6: 5b43 subi r2, r3, 1
80e8: e4681007 addi r3, r8, 8
80ec: 9360 ld.w r3,(r3,0x0)
80ee: b340 st.w r2,(r3,0x0)

/tmp/work/func1.c:7
*b = *a * d – 16*d;
80f0: e4681007 subi r3, r8, 8

...

p2_sw.asm

times 3
processor 2
comp 1
...

Func1.c: line 6

Func1.c: line 6
PC Cycles

80d4 …
80d8 Sil + Ndl +1
80da ...
... ...

...

Type

...

Inst Delay

Si +Nd + 1LD.WLoad/Store

Fig. 10 Workflow of the pipeline analyzer

time consists mainly of instruction fetching, mem-
ory accessing, and executing. For some coprocessor
instructions, additional time may be added.

Table 1 Instruction-set lookup-table of the CK803
processor

Type Instruction Delay

Load/Store

LD.W Si +Nd + 1

ST.W Ni +Nd

LDM Si + Sd + (n− 1)Sd + 1

STM Ni +Nd + (n− 1)Sd

Data processing
ALU Si

MULT Si + 4

MULU Si + 5

Coprocessor INST
MFCR Si + C

MTCR Si + C + 1

The delay of each instruction consists mainly
of three parts, which are instruction prefetch time,
data memory access time, and instruction execution
time. We define N as the number of cycles for a non-
sequential data access of a single memory operation,
and S the number of cycles for a sequential data
access of continuous memory operations. The value
of N may be different from that of S for special
bus and memory access. For example, DRAM may
take more cycles to access an address not related to
the previous address. For further refinement at the
TA level, Si and Ni are defined as the cycle costs of
the instruction memory access, while Sd and Nd are
defined as those of the data memory access. What

is more, the cycles of multiple-load/store instruction,
such as LDM or STM of the CK803 processor, involve
the cost of one non-sequential cycle for the first data
access and n − 1 (n is the total load/store times in
this instruction) sequential cycles for the subsequent
data access.

As for the instruction execution time, some in-
structions may need multi-cycle execution time. For
the multiply instruction (MULT), the execution cy-
cle depends on the input data, and it requires four
cycles to complete in the worst case. Parameter C

is used to represent the cycle cost of the coprocessor
instructions.

4.4.3 Pipeline parser

Given the information extracted from the cov-
erage parser, the pipeline parser calculates the cy-
cle cost of each assembly instruction by searching
the ISLT and referring to a pipeline recorder, which
can record the status of the pipeline and imitate its
behavior.

Provided by the ISLT, the cycle cost of an as-
sembly instruction can be computed according to
formula Tinst = Tdelay + Thazard. Here Thazard rep-
resents the cycle cost of pipeline stall. The pipeline
recorder is employed to recognize a pipeline stall such
as register hazard.

We take the LD.W instruction in Fig. 10 as an
example. The cycle cost is TLD.W = Si +Nd + 1 (no
hazard). However, it is not the final result because

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 145

whether this access is to global memory or local
memory is not established. We assume that a proces-
sor fetches most of the data from its local memory,
and that it uses global memory only for communi-
cation with the other processors, which is common
in heterogeneous MPSoC design. Even though the
delays of memory accesses are not decided, we can
replace them with parameters. In our VA model,
for the computation part, every memory access is to
the local memory, and the delay is defined as Sil,
Nil, Sdl, or Ndl, which adds an ‘l’ to the subscript of
the representation of the memory access delay. As
for the communication part, the send_data and re-
ceive_data functions are both executed by the CPU
that works like a DMA at the VA level. The in-
struction memory accesses are also to the local mem-
ory, while the data memory accesses depend. In the
send_data function, the read_data memory instruc-
tions access only the local memory, whose delay is
defined as Sdl or Ndl, while the write data memory
instructions access only the global memory, whose
delay is defined as Ndg or Sdg, which adds a ‘g’ to
the subscript of the representation of the memory
access delay. As for the receive_data function, all
the data memory accesses are to the global mem-
ory. Therefore, the cycle cost of the LD.W in the
computation part is modified to Sil +Ndl + 1, while
that in the receive_data function will be modified to
Sil +Ndg + 1.

