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Abstract: Social network analysis (SNA) is among the hottest topics of current research. Most measurements
of SNA methods are certainty oriented, while in reality, the uncertainties in relationships are widely spread to be
overridden. In this paper, fuzzy concept is introduced to model the uncertainty, and a similarity metric is used to
build a fuzzy relation model among individuals in the social network. The traditional social network is transformed
into a fuzzy network by replacing the traditional relations with fuzzy relation and calculating the global fuzzy
measure such as network density and centralization. Finally, the trend of fuzzy network evolution is analyzed and
predicted with a fuzzy Markov chain. Experimental results demonstrate that the fuzzy network has more superiority
than the traditional network in describing the network evolution process.
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1 Introduction

As one of the major directions of social net-
work analysis, social network prediction has been
thoroughly studied for a long time and its great po-
tential in applications has emerged, drawing tremen-
dous attention from the academics (de Sa and Pru-
dencio, 2011). The recent study is not limited to
link between nodes. It also involves the prediction
of network global measure. Through the prediction
of network global measure, corresponding measures
can be taken in advance. The application scenarios
have a great range. For example, one can prepare
goods that may sell well in advance to get more ben-
efits; the analysis of criminal network prediction can
help us understand the social security states.
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Most of the prediction methods take the cer-
tainty of relationships as a premise. In the real world,
however, the social network varies with time, which
makes the study on the trend of a time-series network
substantial. Network density and centralization are
common indicators of global network structure that
can be used to analyze the trend of the network diver-
sity over time for a sequential network. Most of the
current models of social networks are built upon cer-
tain relationship. The relationship between the indi-
viduals in a social network is simplified as ‘1’ or ‘0’ for
an unweighted graph, where ‘1’ means the existence
of a link and ‘0’ means the opposite. More accurate
models are the weighted graphs with weighted edges
introduced to indicate the closeness of relationships.
Traditional network centricity analysis and link pre-
diction methods based on network structure use the
deterministic network as well. Nevertheless, in fact,
neither the certainty nor the probability methods
can reflect the situation objectively. Because of the
widespread uncertainty, there could be relation- and
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individual-absence in the real-world network, caused
by lack or corruption of data, or dissemblance of
privacy (Yan and Gregory, 2011). In addition, the
subjectivity of cognition to relationship for different
people contributes to the uncertainty. The closeness
between two pairs of individuals who have the same
amount of connections can be different, and the pairs
who connect little on the surface could have poten-
tial connection that leads to bias. To handle these
issues, a fuzzy system is introduced in this paper:
the relations among nodes are fuzzified and the so-
cial network density and fuzzy centralization are pre-
dicted based on a fuzzy measure. The fuzzy network
was proposed in 1965 (Zadeh, 1965) and has been ap-
plied mainly to complex and uncertain systems, such
as virus propagation, Internet analysis, semantic al-
gorithm analysis, and design of search engines. Then
the fuzzy concept was introduced in computer lan-
guage calculation (Khorasani et al., 2011). The fuzzy
network has been used to assess the effect of health
warnings on the psychosocial behavior and smoking-
cessation behavior of Australian smokers (Zhang et
al., 2011).

In our study, we innovatively combine fuzzy net-
work with social network analysis to predict the
global variation. The experimental results demon-
strate that the fuzzy network has better performance
than the certainty network in predicting measures of
the time-series network.

