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Abstract: Building and using maps is a fundamental issue for bionic robots in field applications. A dense
surface map, which offers rich visual and geometric information, is an ideal representation of the environment for
indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use
only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a
method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images.
The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its
corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1)
edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud
separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is
estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that
our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped
objects.
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1 Introduction

Building and using maps is a fundamental issue
for bionic robots in field applications like military
surveillance, disaster relief, and urban reconstruc-
tion, where the maps are expected to carry detailed
information. The map should not only show general
environment shape, but also provide detailed context
of the surface, which is important for navigating au-
tonomously and implementing semantic tasks, such
as object recognition and scene understanding. Most
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bionic robots use the configuration of a rotating 2D
laser scanner and RGB cameras to observe the en-
vironment. However, such a configuration can only
lead to a relatively sparse map, i.e., a semi-dense
point cloud. A sparse map contains very limited in-
formation which reflects only the general shape of
the environment. Using this kind of map, a bionic
robot can hardly localize itself or read subtle cues in
the environment. Therefore, it is necessary to find a
way to build a detailed map from a semi-dense point
cloud and its corresponding RGB images.

In the past decade, researchers in the field of
robotic mapping often used laser scanners with a
pan-tilt platform to collect 3D data (Cole and New-
man, 2006; Maurelli et al., 2009). The point cloud
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obtained is said to be semi-dense because the an-
gular step between two consecutive laser scan lines
is often more than 1◦ and the laser scan range can
be up to dozens of meters. In comparison, a point
cloud collected by RGB-D cameras like Microsoft
Kinect is said to be dense because the angular step
between two neighboring pixels is only about 0.1◦

and the camera measurement range is just several
meters. KinectFusion (Newcombe et al., 2011) and
Kintinuous (Whelan et al., 2012) are good solutions
for these RGB-D cameras to align and fuse dense
data. But for large scenes, it is necessary to find
a way to build a dense map using ordinary laser
scanners and RGB cameras. The reason is two-fold:
first, using Kintinuous with dense devices in large
scenes is tedious because data should be collected
up close in every corner of the environment; second,
it is impossible to use the combination of Kinect-
Fusion/Kintinuous with semi-dense devices because
KinectFusion/Kintinuous uses dense voxels to sta-
tistically find the average surface and it does not
support semi-dense data.

Although there are long range 3D lidars like
Velodyne HDL-64E (Velodyne, USA) that can ob-
tain a dense point cloud, they are either too expen-
sive or of too narrow a field of view in some direction.

In this paper, we propose an incremental
method to generate a dense surface model from a
semi-dense point cloud. The method first generates
a dense surface mesh for every single scan which
consists of a 3D point cloud and its corresponding
image(s) by doing edge-aware resampling and trian-
gulating the surface points. Then we incrementally
fuse the dense surface mesh of a new scan into the
whole map by estimating an optimal surface for the
overlapping surface mesh to avoid non-coincidence of
different scans. Figs. 1a and 1b are the semi-dense
point cloud obtained by our self-made laser-camera
system and the dense point cloud generated with
our method, respectively. Fig. 1c shows the gener-
ated dense surface map represented by a textured
triangular mesh. We choose triangular mesh as the
representation of the surface because it has low cost
in storage and it is easy to access the neighboring
vertices and triangular faces. In addition, it is easy
to attach the detailed texture information from an
image on the surface.

The main contribution of this work is that a
method is proposed to fuse a semi-dense point cloud

(a)

(b)

(c)

Fig. 1 Examples of semi-dense models and dense
models: (a) colored point cloud gathered by a 2D
laser scanner, which is semi-dense; (b) dense colored
point cloud generated from (a) by our method; (c)
triangular surface mesh generated by our method,
where texture is mapped

and RGB images and generate a dense surface map,
so that a bionic robot can use small light-weight 2D
laser scanners and RGB cameras to build and to use
a dense textured map.

1. A segmentation-based resampling method is
presented. To denoise the data and resample the sur-
face, the point cloud is first segmented into compo-
nents and then every regularly shaped component is
resampled individually. In segmentation, four rules
on smoothness, distance, reflectivity, and color re-
spectively are tested to insure that every segmented
component is regular in shape.