Equipped with the pipeline parser, the delay
of each assembly instruction can be calculated in a
fine-grained way. There are some parameters in the
result, such as Ndg and Sil, which represent some
factors that cannot be decided at the VA level. How-
ever, the result in this form is especially helpful for
design exploration.

5 Environment of use

We have implemented the proposed techniques
in the Simulink-based MPSoC design platform
(Huang et al., 2007; 2009; Han et al., 2009), which
enables systematic and automated MPSoC design
from a high-level algorithm specification using the
Simulink environment and SystemC language. As
shown in Fig. 11, this platform works as a typical
Y-chart system-level design flow, which consists of
application and hardware mapping, performance es-
timation, and performance result feedback (Kienhuis

et al., 1997; Keutzer et al., 2000). The workflow of
this platform is composed of four stages: Simulink
modeling, computation-accurate performance esti-
mation, cycle-approximate performance estimation,
and cycle-accurate performance evaluation.

Annotation-based simulation & analysis

Profiling-based simulation & analysis

Application

Simulink modeling

Simulink application model

Application/architecture mapping

Simulink CAAM

Simulink parsing

Colif CAAM

Virtual architecture HW/SW model

Transaction accurate HW/SW model

Virtual prototype HW/SW model

HW architecture generator Multithread code generator

Hardware architecture

Simulink
modeling

Computation load
annotation

FPGA HW/SW implementation

HW/SW
architecture
exploration

Computation-accurate
performance estimation

Cycle-approximate
performance estimation

Cycle-accurate
performance
verification

Performance
results

Fig. 11 Simulink-based MPSoC HW/SW co-design
framework

In the stage of Simulink modeling, there are
two inputs: hardware architecture and application
model. After application and architecture mapping,
we can obtain a CAAM to specify abstract hardware
and software architecture. The Simulink parser tra-
verses an input Simulink CAAM and generates an
intermediate representation in Colif (Cesário et al.,
2001) for easy data manipulation. The Simulink
parser also resolves the implicit types of Simulink
links with type analysis, and its results are used in
generating thread codes and implementing commu-
nication channels. Based on Colif CAAM, the hard-
ware architecture generator generates multiprocessor
hardware architecture models at three different ab-
straction levels, which are VA, TA, and VP. On the
other hand, the multithread code generator produces
embedded software stacks executing on the gener-
ated multiprocessor architecture models at the three
different abstraction levels.

The next stage is computation-accurate perfor-
mance estimation for early large-scale coarse-grained
architecture exploration aiming at computation re-
finement. The profiling-based technique is used

146 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

in hardware and software co-simulation on the VA
model. Taking advantage of the simulation and anal-
ysis combined method, we can obtain two kinds of re-
sult: a system performance result and a computation
load of different functions. The performance results
of the computation-accurate system can be fed back
to help hardware/software architecture exploration
obtain a better mapping model in the Simulink mod-
eling stage.

The annotation-based technique is used in hard-
ware and software co-simulation on the TA model.
The function-level computation load results are
annotated into the simulation with the communica-
tion model. The output of this performance estima-
tion is cycle-approximate for small-scale fine-grained
architecture exploration aiming at communication
refinement.

The stage of cycle-accurate performance verifi-
cation takes advantage of low-level VP model simu-
lation and FPGA emulation to obtain cycle-accurate
performance evaluation to check if the final perfor-
mance result meets the design constraints.

6 Experiments

6.1 Experimental settings

In the experiments, we have adopted a flexible
MPSoC software and hardware platform with good
scalability and strong configurability. As shown in
Fig. 12, the hardware platform consists of CPU sub-

systems, a memory subsystem, and an interconnec-
tion subsystem. Each CPU subsystem uses a 32-bit
local bus to connect one processor with other lo-
cal components and a memory service access point
(MSAP) (Han et al., 2004) to connect an external 64-
bit AXI (ARM, 2003) bus-based distributed memory
server (DMS) interconnecting network. The memory
subsystem uses a 64-bit local bus to connect an on-
chip global SRAM (GMEM) and an off-chip 16-bit
DDR3 DRAM. The DMS acts as a server that pro-
vides the communication/synchronization services to
the clients, that is, subsystems in an MPSoC. Each
MSAP delivers data transfer requests issued by its
corresponding subsystem to another MSAP via the
control network. It also exchanges synchronization
information, which indicates the completion of re-
quest handling, with other MSAPs via the control
network. This platform has good scalability, capa-
ble of accommodating eight CPU subsystems. Dur-
ing architecture exploration, we can repartition the
application with different thread numbers and also
assign the tasks to different processors taking advan-
tage of a load-balance strategy to achieve better per-
formance. Global FIFO (GFIFO) mechanism is used
for inter-processor communication and those buffers
for thread communication. The platform also pro-
vides configurable HWFIFO for fast data synchro-
nization from a real-time requirement. The software
platform consists of thread codes, CPU main codes,
and the HdS library on target CPU.