2 Related work

Social network analysis is a suite of paradigms
and methods that are based on systematic empiri-
cal data. The research objects are relations among
individuals instead of the intrinsic property of indi-
viduals (Freeman, 2004). Relationship models are
built to describe the relation between individuals
and analyze its inherent structure and impact. The
measurements include degree, density, shortcut, and
distance, and the degree of connection, which is the
most important one, posing them the pivot of social
network analysis. A relatively complete theoretical
system has been built for social network analysis af-
ter years of development, providing several different
perspectives on social networks, including centraliza-
tion analysis, aggregation sub-group analysis, core-
periphery structure analysis, and structural equiva-
lence analysis. Centralization analysis is one of the

most important social network analyses, where the
metric of centrality can be used as an indicator of
the importance of a node in the network, by mea-
suring the extent of an individual at the center of
the network. Other than computing the centrality
of individuals, it can be used to analyze the overall
network metrics, such as the calculation of central-
ization, which reflects the tightness of various nodes
connected throughout the network. Larger central-
ization means greater frequency of connection be-
tween the nodes in the network, and it can be calcu-
lated based on centrality (Freeman, 1978). Density is
a widely applied concept in graph theory. It is also a
basic measure and a focus of social network analysis.
By calculating the ratio of the actual number of links
among individuals to the maximum number of links
that may exist among them, the measures reflect the
overall closeness of the relationship among the so-
cial network (a greater density suggests more links
among network members). Network density and net-
work centralization exhibit tightness from the view
of quantity and quality, respectively, making them a
pair of complementary indicators.

Traditional social network analysis is based on
deterministic models, by calculating the value of
some measures to analyze the existing relationship
in them. However, a simply determined value is
not sufficient to describe these relations accurately.
Since the fuzzy concept was proposed (Zadeh, 1965),
several studies have shown that the introduction of
the fuzzy system, using fuzzy state to replace the
original value, can well solve the problem of un-
certainty in social networks (Nair and Sarasamma,
2007). Brunelli and Fedrizzi (2009) used fuzzy logic
to modify the original binary relations into multiple
relations among individuals and achieve the same ef-
ficiency in social networks. Araujo (2008) presented
a method using fuzzy logic to explain social rela-
tions. Such methods can improve the flexibility of
the relationship between social networks, and thus
reduce the individual’s conflict. Bastani et al. (2013)
applied a fuzzy model for link prediction based on
network characteristics, and achieved better results
than the traditional method. The introduction of
a fuzzy model through fuzzy clustering to predict
social network links also shows good performance
(Ryoke et al., 1995). Recently, some researchers
used the ordered weighted averaging (OWA) oper-
ator to obtain the fuzzy relationship between nodes
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(Brunelli et al., 2014). The method needs some at-
tributes of the network to calculate the relationship;
the attributes can be, for example, the similarity in-
dex, such as common neighbors (CN), Katz, Salton,
and Adamic-Adar (AA) (He et al., 2015). Although
the method has the disadvantage of large time com-
plexity, it has advantages of higher prediction accu-
racy and higher stability. Many methods have been
proposed for time-series prediction based on social
network analysis. The probabilistic relational model
(PRM) based prediction method has been proposed
which combines the time-series network with topol-
ogy (Zhu et al., 2012), and the auto regressive inte-
grated moving average (ARIMA) forecasting model
was adopted in a time-series social network (Huang
and Lin, 2009). The Markov chain approach has also
been used in network link forecasting and analysis
methods (Hasan et al., 2006). Yet, these networks
are not involved in prior fuzzy processing and cannot
model the uncertainty well.

In our paper, through fuzzy processing in time-
series social networks, we can achieve better results
in predicting the global measure of social networks.

3 Preliminaries

In this section, some basic definitions, symbols,
and methods about fuzzy networks are introduced
for further discussion on fuzzy-based time-series so-
cial network analysis. The first subsection gives some
basic concepts on social networks and their measure-
ment, the second subsection displays how fuzzy so-
cial networks are built, and the last subsection pro-
vides some definitions of the Markov chain for future
use.

3.1 Social networks and their measurement

In the traditional social network, network den-
sity and community centralization are basic met-
rics, and they are a couple of complementary in-
dexes. The following definitions are combined with
a fuzzy system in Section 4. A traditional undi-
rected social network is defined as an undirected
graph G = (V,E), where its vertex set V represents
the individuals in the network and edge set E rep-
resents the relationships between individuals in the
network.
Definition 1 (Network density) The network den-
sity D is the ratio of the number of existing edges

to the number of maximum possible edges. Given
an undirected social network G = (V,E), the ratio is
represented as follows:

D =

∑
d(vi)

N(N − 1)/2
, (1)

where N is the number of nodes in the social network
and d(vi) is the degree of node vi.