2. A probabilistic vertex relocation method is
proposed for mesh fusion. After aligning two mesh
frames into the same coordinate, vertices on the sub-
stantial surface are generated to replace the old ones
by probabilistically averaging two observations on
the same local surface around each vertex. The pro-
posed method integrated with the re-triangulation
operation ensures that the fusion result is consistent
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in both geometry and data structure.
In addition, we give a triangulation method on

organized point cloud data, which uses a mask on
the data and then deletes unqualified triangles, and
a re-triangulation method by detecting overlapping
border vertices.

2 Related work

There are some practical instances where rotat-
ing 1D/2D laser scanners are used to generate a 3D
point cloud. Schadler et al. (2014) used a continu-
ously rotating 2D laser scanner to realize mapping
and navigation in rough terrain. Wulf and Wag-
ner (2003) introduced a 3D scanning system with
laser time-of-flight measurement devices and some
methods for fast scanning. Básaca-Preciado et al.
(2014) used their 3D laser scanning technical vision
system, which is also based on a rotating laser scan-
ner, to navigate autonomous mobile robots. Lopez
et al. (2010) introduced the design of an optical
scanner-based geodetic device for structural health
monitoring. These works focus mainly on acquir-
ing a 3D point cloud map which is mostly semi-
dense, while the proposed method focuses mainly
on building a dense surface model from this kind
of semi-dense point cloud generated by 2D laser
scanners.

In the field of robotics, building a dense map
incrementally in a frame-by-frame mode is more the
concern than operating in a post-processing mode.
KinectFusion (Newcombe et al., 2011) is a famous
system that incrementally builds a dense map in
small-scale scenes from a dense point cloud. Its ex-
tension, Kintinuous (Whelan et al., 2012), has been
proved effective in larger scenes. For mesh fusion, Lin
et al. (2008) introduced a mesh composition method
and Lou et al. (2010) proposed a triangular mesh
merging method. These works focus mainly on graft-
ing one specific shape onto another. The most re-
lated forerunner in this field is the work of Marton
et al. (2009), which proposed a triangulation method
that incrementally adds input points to the triangu-
lar mesh. It is time efficient and a good option for
robotic applications.

In the field of graphics, researchers focus more
on how to construct the surface model given a com-
pleted point cloud. Various triangulation methods
have been introduced, either for organized point

cloud data (Crossno and Angel, 1999; Holz and
Behnke, 2013) or for unorganized data (Bajaj et al.,
1997; Wang et al., 2007). For unorganized data, the
Crust family (Amenta and Bern, 1999; Amenta et al.,
2001) and Cocone family (Dey et al., 2001; 2011) of
algorithms were proposed. In these methods, point
data gathered at different positions are integrated
in a set, on which triangulation is implemented by
batch. These methods are widely used and have good
performance.

3 Segmentation-based resampling

To generate a dense surface mesh for every single
scan of point cloud and its corresponding image(s),
edge-aware resampling is executed first to denoise
the data and then the resampled point cloud is tri-
angulated into a triangular surface mesh. We select
triangular mesh as the representation of the surface
because it has low cost in storage and it is easy to
access the neighboring vertices and triangular faces.
In addition, it is easy to attach the detailed texture
information from an image on the surface. However,
one can also choose to generate a dense point cloud
as the RGB-D camera output.

3.1 Edge-aware resampling

Noise in the measured point cloud is inevitable.
Fusing surfaces of multiple scans could reduce the
error to some extent but it may fail when the noise
in the measurement is too large. Thus, resampling
the data is essential for every scan of a point cloud.

Moving least squares (MLS) is a popular surface
fitting method (Rusu et al., 2008; Huang et al., 2013).
Benefitting from the idea of estimating the surface
shape in a piecewise way, MLS works well in denois-
ing the data. However, this piecewise idea makes it
easy to lose some true corners and edges, which will
heavily influence the result of triangulation and fu-
sion. To prevent this, we segment the point cloud
data into components before using MLS. Some of
the components may each represent a smooth sur-
face patch, and they are resampled separately by
MLS. With the proposed method, sharp corners and
edges are well preserved and the result model can be
more accurate. Compared with methods that detect
and protect features like corners and edges before
resampling outside the protected area (Dey et al.,
2012; Dey and Wang, 2013), our method first finds
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the patches that are regular enough to be resampled,
and then resamples them separately. In some clut-
tered areas like tree areas, the data arrangement is
out of order. It is impossible to resample or inter-
polate the data, and there is no need to do so. Our
method picks out patches that can be resampled and
resamples them separately, leaving the features and
the cluttered areas unchanged.