CPU 1 PIC LMEM

Mailbox Bus
bridge

AXI bus interconnection

main

T1 T2

CPU n PIC LMEM

MailboxBus
bridge

CPU HdS

HWFIFO

Bus
bridge

GMEM DDR3 CTRL

PHY

DDR3
DRAM

64-bit 64-bit 64-bit

sub tib-23sub tib-23 64-bit bus

CPU 1
subsystem

CPU n
subsystem

MEM
subsystem

16-bit

main

T(n−1) Tn

CPU HdS

Interconnection subsystem

32-bit 32-bit

Fig. 12 MPSoC software and hardware platform template

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 147

We apply the Simulink-based MPSoC design
platform using the proposed techniques in differ-
ent MPSoC architectures with a 10-frame QVGA
Motion-JPEG decoder and a 10-frame CIF MPEG2
video decoder. The Simulink functional model of
Motion-JPEG decoder consists of 7 S-functions, 7
delays, 26 data links, and 4 if-action-subsystems
(IASs). The Simulink functional model of the
MPEG2 video decoder is more complicated with 49
S-functions, 18 delays, 186 data links, 28 IASs, 4
for-iteration subsystems (FISs), and 72 pre-defined
Simulink blocks. Using the Simulink-based design
platform, Simulink functional models are partitioned
into a different number of threads and mapped into
a 2–8-processor MPSoC hardware platform. The
number of threads is scalable using the coarse or
fine-granularity partition strategy on the Simulink
CAAM. Fig. 13 shows an example of a 7-thread M-
JPEG model mapped on a 4-processor MPSoC hard-
ware platform.

Processor 4Processor 3Processor 2Processor 1

VLD ZigZag
scan IDCT_H IDCT_V

DPCM

RLC

IQ

Thread 1 Thread 2

Thread 3

Thread 4

Thread 5 Thread 6 Thread 7

Fig. 13 Example of M-JPEG Simulink CAAM with
mapping information

To efficiently evaluate the proposed method
and its implementation, the architecture exploration
tool in the Simulink-based MPSoC design platform
uses the performance results fed back from different
sources: VA, TA, and VP. As shown in Table 2, ac-
cording to different sources for early or late stage in
architecture exploration, we classify the estimation
scheme into four different sets: TA, VP, TA+VP, and
VA+TA. The first three schemes have been used for
performance estimation and architecture exploration
in previous work on the Simulink-based design plat-
form (Han et al., 2009; Huang et al., 2009). The
last scheme takes advantage of the profiling- and
annotation-based techniques in the Simulink-based
MPSoC design platform as described in Sections 3
and 4. In the experiments, given two decoder appli-
cations, these four schemes are used to estimate per-
formance and explore architecture in the Simulink-
based MPSoC design platform.

Table 2 Estimation scheme at different architecture
exploration stages

Estimation Scheme

scheme Early large-scale Late small-scale
coarse-grained fine-grained

TA TA TA
VA VP VP
TA+VP TA VP
VA+TA VA+Profiling-based TA+Annotation-based

technique technique

6.2 Experimental results

We compare the experimental results of two
key design efficiency factors, speed and accuracy, to
show the feasibility and effectiveness of the proposed
techniques.