A larger D means a greater density of network
connection. In reality, most complex networks are
sparse and have a small density. Thus, through ob-
serving the change in network density, the frequency
of network links can be analyzed.
Definition 2 (Centrality) The centrality d(vi)

refers to the centrality of node vi in the social net-
work. It can be defined as

CD(vi) = d(vi). (2)

A node whose centrality is the largest means
that it is the center of the network. If the network
consists of N nodes, we define the relative centrality
as follows:

C′
D(vi) =

d(vi)

N − 1
. (3)

The maximum degree of any node in the net-
work is N − 1. A larger centrality means that the
node is connected with more direct links and is com-
paratively important.
Definition 3 (Network centralization) The net-
work centralization CD reflects the concentration of
the whole network; the formula of centralization can
be defined using the network centrality. It can be
defined with relative centrality as follows:

CD =

n∑

i=1

(CDmax − CDi)

N − 1
, (4)

where CDmax is the node that has the largest cen-
trality in the network.

For example, the networks in Figs. 1a and 1b
have the same network density (D = 0.5), and
CD(A)=0 and CD(B)=2.5. It can be seen that a
sparse network’s density is less and a balanced net-
work has a small centralization. On the contrary,
the more the links that focus on some nodes of the
network center, the larger the centralization. So, an
unbalanced network usually has a large centraliza-
tion. Density can show the frequency of communica-
tion between individuals in the network, while cen-
tralization shows the degree of closeness in network
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relation. A network that has a higher concentration
usually has a larger centralization.

(a) (b)

Fig. 1 Difference between a balanced network (a) and
an unbalanced network (b)

3.2 Fuzzy social network

We use the similarity algorithm as the fuzzy
method of the network. As shown in Fig. 2, we
use the Jaccard similarity algorithm (Jaccard, 1901)
to calculate the relationship between nodes A and
B. There is no link between nodes A and B in the
traditional network; however, the Jaccard similarity
algorithm considers the influence of neighbors and
we can obtain fuzzy relations between nodes A and
B.

Fig. 2 Difference between a traditional network (a)
and a fuzzy network (b)

Definition 4 (Relation membership function) The
relation membership function is used to transform a
traditional network into a fuzzy network, which is
defined as follows:

μ(x) = Svivj , (5)

where μ(x) ∈ [0, 1] is the membership function and
Svivj the similarity between nodes vi and vj .

We use the Jaccard similarity algorithm in this
study. Let Γ (x) denote the neighbor set of node x.
Then the fuzzy relationship between nodes can be
defined as follows:

SJaccard
vivj =

Γ (vi) ∩ Γ (vj)

Γ (vi) ∪ Γ (vj)
. (6)

The complexity of the fuzzification method largely
influences the performance of time-series prediction

in our study. To calculate the Jaccard similarity
metric, it is always needed to traverse its adjacent
nodes. So, its time complexity is O(n2) using the
common traversal method or O(n logn) using the
sort traversal method. If the number of nodes N is
larger, it costs much longer time to obtain the metric.
Original networks are generally sparse. However,
they will become denser after being fuzzlized and the
trend may affect the complete graph. As SJaccard

vivj ∈
[0, 1], we can leave out the normalization process.
Definition 5 (Fuzzy relation) The fuzzy relation
ẽij can be calculated based on the traditional net-
work relation eij through μ(x), which is defined as
follows:

ẽij = μ(eij). (7)

According to Definition 4 (Eq. (5)), the fuzzy
relation ẽij can also be defined as follows:

ẽij = S(vivj). (8)