For segmenting the point cloud into compo-
nents, region growing is a common algorithm. It re-
cursively searches the neighborhood for new points
which belong to the same region. In each region,
points as a whole represent a smooth surface patch.
The main effort is to define criteria to evaluate
whether a new neighbor point belongs to the same
surface patch. We have designed the following four
rules. Once a new neighboring point, Pi, is found
around a member point, Pj , it will be rejected if any
of the four rules fails.

1. Smoothness
Neighboring points in a component should be

smoothly connected. Otherwise, they might belong
to different components. As mentioned above, re-
sampling on a surface patch that contains points ac-
tually belonging to other surface patches will weaken
the boundary between patches. Thus, this criterion
is the most important. Denote ni and nj the unit
normals at Pi and Pj , respectively, vij the vector
from Pi to Pj , and dij the distance between Pi and
Pj . The local surface connecting Pi and Pj is consid-
ered smooth if and only if the following three equa-
tions are all satisfied:

2

dij
sin

(
arccos |nT

i nj |
2

)
< Cth, (1)

arccos

( |nT
i vij |
dij

)
< θth, (2)

arccos

(
|nT

j vij |
dij

)
< θth. (3)

Condition (1) limits the local curvature lower
than a threshold Cth, while (2) and (3) ensure that
the two sample points locate in the same local plane,
by constraining the angles between each normal and
line segment ij. θth is the threshold for angle.

2. Distance
It is possible that a true gap exists between

two neighboring points, especially when the data are
sparse. The farther the distance between the two
points, the higher the possibility. Thus, the distance

between two sample points, dij , should be small, to
ensure that the two sample points are indeed in the
same surface patch. Considering the fact that the
distance between two neighboring points is propor-
tional to the measure distance of the laser scanner,
points farther away from the sensor should be per-
mitted to have a larger distance. Thus, this criterion
is described as

dij
di + dj

< α, (4)

where di and dj are the distances from the sensor to
Pi and Pj , respectively, and α is the threshold for
point distance.

3. Reflectivity
Significant difference in reflectivity indicates dif-

ferent materials. Although they might well be con-
nected in geometry, separating them up reserves
more context for further semantic use, and it also
supports using different resampling parameters for
surface patches of different materials. Denoting the
laser reflectivity values at Pi and Pj as ri and rj
respectively, the criterion is

|ri − rj | < β, (5)

where β is the threshold for reflectivity.
4. Color
The criterion on color is used if and only if more

semantic context is needed. In this case, the colors of
the two points ci and cj in the CIELAB color space
are compared, with the threshold γ, i.e.,

|ci − cj | < γ. (6)

After the above verifications, points are seg-
mented into many components. The member points
of each component share similar surface properties,
and thus the re-prediction of each point’s location
through its neighbors is more reliable. The second-
order MLS is executed for each component, avoiding
the influence of other components near the boundary.

It is worth mentioning that if the input point
cloud is organized, the region-growing based segmen-
tation can be implemented in a more efficient way.
The organized point cloud forms an undirected graph
which takes each pixel in the ‘image’ as a vertex
and constructs an edge between every two adjacent
pixels. A graph-based region-growing scheme pro-
posed by Felzenszwalb and Huttenlocher (2004) can
be used in tandem with the four rules defined above.
An edge connecting two adjacent points Pi and Pj
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in the ‘image’ would be deleted if any of the rules
fails.

3.2 Triangulation

Since in many cases, each scan of a point cloud
is gathered at a fixed location, the resampled points
can be organized easily. Thus, we provide a method
to triangulate these organized data. Owing to the
ordered feature of the data, neighbors of a point
can be determined directly as well as the triangu-
lation. Unlike the methods in Gopi and Krishnan
(2002) and Marton et al. (2009), which operate in a
local neighborhood and gradually extend the trian-
gulation boundary, our method directly uses a tri-
angulation mask on the organized data and then
deletes unqualified triangles (also called ‘faces’ in this
paper).

Since the point cloud data gathered by the
laser scanners are in spherical coordinates, a trian-
gular face can be generated only from three adjacent
points. This means, for a vertex of a triangular face
of the surface, denoted as P , the other two vertices
of this triangular face are sure to be located in the
neighborhood of P . Thus, a mask shown in Fig. 2
can offer candidates of triangular faces. Each rectan-
gle in the grid is split into two triangles by either of
its diagonals, NW-SE (northwest-southeast) or NE-
SW (northeast-southwest), and the diagonal which
produces the best triangle will be adopted. Knowing
the four vertices of a rectangle, PA, PB, PC , PD,
and their normals, nA, nB, nC , nD, the weight of
a diagonal (here take AC as an example) is specified
by

wAC =

max
{ (nB + nA + nC)

T[(PA − PB)× (PC − PB)]

‖(PA − PB)× (PC − PB)‖2 ,

(nD + nA + nC)
T[(PA − PD)× (PC − PD)]

‖(PA − PD)× (PC − PD)‖2
}
.