6.2.1 Estimation speed

We use the total time of running the simulation
and analysis on the host machine as the estimation
time to evaluate the design speed. The host machine
used in this experiment is four six-core Intel Xeon
X5690 CPUs running at 3.47 GHz. As shown in
Fig. 14a, given 4-processor MPSoC architecture, the
average estimation time for 10-frame M-JPEG de-
coding with different estimation schemes, shows ex-
tremely different speeds. The most time-consuming
scheme is VP, 2656.0 s, almost 177 times slower than
the VA+TA scheme. After using the TA model
for performance estimation in the early exploration
stage, the average estimation time is very much re-
duced to 752.8 s because TA model simulation is
much faster than VP-level simulation. If we use TA
model simulation for both early coarse-grained ex-
ploration and later fine-grained exploration stages,
the time consumed with the TA scheme is further
cut to 103.6 s. Taking advantage of the proposed
techniques, VA model simulation and analysis is used
for the early exploration stage and TA model simula-
tion speed is improved based on the annotation tech-
nique. The average estimation time of the VA+TA
scheme is reduced to 15.2 s. In another experiment
of MPEG2, the experimental results show a simi-
lar reduction ratio comparing the VA+TA scheme
with the other three schemes. Fig. 14b shows the
comparison of estimation time given different pro-
cessor numbers from 2 to 8 in M-JPEG and MPEG2
decoder applications. The estimation time of the
VA+TA scheme is changed less with the increasing

148 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

1e0

1e1

1e3

1e3

1e4

VP TA+VP TA VA+TA

1e0

1e1

1e2

1e3

1e4

1e5

1e6

4 5 6 7 8

VP
TA
TA+VP
VA+TA

E
st

im
at

io
n

tim
e

(s
)

To
ta

l t
im

e
(s

)

To
ta

l t
im

e
(s

)

Estimation scheme

rebmun rossecorp latoTrebmun rossecorp latoT

M-JPEG
MPEG2

1e0

1e1

1e2

1e3

1e4

1e5

2 3 4

VP
TA
TA+VP
VA+TA

0

20

40

60

80

100

2 3 4 5 6 7 8

E
st

im
at

io
n

tim
e

(s
)

Total processor number

M-JPEG
MPEG2

)b()a(

)d()c(

Fig. 14 Experimental results on estimation time: (a) estimation time of four different schemes for 10-frame M-
JPEG and MPEG2 decoding; (b) estimation time of the VA+TA scheme given different numbers of processors
in M-JPEG and MPEG2 decoder applications; (c) total time for four different schemes for MPSoC architecture
exploration given 2, 3, and 4 processors in the M-JPEG decoder application; (d) total time for four different
schemes for MPSoC architecture exploration given 4 to 8 processors in the MPEG2 decoder application

processor number, which indicates good scalability in
estimating the MPSoC platform with different pro-
cessor numbers.

To prove the feasibility of our work in archi-
tecture exploration, we obtain the total time con-
sumption of the whole architecture exploration with
different strategies, such as task mapping, processor
types, and communication mechanisms given an MP-
SoC hardware platform. As shown in Fig. 14c, we
run the automatic architecture exploration based on
performance feedback in 2-, 3-, and 4-processor MP-
SoC hardware platforms. The experimental results
show that the total time of VP is almost 15 833 s
given a 2-processor MPSoC platform while it is in-
creased to 38 527 s given a 4-processor MPSoC. Sim-
ilarly, the other two schemes, TA and TA+VP, show
that the total time is much increased when more pro-
cessors are used. The result of the VA+TA scheme
remains significant and even doubles if the processor
number is increased, because the increasing proces-
sor number enlarges the design space of architecture
exploration.

Another experiment on MPEG2 further shows
the feasibility and efficiency of the VA+TA scheme
with the proposed techniques. As shown in Fig. 14d,
the optional MPSoC hardware platform has 4 to 8

processors because of the greater possibility of being
parallelized in the MPEG2 function model. Accord-
ing to the complexity of the MPEG2 algorithm, the
speed of the VP scheme is very slow, needing 53 h
to explore the architecture given a 4-processor MP-
SoC platform. This is obviously an unacceptably
long time. Moreover, it becomes worse when more
processors are used, up to almost 7 d given an 8-
processor MPSoC platform. We also see that the
speed of the TA scheme is still too slow, about 3.2 h
for an 8-processor MPSoC, which is also not fit to ar-
chitecture exploration if more exploration strategies
are used. However, the experiment of VA+TA shows
a much better result on the total time consumed by
architecture exploration, less than 75 min given a
hardware platform with 4 to 8 processors. Further-
more, compared with the M-JPEG case, it is found
that the total time curve of the VA+TA scheme keeps
a similar changing trend in the MPEG2 experiment,
which means that this scheme works efficiently with
the increasing complexity of the functional model.