A larger Svivj means a higher possibility of rela-
tion and more contact between nodes vi and vj . This
kind of fuzzy algorithm is quite simple and follows
people’s perception of social networks. If we cannot
know whether two people have a friendly relationship
through the traditional network but we know they
have many common friends, then we can guess that
there may be a certain relationship between them
(Jin et al., 2001; Ebel et al., 2002).
Definition 6 (Fuzzy undirected network) The
fuzzy undirected network G̃ = (V, Ẽ) is trans-
formed from the traditional network G = (V,E)

through fuzzification. V = {v1, v2, ..., vn} is the
set of individuals in the fuzzy network and Ẽ =
∑n

i=1

∑n
j=1 Ẽ(eij) is the fuzzy relationship between

them.

3.3 Definition of the Markov chain

Definition 7 (Markov chain) Let x be a ran-
dom variable sequence, which may be in states
S1, S2, ..., Sr. Xn = i means that it is in state Si

at time n. It means that

pij(n) = Prob(Xn+1 = j|Xn = i), 1 ≤ i, j ≤ r. (9)

It shows the step transition probability in the system,
if

Prob(Xn+1|XnXn−1 . . . X1) = Prob(Xn+1|Xn),

(10)
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and if the random process of the state and the param-
eter of time are discrete, we can call the stochastic
process a Markov chain.

4 Prediction of measure in time-series
networks

4.1 Density and centralization in fuzzy net-
works

Consider an undirected fuzzy social network G̃

as defined in Definition 6. d̃(vi) =
∑n

j=1 μ(eij) is the
sum of ẽij ’s that have a relation with node vi. In
a fuzzy network, fuzzy network density reflects the
degree of closeness in the fuzzy network. According
to the traditional network density formula, the fuzzy
network density formula can be defined as follows:

D̃ =

∑
d̃(vi)

N(N − 1)/2
. (11)

Fuzzy centralization can be displayed using fuzzy
centrality. The fuzzy centrality of the individuals
in the fuzzy network directly connects to the node
with the edge of the sum d̃(vi) of membership degree
μ(x):

C̃D(ni) =
d̃(vi)

N − 1
. (12)

According to the traditional network community
centralization formula, the fuzzy centralization for-
mula can be defined as follows:

C̃D =

∑n
i=1(C̃Dmax − C̃Di)

N − 1
. (13)

4.2 Prediction based on the fuzzy Markov
chain

We use the fuzzy Markov chain to predict the
measure, which is a fuzzification of the traditional
Markov chain model. Many research objects have a
complex inner relationship in the real world, which
means the relationship is fuzzy. The unfollow-up
effects between individuals are not strict. The tra-
ditional Markov chain analysis prediction methods
cannot accurately reveal the characteristics of the
object. We combine fuzziness with the Markov chain
to ensure the accuracy of the algorithm model. In
the traditional Markov chain, each transition prob-
ability of pij needs to be determined. In actual life,
in many cases, these values can only be estimated or
provided by the experts.

4.2.1 Establishment of the fuzzy Markov chain
model

A fuzzy Markov chain model can be established
by the following four steps:

1. Determining the fuzzy state of the system
Set the range of Xt as U according to the ap-

plication background in the first place. Establish
the fuzzy state for U as U = {Ã1, Ã2, . . . , Ãr}. Let
μÃi

(x) be the membership function of state Ai and
assume that {x1, x2, . . . , xn} is the observed data,
where xt is the observation at time t. We need to
make sure that the amount of observed data n is
greater than the number of fuzzy states r.

2. Calculating the initial probability
For each observation, the observation frequency

of each fuzzy state {Ã1, Ã2, . . . , Ãr} needs to be
calculated:

mi =

n−1∑

t=1

μÃi
(xt). (14)

Thus, the initial probability for fuzzy state
Ãi can be represented as pi = mi/(n− 1), i =

1, 2, . . . , n.
3. Calculating the first-order state transfer

matrix
For the transformation of Ãi → Ãj from t to

t+ 1, the probability can be represented as μÃi
(xt) ·

μÃj
(xt+1) and the frequency of the event is mij =

∑n−1
t=1 μÃi

(xt) · μÃj
(xt+1). We obtain the transfer

probability of Ãi → Ãj from the whole time-series
system as pij = mij/mi, and the first-order state
transfer matrix is P = [pij ]n×n.