(7)
Here the maximization operator is used, which en-
sures that the selected diagonal can generate the best
triangle. Although a poor triangle may be generated
simultaneously by the selected diagonal, there is a
high possibility that the poor triangle does not ex-
ist. This is why we adopt the maximization operator
rather than the average.

Because we use a full mask to generate the faces,
some faces may be false, e.g., the face that contains

Fig. 2 Triangulation mask

the edge connecting foreground and background, and
some faces may be very uncertain, e.g., the face with
a normal direction that is nearly perpendicular to
the sight line (laser beam). To filter out those false
or uncertain faces, the following criterion is defined:
the angle between the face normal and the sight line
(laser beam) should be less than a threshold θth:

max

(
arccos

(nΔijk
·P

‖P ‖2
))

< θth, P ∈ {Pi,Pj ,Pk}.
(8)

Here Δijk denotes the triangular face formed by ver-
tices Pi, Pj , Pk, and nΔijk

denotes its unit normal.
The sensor locates at the origin.

Actually, Pi, Pj , Pk can be substituted by their
range values ri, rj , rk, respectively, and a simpler
criterion can be used:

max(r) −min(r)

min(r)
< dth, r ∈ {ri, rj , rk}, (9)

where dth is the threshold. Faces that are rejected
by this criterion are all deleted. Then camera image
fragments are pasted onto the remaining faces.

4 Probabilistic vertex relocation

As the core of this paper, this section describes
how the dense surfaces of multiple scans are fused
together. The goal of fusion is to construct a sur-
face model that is consistent not only in geometry
but also in data structure. The word ‘fusion’ in
this section does not include the alignment of tri-
angular meshes, but refers to fusing the denoised
and aligned triangular mesh only. We use scan-
matching and SLAM (simultaneous localization and
mapping) to align the surface meshes in advance.
However, no matter how well the pose estimation
performs, errors always exist, which means there are
non-coincidences, i.e., gaps and intersections, among
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multiple overlapping surfaces. If the vertices of the
overlapped region are re-triangulated directly after
pose alignment, the resultant surface mesh would be
very rough. To solve this problem, our solution is
to relocate the vertices of the overlapped region onto
a new ‘average’ surface, and then to re-triangulate
these relocated vertices.

Since point cloud data are often obtained one
scan at a time, our fusion works in an incremental
way. Once a new scan is available, it is fused into
the previous constructed map. Thus, the problem is
equivalent to fusing two meshes. One is the surface
mesh that has been constructed from the beginning
up to the current time. The other is the newest
one. First, we relocate the vertices of both frames
according to each vertex’s corresponding faces in the
two frames and their uncertainty. Second, the relo-
cated vertices are relinked to form a whole consistent
mesh. The first step glues different layers of surface
together by generating vertices on the substantial
surface, while the second integrates two meshes into
one. After that, image fragments with higher resolu-
tion are reserved and tailored for new faces.

4.1 Vertex relocation

The vertex of a triangular face is actually a sam-
ple point on the real surface. Therefore, all the neigh-
boring faces of a vertex in one frame can be viewed as
an observation of this vertex’s local surface. Mean-
while, faces from another frame, which locate near
this vertex after alignment, act as another observa-
tion of the local surface. Due to the inevitable errors,
the two observations do not coincide. To relocate a
vertex, our idea is to fuse the two observations by
taking into account all the neighboring faces in the
frame that the vertex belongs to and the nearest face
in the other frame. A constraint on the nearest face
in the other frame is that the difference between the
normal of the discussed vertex and that of the near-
est face in the other frame should be smaller than
a threshold. In the fusion process, the uncertainty
of each face is used as its weight. A face with lower
uncertainty plays a more important role in deter-
mining the new location, while a face with higher
uncertainty plays a lesser role. Obviously, taking the
uncertainty into account can ensure the certainty of
the fusion result. Overall, the uncertainty of a vertex
can be reduced by relocation.