6.2.2 Estimation accuracy

Estimation accuracy is another key point in effi-
cient architecture exploration. In this experiment we
use the estimated total number of execution cycles

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 149

0.4

0.6

1 6 11 16 21 26 31 36 41 46 51 56 58

0.8

1.0

1.2

VP
VA+TA
TA

0
1
2
3
4
5
6
7
8
9

10

2T@
2P

3T@
2P

3T@
3P

4T@
3P

4T@
4P

5T@
4P

TA
VA+TA

P
er

fo
rm

an
ce

 e
st

im
at

io
n

er
ro

r
co

m
pa

re
d

w
ith

 V
P

 m
od

el
 (%

)

0
2
4
6
8

10
12
14
16

6 8 10 12 14 16

TA
VA+TA

P
er

fo
rm

an
ce

 e
st

im
at

io
n

er
ro

r
co

m
pa

re
d

w
ith

 V
P

 m
od

el
 (%

)

To
ta

l n
um

be
r o

f c
yc

le
s

 (×
10

)

Early exploration with different thread numbers and different task mapping strategies Second exploration
with different
communication
mechanisms

(b)(a)

(c)

Thread number

Index of exploration

Fig. 15 Experimental results on estimation accuracy: (a) estimation error of TA and VA+TA with different
numbers of processors and threads for the M-JPEG decoder application; (b) estimation error of TA and
VA+TA given a 6-processor platform with 6 to 16 threads for the MPEG2 decoder application; (c) MPEG2
decoder architecture exploration on the 6-processor platform taking advantage of VP, VA+TA, and TA,
respectively

of decoding a 10-frame M-JPEG or MPEG2 stream
as the performance result. The strategy of VP takes
advantage of the cycle-accurate VP model to obtain
exact performance results in a low-level simulation.
Therefore, we consider it as the reference to check
the accuracy error of other strategies. Fig. 15a shows
a comparison of the M-JPEG decoder performance
estimation accuracy error between TA and VA+TA
with different processor or thread numbers. Both
strategies provide an estimation accuracy error of
less than 10%. The strategy of VA+TA gains a bet-
ter accuracy error at 4%–5%, compared with around
9% of the strategy of TA. The error grows a lit-
tle with the increasing processor number because of
the communication contention error caused by more
memory access in parallel during TA simulation. The
estimation error of the computation load of different
processors may worsen the error of communication
contention. In another experiment of MPEG2 decod-
ing (Fig. 15b), the accuracy error is around 4% for
the strategy of VA+TA, while the error of the strat-
egy of TA grows rapidly with the increasing thread
number. The strategy of VA provides almost the
same error even as the application function becomes
more complicated. Furthermore, its error is less sen-
sitive to thread partition and mapping due to the
fact that both dynamic and static factors are consid-
ered during profiling-based simulation and analysis.

However, the strategy of TA uses only trace-based
simulation and is not fit to the situation if thread par-
tition and mapping are changed. As the experimen-
tal results show, the error of 16-thread estimation is
almost twice that of 6-thread estimation, which be-
comes unacceptable if the number of threads keeps
increasing.

The experimental results shown in Fig. 15c
give the estimated performance point of each archi-
tecture during MPEG2 decoder architecture explo-
ration on a 6-processor platform taking advantage
of the strategies VP, TA, and VA+TA, respectively.
The whole exploration process consists of two stages:
the first is to use different partition and mapping
strategies with 6 to 16 threads for early exploration
of computation optimization, and the second is to ex-
plore different communication mechanisms for com-
munication optimization. We see that the process of
the first exploration stage is similar between VP and
VA+TA. There are in total 35 architectures explored
during architecture exploration using the strategy of
VP for performance estimation. This number is in-
creased to 36 using the strategy of VA+TA because
of the performance estimation error. As for the final
architecture of the first exploration stage, VP and
VA+TA obtain the same result as a 12-thread parti-
tion and the same mapping. However, the strategy
of TA provides a quite different process of the first

150 Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151

exploration stage with a total of 49 architectures ex-
plored. Its final architecture of this stage is a 16-
thread partition, far from the result obtained by the
strategy of VP, which indicates that the strategy of
TA cannot be effectively used in architecture explo-
ration. In the second stage of communication opti-
mization, we see that the architecture exploration re-
sult curves of three strategies show a similar change
because the same communication model is used in
these three strategies. After the second exploration
stage, we can obtain the same communication ar-
chitecture using the strategies of VA+TA and VP.
However, even given the similar change in the explo-
ration curve, the strategy of TA still gives a different
communication architecture result with more hard-
ware FIFO channels. Thereby, we can see that the
strategy of VA+TA is able to estimate the architec-
ture accurately while maintaining a fast estimation
speed, which very much improves the efficiency of
architecture exploration.