4. Prediction
Assume that the observation value at time t is

x. Then the membership degree of each state in U

for x is F (xt) = (μÃ1
(x), μÃ2

(x), . . . , μÃr
(x)) and

the membership degree at time t+ 1 is as follows:

F (xt+1) = F (xt) ·PT. (15)

Finally, the transformation of the fuzzy state
at t+ 1 can be judged according to the maximum
membership principle. Based on the actual situa-
tion, if the maximum membership degree and the
second largest membership degree have a slight de-
viation, the second largest state or even the third
largest membership can be listed as a possible trans-
fer target.
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4.2.2 State division and membership function

State division is very important in fuzzy Markov
chain prediction since the number of division states,
the range of states, and the choice of the member-
ship function will affect the accuracy of the predic-
tion. We divide data into fuzzy states S1, S2, . . . , Sr.
The prediction result can be more accurate if fuzzy
states have larger amount and shorter range. How-
ever, it requires a lot of systematic observation data
{x1, x2, . . . , xn} with the number of samples being
greater than r. A small number of samples will lead
to an inaccurate prediction. So, we should choose an
appropriate number of states. During state division,
the choice of membership function μÃi

(x) is also very
critical. One chooses the membership function based
on experience. Without any experience, we need an-
other method to choose an appropriate fuzzy distri-
bution. Generally, we choose the following kinds of
functions: trapezoidal distribution, normal distribu-
tion, Cauchy distribution, and triangular distribu-
tion. Here we choose trapezoidal distribution and
Cauchy distribution. There are also some parame-
ters in the membership function, and we can adjust
these parameters in the process of an experiment to
achieve the best prediction accuracy.

4.3 Relevant algorithm

At first, we divide the data into a time-series
network structure {G1, G2, . . . , Gn} composed of n
time slices. Then we use the Jaccard similarity met-
ric to fuzzify the time-series network Gt(Vt, Et):

Et = SJaccard
vivj , vi, vj ∈ Gt. (16)

Therefore, we obtain the fuzzy network
{G̃1, G̃2, . . . , G̃n}, and can calculate the fuzzy den-
sity D̃ and fuzzy centralization C̃D by the defini-
tion in Section 3.2. Then we need to divide the
metrics into fuzzy states S1, S2, . . . , Sr. We set the
data {x1, x2, . . . , xn} with fuzzy density and fuzzy
centralization. Afterwards, we prepare to predict
the data xn+1 (r � n + 1). First, we divide the
data {x1, x2, . . . , xn} into fuzzy states. The stan-
dard of dividing data is based mainly on experience
and the existing criteria or other division methods.
Second, we use the sample mean value-standard de-
viation grade method in this paper, and the interval
of the fuzzy metric can be depicted by the sam-
ple means and sample standard deviation. With

data {x1, x2, . . . , xn}, we can obtain the sample av-
erage x̄ and sample standard deviation σ, which can
be divided into r states. Their state intervals are
(−∞, x−α1σ), (x−α1σ, x−α2σ), . . . , (x−αmσ, x+

αmσ), . . . , (x+α2σ, x+ α1σ), (x+α1σ,+∞), where
m = r − 1/2 and α1 < α2 < . . . < αm.

The observed data should be approximately a
sequence of independent and identically distributed
variables. According to the central limit theorem
which shows it is a weak correlation sequence (the
correlation coefficient is less than 0.3), we have

P
{
X̄ − 1.5σ ≤ x ≤ X̄ + 1.5σ

}
> 0.86.