In the following part of this subsection, the cal-

culation of the vertices’ new locations is introduced.
First, given the neighboring vertices/faces of a vertex
and the uncertainties of these faces, how a vertex’s
new location is calculated is introduced. Then the
calculation of the uncertainties of these faces is dis-
cussed in detail.

Let TM1 be one triangular mesh frame and
TM2 the other frame. Assume the two meshes
have been transformed into the same coordinate
via scan-matching techniques. Denote the ver-
tex that is needed to be relocated in TM1 by S,
and its n neighbors by P1,P2, . . . ,Pn. S and
each two of its adjacent neighbors form a triangu-
lar face. The n triangular faces are denoted by
ΔP1SP2 ,ΔP2SP3 , . . . ,ΔPnSP1 . Note that S must lo-
cate in the overlapping area of TM1 and TM2. De-
note S’s nearest triangular face in TM2 by ΔQ1Q2Q3 ,
where Q1, Q2, and Q3 are its vertices. ΔQ1Q2Q3 can
be determined by finding S’s nearest vertex from the
kd-tree. Then we pick out the nearest face that the
vertex belongs to. An example is shown in Fig. 3.

If there are n (n ≥ 3) non-coplanar faces
in the neighborhood of S, e.g., ΔP1SP2 , ΔP2SP3 ,
ΔP3SP4 , . . ., and a nearest face can be found in TM2,
the new location of S, denoted as Snew, can be de-
termined by

Snew = argmin
X

(
1

n

( |(X − S)TnP1SP2 |2
σ2
P1SP2

+
|(X − S)TnP2SP3 |2

σ2
P2SP3

+
|(X − S)TnP3SP4 |2

σ2
P3SP4

+ · · ·
)

+
|(X −Q1)

TnQ1Q2Q3 |2
σ2
Q1Q2Q3

)
,

(10)

P1

P6

S
P2

Q2

P3

Q3

P4

P5

Q1

Fig. 3 An example of vertex relocation. For vertex
S,P1,P2,P3,P4,P5, and P6 are its neighbors in TM1,
while ΔQ1Q2Q3 is its nearest triangular face in TM2

and Q1,Q2,Q3 are the three vertices



600 Li et al. / Front Inform Technol Electron Eng 2015 16(7):594-606

where nP1SP2 ,nP2SP3 ,nP3SP4 , . . . and nQ1Q2Q3 are
the unit normals of corresponding triangular faces,
and σ2

P1SP2
, σ2

P2SP3
, σ2

P3SP4
, . . . and σ2

Q1Q2Q3
are the

variances (the details will be described later in this
section). 1/n means the influence of the faces from
TM1 is averaged, because it should be the two ob-
servations but not all the faces that play the same
important role in calculating the new location.

Problem (10) can be solved in weighted least
square form:

Snew = (ATW 2A)−1ATW 2b, (11)

where W is the weight matrix, i.e.,

W = diag

(
σP1SP2√

n
,
σP2SP3√

n
,
σP3SP4√

n
, . . . , σQ1Q2Q3

)
,

(12)
and

A = (nP1SP2 nP2SP3 nP3SP4 . . . nQ1Q2Q3)
T, (13)

b =

⎡
⎢⎢⎢⎢⎢⎢⎣

PT
S nP1SP2

PT
S nP2SP3

PT
S nP3SP4

...
QT

1 nQ1Q2Q3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (14)

The covariance of the solution Snew can be computed
by

ΣSnew =

(ATW 2A)−1ATWTWΣbW
TWA(ATW 2A)−1.

(15)
If a nearest face of S can be found in TM2, but

there are fewer than three non-coplanar faces in the
neighborhood of S, new constrains should be added.
In the case of two non-coplanar faces intersecting at
a line l, the new location is constrained to be the
projection of S on l. In the case of only one face in
the neighborhood, the new location is constrained to
be the projection of S on the target plane.

If a nearest face of S cannot be found in TM2

(the distance exceeds a certain value), nothing needs
to be done because all the faces come from the same
observation and the data have already been resam-
pled (smoothed).

So far, the idea of vertex relocation has been
presented, and the only question left is how to de-
termine the variance σ2

P1SP2
, σ2

P2SP3
, σ2

P3SP4
, . . . and

σ2
Q1Q2Q3

in Eq. (10), by which the observation un-
certainties take effect. Since these variances indicate

the uncertainty of point-plane distance, they can be
quantized by investigating the uncertainty propaga-
tion process.