7 Conclusions

In this paper, we present a profiling and an-
notation combined MPSoC performance estimation
methodology and workflow from the VA level to the
TA level. At the VA level, the accurate computa-
tion cost is obtained and annotated to the TA level.
At the TA level, the communication latency is re-
fined using an annotation based simulation method,
which makes it more efficient for performance esti-
mation. A series of experiments show the feasibility
and efficiency of the proposed profiling and annota-
tion combined performance estimation framework.

In future work, we will extend the performance
estimation flow to the Simulink CAAM level analy-
sis. The computation cost obtained at the VA level,
the communication latency obtained at the TA level,
and the coverage statistics will be analyzed and fed
back to the Simulink model. By using the annotated
Simulink model, the designer can refine the architec-
ture in a more intuitive way.

References

ARM, 2003. AMBA Axi Protocol Specification v1.0.

Benini, L., Bertozzi, D., Bogliolo, A., et al., 2005.
MPARM: exploring the multi-processor SoC design
space with SystemC. J. VLSI Signal Process.
Syst. Signal Image Video Technol., 41(2):169-182.
[doi:10.1007/s11265-005-6648-1]

Cesário, W.O., Nicolescu, G., Gauthier, L., et al., 2001. Co-
lif: a design representation for application-specific mul-
tiprocessor SoCs. IEEE Des. Test Comput., 18(5):8-20.
[doi:10.1109/54.953268]

C-SKY Microsystems, 2013. Ck803 Introduction. Available
from http://www.c-sky.com.

Filho, S.J., Aguiar, A., Marcon, C.A., et al., 2008. High-
level estimation of execution time and energy consump-
tion for fast homogeneous MPSoCs prototyping. 19th
IEEE/IFIP Int. Symp. on Rapid System Prototyping,
p.27-33. [doi:10.1109/RSP.2008.25]

Fummi, F., Martini, S., Perbellini, G., et al., 2004. Na-
tive ISS-SystemC integration for the co-simulation of
multi-processor SoC. Proc. Design, Automation and
Test in Europe Conf. and Exhibition, p.564-569.
[doi:10.1109/DATE.2004.1268905]

Gao, L., Karuri, K., Kraemer, S., et al., 2008. Multipro-
cessor performance estimation using hybrid simulation.
Proc. 45th Annual Design Automation Conf., p.325-
330. [doi:10.1145/1391469.1391552]

Gerin, P., Guerin, X., Pétrot, F., 2008. Efficient implemen-
tation of native software simulation for MPSoC. Proc.
Design, Automation and Test in Europe, p.676-681.
[doi:10.1109/DATE.2008.4484756]

Gerin, P., Hamayun, M.M., Pétrot, F., 2009. Native MPSoC
co-simulation environment for software performance es-
timation. Proc. 7th IEEE/ACM Int. Conf. on Hard-
ware/Software Codesign and System Synthesis, p.403-
412. [doi:10.1145/1629435.1629490]

GNU, 2013. gcov—a Test Coverage Program. Available from
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

Han, S.I., Baghdadi, A., Bonaciu, M., et al., 2004. An
efficient scalable and flexible data transfer architecture
for multiprocessor SoC with massive distributed mem-
ory. Proc. 41st Annual Design Automation Conf.,
p.250-255. [doi:10.1145/996566.996636]

Han, S.I., Chae, S.I., Jarraya, A.A., 2006. Functional
modeling techniques for efficient SW code genera-
tion of video codec applications. Proc. Asia and
South Pacific Design Automation Conf., p.935-940.
[doi:10.1109/ASPDAC.2006.1594806]

Han, S.I., Chae, S.I., Brisolara, L., et al., 2009. Simulink-
based heterogeneous multiprocessor SoC design flow
for mixed hardware/software refinement and simula-
tion. Integr. VLSI J., 42(2):227-245. [doi:10.1016/j.
vlsi.2008.08.003]