Considering the amount of sample data, in this
paper we use r = 5, which is divided into five fuzzy
states. We set a step parameter θ in this study, whose
states are A1, A2, . . . , A5. The state intervals can be
(−∞, x−α1σ+θ), (x−α1σ, x−α2σ+θ), (x−α2σ, x+

α2σ+ θ), (x+α2σ, x+α1σ+ θ), and (x+α1σ,+∞).
We set α1 = 1.0 and α2 = 0.5, and use the

trapezoid membership function. The left and right
sides of the function are open, i.e., semi-trapezoid,
while the rest of the function is completed.

First, we calculate the average and standard de-
viation of the observation data to construct the mem-
bership function of different states:

μA1(x) =
⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ x ≤ x̄− σ,
x̄− σ + θ − x

θ
, x̄− σ < x < x̄− σ + θ,

0, otherwise,

μA2(x) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x− (x̄− σ)

θ
, x̄− σ < x < x̄− σ + θ,

1, x̄− σ + θ ≤ x ≤ x̄− 0.5σ,
(x̄− 0.5σ) + θ − x

θ
, x̄− 0.5σ < x < x̄− 0.5σ + θ,

0, otherwise,

μA3(x) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x− (x̄− 0.5σ)

θ
, x̄− 0.5σ < x < x̄− 0.5σ + θ,

1, x̄− 0.5σ + θ ≤ x ≤ x̄+ 0.5σ,
(x̄+ 0.5σ) + θ − x

θ
, x̄+ 0.5σ < x < x̄+ 0.5σ + θ,

0, otherwise,
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μA4(x) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x− (x̄+ 0.5σ)

θ
, x̄+ 0.5σ < x < x̄+ 0.5σ + θ,

1, x̄+ 0.5σ + θ ≤ x ≤ x̄+ σ,
(x̄+ σ) + θ − x

θ
, x̄+ σ < x < x̄+ σ + θ,

0, otherwise,

μA5(x) =
⎧
⎪⎪⎨

⎪⎪⎩

1, x̄+ σ + θ ≤ x,
x− (x̄+ σ)

θ
, x̄+ σ < x < x̄+ σ + θ,

0, otherwise.

(17)
We can obtain the fuzzy state classification ma-

trix Ẽ with the observed data {x1, x2, . . . , xn}:

Ẽ =

⎡

⎢
⎢
⎢
⎣

μA1(x1) μA1(x2) · · · μA1(xn)

μA2(x1) μA2(x2) · · · μA2(xn)
...

...
...

μA5(x1) μA5(x2) · · · μA5(xn)

⎤

⎥
⎥
⎥
⎦
.

The prediction results can be obtained accord-
ing to Section 4.2.1, including the predicted mem-
bership degree and the true value. To discern from
the true value xn, we denote the result value as x∗

n.
We can predict the results, which can be obtained
from

E∗
n = (μA1(x

∗
n), μA2(x

∗
n), μA3(x

∗
n), μA4(x

∗
n), μA5(x

∗
n)),

The true membership degree can be obtained
by putting the true value xn into the membership
function:

En = (μA1(xn), μA2(xn), μA3(xn), μA4(xn), μA5(xn)) .

Finally, the value μAi(xn) has the largest mem-
bership degree, and for μAi(x

∗
n) ∈ E∗

n, we use devi-
ation δ = |μAi(xn)− μAi(x

∗
n)| /μAi(xn) (0 ≤ x ≤ 1)

to measure the accuracy. If δ is approximately 0, the
prediction is accurate. To forecast more steps, the
predicted value x∗

n needs to be introduced and the
same method is used to calculate the prediction value
based on the original data. In the current study, the
median of the maximum membership state is used as
the value of x∗

n.

5 Experiments

Email data from Enron Corporation is used in
our study. We choose the data of 2001 and then

divide it into 12 time slices by month and fuzzify
these networks for experiment. In addition, a 10-day
phone call record network is used in the experiment.
It is divided into 10 time slices by day.