When a point P is sampled by a general 3D laser
scanner, three values about its location are obtained,
including range r, vertical angle of observation φ, and
horizontal angle of observation θ. The variances of
the three values are σ2

r (r), σ2
φ, and σ2

θ , respectively.
σ2
r(r) is a function of range r. σ2

φ and σ2
θ indicate the

angular accuracy. Then the point P can be expressed
in local Cartesian coordinates by

LP =

⎡
⎣ r cosφ cos θ

r cosφ sin θ

r sinφ

⎤
⎦ , (16)

with the covariance matrix

Σ
LP = JP2C

⎡
⎣ σ2

r(r)

σ2
φ

σ2
θ

⎤
⎦JT

P2C, (17)

where JP2C is the Jacobian matrix of the Polar-
Cartesian transformation.

On the other hand, the uncertainty of device
pose is added to that of sample points. Given the 6D
pose of the device

Posd = ( xd yd zd αd βd γd )T, (18)

with its covariance matrix ΣPosd , the global position
of point P can be computed by

P = f(Posd, LP ) =

⎡
⎣xd

yd
zd

⎤
⎦+

⎡
⎣R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦ LP ,

(19)
where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R11 = cos γd cosβd,

R12 = cos γd sinβd sinαd − sin γd cosαd,

R13 = cos γd sinβd sinαd + sin γd sinαd,

R21 = sin γd cosβd,

R22 = sin γd sinβd sinαd + cos γd cosαd,

R23 = sin γd sinβd cosαd − cos γd sinαd,

R31 = − sinβd,

R32 = cosβd sinαd,

R33 = cosβd cosαd.

(20)

For any of the faces in Fig. 3, e.g., ΔP1SP2 , the
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distance between Snew and the plane is derived by

dSnew−P1SP2 = (Snew − S)TnP1SP2

= (Snew − S)T
NP1SP2

‖NP1SP2‖2
= (Snew − S)T

(P1 − S)× (P2 − S)

‖(P1 − S)× (P2 − S)‖2 .
(21)

Let
P1 = (xP1 yP1 zP1)

T, (22)

P2 = (xP2 yP2 zP2)
T, (23)

S = (xS yS zS)
T, (24)

Snew = (x y z)T. (25)

Eq. (21) can be rewritten as

dSnew−P1SP2 =

⎡
⎢⎣

x−xS

y−yS
z−zS

⎤
⎥⎦

T

·

⎡
⎢⎣

(yp1−yS)(zp2−zS)−(zp1−zS)(yp2−yS)

(zp1−zS)(xp2−xS)−(xp1−xS)(zp2−zS)

(xp1−xS)(yp2−yS)−(yp1−yS)(xp2−xS)

⎤
⎥⎦

·

∥∥∥∥∥∥∥

(yp1 − yS)(zp2 − zS)− (zp1 − zS)(yp2 − yS)

(zp1 − zS)(xp2 − xS)− (xp1 − xS)(zp2 − zS)

(xp1 − xS)(yp2 − yS)− (yp1 − yS)(xp2 − xS)

∥∥∥∥∥∥∥

−1

2

.

(26)

By denoting Jd as the Jacobian matrix of
dSnew−P1SP2 with respect to xP1 , yP1 , zP1 , xP2 , yP2 ,
zP2 , xS , yS, and zS, the variance of dSnew−P1SP2 can
be derived as

σd2
Snew−P1SP2

= JdΣP1,S,P2J
T
d , (27)

where ΣP1,S,P2 is the covariance matrix of the three
points P1, S, and P2. According to Eq. (19), we can
denote the vector of the combination of P1, S, and
P2 as ⎡

⎣ P1

S

P2

⎤
⎦ = f(Posd, LP1, LS, LP2), (28)

where LP1, LS, and LP2 represent the locations of
P1, S, and P2 in the local coordinates of the mesh
frame they belong to, respectively. The covariance
matrix ΣP1,P2,S in Eq. (27) is calculated by

ΣP1,S,P2 = Jf

⎡
⎢⎢⎣

ΣPosd

Σ
LP1

ΣLS

Σ
LP2

⎤
⎥⎥⎦JT

f ,

(29)

where Jf is the Jacobian of f(Posd, LP1, LS, LP2)

in Eq. (28), and ΣPosd , ΣLP1 , ΣLS, and Σ
LP2 are co-

variance matrices which can be calculated according
to Eq. (17).