Henia, R., Hamann, A., Jersak, M., et al., 2005. System level
performance analysis—the SymTA/S approach. IEE
Proc.-Comput. Dig. Tech., 152(2):148-166. [doi:10.
1049/ip-cdt:20045088]

Huang, K., Han, S.I., Popovici, K., et al., 2007. Simulink-
based MPSoC design flow: case study of Motion-JPEG
and H.264. Proc. 44th Annual Conf. on Design
Automation, p.39-42. [doi:10.1145/1278480.1278491]

Huang, K., Yan, X.L., Han, S.I., et al., 2009. Grad-
ual refinement for application-specific MPSoC design
from Simulink model to RTL implementation. J.
Zhejiang Univ.-Sci. A, 10(2):151-164. [doi:10.1631/
jzus.A0820085]

Huang, K., Haid, W., Bacivarov, I., et al., 2012. Em-
bedding formal performance analysis into the design
cycle of MPSoCs for real-time streaming applications.

http://dx.doi.org/10.1007/s11265-005-6648-1
http://dx.doi.org/10.1109/54.953268
http://dx.doi.org/10.1109/RSP.2008.25
http://dx.doi.org/10.1109/DATE.2004.1268905
http://dx.doi.org/10.1145/1391469.1391552
http://dx.doi.org/10.1109/DATE.2008.4484756
http://dx.doi.org/10.1145/1629435.1629490
http://dx.doi.org/10.1145/996566.996636
http://dx.doi.org/10.1109/ASPDAC.2006.1594806
http://dx.doi.org/10.1016/j.vlsi.2008.08.003
http://dx.doi.org/10.1016/j.vlsi.2008.08.003
http://dx.doi.org/10.1049/ip-cdt:20045088
http://dx.doi.org/10.1049/ip-cdt:20045088
http://dx.doi.org/10.1145/1278480.1278491
http://dx.doi.org/10.1631/jzus.A0820085
http://dx.doi.org/10.1631/jzus.A0820085

Huang et al. / Front Inform Technol Electron Eng 2015 16(2):135-151 151

ACM Trans. Embed. Comput. Syst., 11(1), Article 8.
[doi:10.1145/2146417.2146425]

Jerraya, A., Wolf, W., 2004. Multiprocessor Systems-on-
Chips. Elsevier.

Jerraya, A.A., Bouchhima, A., Petrot, F., 2006. Program-
ming models and HW-SW interfaces abstraction for
multi-processor SoC. 43rd ACM/IEEE Design Automa-
tion Conf., p.280-285. [doi:10.1109/DAC.2006.229246]

Karuri, K., Al Faruque, M.A., Kraemer, S., et al., 2005.
Fine-grained application source code profiling for ASIP
design. Proc. 42nd Design Automation Conf., p.329-
334. [doi:10.1109/DAC.2005.193827]

Keutzer, K., Newton, A.R., Rabaey, J.M., et al., 2000.
System-level design: orthogonalization of concerns and
platform-based design. IEEE Trans. Comput.-Aided
Des. Integr. Circ. Syst., 19(12):1523-1543. [doi:10.
1109/43.898830]

Kienhuis, B., Deprettere, E., Vissers, K., et al., 1997. An ap-
proach for quantitative analysis of application-specific
dataflow architectures. Proc. IEEE Int. Conf. on
Application-Specific Systems, Architectures and Pro-
cessors, p.338-349. [doi:10.1109/ASAP.1997.606839]

Kirchsteiger, C.M., Schweitzer, H., Trummer, C., et al.,
2008. A software performance simulation methodol-
ogy for rapid system architecture exploration. 15th
IEEE Int. Conf. on Electronics, Circuits and Systems,
p.494-497. [doi:10.1109/ICECS.2008.4674898]

Madl, G., Dutt, N., Abdelwahed, S., 2007. Performance
estimation of distributed real-time embedded systems
by discrete event simulations. Proc. 7th ACM &
IEEE Int. Conf. on Embedded Software, p.183-192.
[doi:10.1145/1289927.1289958]

Oyamada, M., Wagner, F.R., Bonaciu, M., et al., 2007. Soft-
ware performance estimation in MPSoC design. Proc.
Asia and South Pacific Design Automation Conf., p.38-
43. [doi:10.1109/ASPDAC.2007.357789]