4.2 Re-triangulation

After all the vertices in the overlapping part are
relocated onto a new consistent surface, the only op-
eration left is to relink them. The method of Marton
et al. (2009) provides a convenient option because
it is simple and fast. In the cases when frames of
data are obtained at sparse locations and the overlap-
ping part between two frames is small, a simpler re-
triangulation method by detecting the overlapping
border is introduced here.

Instead of destroying all the triangular faces in
the overlapping region, we use the following strategy:
set one frame as the reference denoted as RF, the link
pattern of which is preserved, and then incrementally
relink each vertex in the overlapping part of another
frame (denoted as AF) into RF. The relink process
is demonstrated in Fig. 4.

1. Label the vertices in AF. In the previous
relocation step, each vertex in the overlapping region
of RF has found a nearest face in AF. Thus, we label
the vertices of this face in AF by the corresponding
vertex in RF.

2. Delete the edges in AF that connect vertices
with different labels, as shown in the middle figure of
Fig. 4. Along with edge deleting, the faces that these
edges belong to are also deleted. We call the vertices
that these deleted edges connect as ‘border vertices’
and the other vertices as ‘non-border vertices’.

3. Insert the ‘non-border vertices’ into their
corresponding nearest triangular face in RF, where
the original edges among them are reserved.

4. Link the ‘border vertices’ in AF with RF.
It can be regarded as linking between two polylines.
First each vertex on one polyline (denoted by PL1)
is linked to the nearest vertex on the other polyline
(denoted by PL2), and then each unlinked vertex on
PL2 is linked to the nearest vertex on PL1.

Fig. 4 Relinking of vertices
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5 Experiments and results

5.1 Experimental device

The device used for experiments is shown in
Fig. 5. Three SICK LMS-151 laser scanners (SICK,
Germany) are integrated with a PointGrey Ladybug
3 panoramic camera (Point Grey, Canada). It is
an extension of the design introduced by Sheehan
et al. (2012). We design this prototype to verify
the feasibility of our method, and further a light-
weight edition will be developed and deployed on a
bionic robot. The method in Sheehan et al. (2012)
is used for the intrinsic calibration of the three-laser-
scanner, and that in Pandey et al. (2010) is for the
cross-calibration between the lasers and the camera.
The RGB-D data obtained have a nearly full spheri-
cal field of view but have two black areas in the laser
scanner data. One is between −90◦ and −45◦, close
to the bottom area of the device, where the data
contain the bracing components of the device, e.g.,
bracket and car roof. The other is the zone where
the panoramic camera is mounted. The laser scan-
ners can hardly block the view of the camera. With
a scanning rate of 50 lines/s of each SICK LMS-151
and the rotational speed of 60◦/s of the disc, the de-
vice achieves a horizontal angular resolution of 1.2◦.
Using this device, we can not only build the sur-
face but also attach high-resolution textures to the
surface.

Fig. 5 Three SICK LMS-151 laser scanners and a
PointGrey Ladybug 3 panoramic camera integrated
in an RGB-D unit

5.2 General results

To demonstrate the effectiveness of our method,
several experiments in both indoor and outdoor

scenes of Zhejiang University have been conducted.
Fig. 6 (on the next page) demonstrates two results:
one is from four frames of point cloud collected in
the yard of our institute, and the other is the model
built in a corner of our lab with 10 frames of data.

Fig. 7 demonstrates the results in a semi-
structured environment. When the robot traverses
in the wild, potential targets like buildings and vehi-
cles can be recorded.

Fig. 7 Results in a semi-structured environment
where there are regularly shaped objects like build-
ings and irregularly shaped objects like trees

Compared with the results of Cole and New-
man (2006) and Maurelli et al. (2009), which gener-
ate only semi-dense point clouds of the environment,
our results are dense and textured on the regularly
shaped parts of the environment. This is impor-
tant for a bionic robot in inspecting the environ-
ment. Compared with the results of KinectFusion
(Newcombe et al., 2011) and Kintinuous (Whelan
et al., 2012), which use a dense point cloud as input
and use a dense voxel grid to estimate the ‘average’
surface, our results are not that exquisite. How-
ever, while they take dozens of scans to reconstruct
a small scene, we reconstruct a large scene using just
a few scans. Compared with the results of Marton
et al. (2009), which use robust moving least square
(RMLS) to resample the noisy data and gradually
triangulate new points into the existing surface mesh,
our results are better when fusing surface meshes of
significantly different uncertainties because the prob-
abilistic fusion method gives more weight to obser-
vations with higher certainties.
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(a) (b)

(c)

(d)

Fig. 6 General results of outdoor and indoor scenes: (a) outdoor surface; (b) outdoor surface with texture;
(c) indoor surface; (d) indoor surface with texture

5.3 Resampling

Fig. 8 illustrates the importance of resampling:
if the input point data are not resampled before tri-
angulation, the triangular surface would be influ-
enced by noise. In some serious cases, too many faces
are deleted, leaving large holes on the surface, as
shown in Fig. 8a. Fig. 9 compares the point clouds af-
ter resampling with the traditional MLS method and
our segmentation-based MLS method. It is shown
that sharp edges and corners are well preserved by
our method, due to non-interference among different
geometric components.

5.4 Vertex relocation

This experiment demonstrates the necessity of
vertex relocation. As mentioned above, this opera-

(a) (b)

Fig. 8 Triangulation results without (a) or with (b)
resampling

tion relocates the vertices of overlapped surface mesh
onto the underlying surface, which would remove the
gap between two surface meshes and make the resul-
tant mesh smooth at the joint area. Fig. 10 shows
the part of a building where two frames of the surface
mesh overlap. In Fig. 10a, re-triangulation is directly
carried out without relocating any of the vertices, so
the surface at the joint is rough. While in Fig. 10b,
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vertices are first relocated onto the underlying sur-
face, so the fused mesh is much smoother.

5.5 Surface update

Since the proposed method has a probabilistic
nature, we are able to demonstrate its advantage in
surface update. As indicated in Fig. 11, as soon as

Fig. 9 Segmentation-based resampling (first row) v.s.
ordinary MLS (second row). By resampling sepa-
rately on each geometric component, the resulting
cloud preserves better shape and is much cleaner,
while ordinary MLS gets confused at the boundary
(points are upsampled to better demonstrate the re-
sampling result)

(a) (b)

Fig. 10 Results without (a) (having a rough surface
at the joint) or with (b) (much smoother at the joint)
vertex relocation

(a) (b)

Fig. 11 Texture update: (a) observe at 10 m away;
(b) observe at 3 m away

a closer observation (which is more certain) is made,
the previous low-resolution surface is updated to be
finer.

5.6 Change in vertices’ covariance

Fig. 12 plots the histograms of the maximum
eigenvalue of the point covariance matrix (square
root) and Fig. 13 plots those of the traces. The max-
imum eigenvalue indicates the primary axis length of
covariance of a point, while the trace indicates the
total length of the three axes, which also measures
the uncertainty of a point. For almost every his-
togram, it is true that the black shape (data after
fusion) locates more on the left than the green one
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Fig. 12 Histograms of four frames of surface vertices
on the maximum eigenvalue of squared covariances.
Green: data before fusion; black: data after fusion.
References to color refer to the online version of this
figure
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Fig. 13 Histograms of four frames of surface vertices
on the trace of squared covariances. Green: data
before fusion; black: data after fusion. References to
color refer to the online version of this figure
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(data before fusion) does. Thus, fusion indeed de-
creases the uncertainties of points (i.e., vertices of a
surface).

6 Conclusions

In this paper, we have presented a method to
fuse a semi-dense point cloud and RGB images and
generated a dense surface map. The resultant dense
surface map offers rich visual and geometric infor-
mation, and is an ideal representation of the envi-
ronment for indoor/outdoor localization, navigation,
and recognition tasks of bionic robots. With this
method, a bionic robot can use small light-weight
2D laser scanners and RGB cameras to build and use
a densely textured map. Experiments conducted in
Zhejiang University campus have demonstrated the
effectiveness of our method in the semi-structured
environment.

First, the proposed method which generates a
dense surface map relies on a hypothesis that the
environment surface is ‘smooth’ enough to be rep-
resented by textured mesh. This hypothesis heavily
limits the use of bionic robots. In un-structured en-
vironments, data are cluttered and no surface can
be generated. Then the image, which is more dense
than the sparse laser points, cannot be used to inter-
polate or to enrich the surface. Thus, extending this
method to un-structured environments is of great
significance.

Second, the current stop-and-go mode of map-
ping is not that intelligent nor elegant, and mapping
while the robot is moving can be more practical.
Considering that bionic robots do not have odome-
try to indicate the displacement of the robot, visual
methods can be used and incorporated with laser
observations to estimate the robot pose in real time.
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