Oyamada, M., Zschornack, F., Wagner, F., 2008. Applying
neural networks to performance estimation of embedded
software. J. Syst. Archit., 54(1-2):224-240. [doi:10.
1016/j.sysarc.2007.06.005]

Patel, R., Rajawat, A., 2011. A survey of embedded software
profiling methodologies. Int. J. Embed. Syst. Appl.,
1(2):19-40. [doi:10.5121/ijesa.2011.1203]

Piscitelli, R., Pimentel, A.D., 2012. Interleaving methods for
hybrid system-level MPSoC design space exploration.
Int. Conf. on Embedded Computer Systems, p.7-14.
[doi:10.1109/SAMOS.2012.6404152]

Posadas, H., Herrera, F., Sanchez, P., et al., 2004. System-
level performance analysis in SystemC. Proc. Design,
Automation and Test in Europe Conf. and Exhibition,
1:378-383. [doi:10.1109/DATE.2004.1268876]

Richter, K., Jersak, M., Ernst, R., 2003. A formal ap-
proach to MPSoC performance verification. Computer,
36(4):60-67. [doi:10.1109/MC.2003.1193230]

Schnerr, J., Bringmann, O., Viehl, A., et al., 2008. High-
performance timing simulation of embedded software.
Proc. 45th Annual Design Automation Conf., p.290-
295. [doi:10.1145/1391469.1391543]

Shen, H., Hamayun, M., Petrot, F., 2012. Native simula-
tion of MPSoC using hardware-assisted virtualization.
IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst.,
31(7):1074-1087. [doi:10.1109/TCAD.2012.2187526]

Wandeler, E., Thiele, L., Verhoef, M., et al., 2006. System ar-
chitecture evaluation using modular performance anal-
ysis: a case study. Int. J. Softw. Tools Technol. Trans-
fer, 8(6):649-667. [doi:10.1007/s10009-006-0019-5]

Wilhelm, R., Engblom, J., Ermedahl, A., et al., 2008. The
worst-case execution-time problem—overview of meth-
ods and survey of tools. ACM Trans. Embed. Comput.
Syst., 7(3):36. [doi:10.1145/1347375.1347389]

Yang, H., Kim, S., Ha, S., 2010. An MILP-based per-
formance analysis technique for non-preemptive mul-
titasking MPSoC. IEEE Trans. Comput.-Aided Des.
Integr. Circ. Syst., 29(10):1600-1613. [doi:10.1109/
TCAD.2010.2061552]

http://dx.doi.org/10.1145/2146417.2146425
http://dx.doi.org/10.1109/DAC.2006.229246
http://dx.doi.org/10.1109/DAC.2005.193827
http://dx.doi.org/10.1109/43.898830
http://dx.doi.org/10.1109/43.898830
http://dx.doi.org/10.1109/ASAP.1997.606839
http://dx.doi.org/10.1109/ICECS.2008.4674898
http://dx.doi.org/10.1145/1289927.1289958
http://dx.doi.org/10.1109/ASPDAC.2007.357789
http://dx.doi.org/10.1016/j.sysarc.2007.06.005
http://dx.doi.org/10.1016/j.sysarc.2007.06.005
http://dx.doi.org/10.5121/ijesa.2011.1203
http://dx.doi.org/10.1109/SAMOS.2012.6404152
http://dx.doi.org/10.1109/DATE.2004.1268876
http://dx.doi.org/10.1109/MC.2003.1193230
http://dx.doi.org/10.1145/1391469.1391543
http://dx.doi.org/10.1109/TCAD.2012.2187526
http://dx.doi.org/10.1007/s10009-006-0019-5
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/TCAD.2010.2061552
http://dx.doi.org/10.1109/TCAD.2010.2061552

	Introduction
	Related work
	Annotation based method at the transaction accurate level
	Profiling based method at the virtual architecture level
	Workflow
	Gcov
	Profiling API functions
	Definition
	Insertion
	Profiling and analyzing

	Pipeline analyzer
	Coverage parser
	Instruction-set lookup-table
	Pipeline parser

	Environment of use
	Experiments
	Experimental settings
	Experimental results
	Estimation speed
	Estimation accuracy

	Conclusions