5.1 Prediction of density and centralization in
the fuzzy time-series network

To predict fuzzy centralization and density in
the time-series network, first we calculate the cen-
tralization and density in the fuzzy network slices
that have been known through the Jaccard similarity
algorithm. The differences in density and central-
ization between the traditional network and fuzzy
networks using the email data from Enron Corpo-
ration and a 10-day phone call record network are
illustrated in Figs. 3–6.
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Fig. 3 The difference in density among the traditional
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(Enron)

We use the data from Jan. to Oct. of a com-
plete traditional network and a fuzzy network as
the observed values to predict density. We obtain
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x̄ = 25.79, σ = 9.70, and the real value x11 = 38.50

in the traditional network, whereas x̄ = 24.52,
σ = 9.23, and the real value x11 = 32.73 in the
fuzzy network. We use the trapezoidal membership
function and set step length θ = αx̄. Let α = 0.05,
0.10, 0.15, 0.20, and 0.25 respectively, and then cal-
culate the deviation value using the real value. For
example, when α = 0.05 is set and the data of the
fuzzy network for experiment is used, we can obtain
the degree of each time slice network membership
for different states by establishing the fuzzy Markov
chain model. The membership states are shown in
Table 1.

After that, calculate the transfer matrix PT:

PT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.420 0.579 0.500 0 0

0 0.532 0 0.412 0.054

0 0 0 0 1.000

0 0.361 0.638 0 0

0 0 0.190 0.810 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Table 1 The membership status table

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct.

μA1
1 0.72 0 0 0 0 0 0 0 0

μA2
0 0.28 1 1 0 1 1 0 0 0

μA3
0 0 0 0 0 0 0 0 1 0

μA4
0 0 0 0 1 0 0 0.77 0 0

μA5
0 0 0 0 0 0 0 0.23 0 1

Then we can calculate the degree of membership
of each state:

Ẽ∗
n = (0 0 0.190 0.810 0).

The ranges of membership states A1, A2, ..., A5 are
(−∞, 16.5), (15.3, 21.1), (19.9, 30.3), (29.1, 34.9), and
(33.7,+∞), respectively.

The largest membership value μA4(x
∗
11) = 0.810

indicates that x∗
11 is most likely in state A4 and the

range of A4 is (29.1, 34.9). We can obtain the real
value of Nov. as x11 = 32.73 from the original data.
The value is within the scope of A4, and this means
that the prediction is accurate. The real degree of
membership of each state is as follows:

Ẽn = (0 0 0 1 0).

Then we can calculate the deviation value δ̃ = 0.190

and the degree of the traditional network with the
same algorithm:

Ẽ∗
n = (0 0 0.500 0 0.500).

The ranges of membership states A1, A2, ..., A5 are
(−∞, 17.3), (16.1, 22.2), (20.9, 31.9), (30.6, 36.7), and
(35.5,+∞), respectively.

The largest membership value μA5(x
∗
11) = 0.500

indicates that x∗
11 is most likely in state A5 and the

range of A5 is (35.5,+∞). We can obtain the real
value of Nov. as x11 = 38.50 from the original data.
The value is within the scope of A5, and this means
that the prediction is accurate. The real degree of
membership of each state is as follows:

Ẽn = (0 0 0 0 1).

Then we can calculate the deviation value δ̃ = 0.5.
Analogously, we calculate the deviation values when
α = 0.10, 0.15, 0.20, and 0.25, respectively (Tables 2
and 3).

Apparently δ̃ < δ, and the range is 5.8 in the
fuzzy network but 6.1 in the traditional network un-
der the same conditions. The statistics show that
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Table 2 The prediction of density in the fuzzy network

Step length α Maximum status Range Deviation δ

0.05 A4 29.1–39.8 0.190
0.10 A4 29.1–38.6 0.105
0.15 A4 29.1–37.4 0.072
0.20 A4 29.1–36.2 0.055
0.25 A4 29.1–34.9 0.044

Table 3 The prediction of density in the traditional
network

Step length α Maximum status Range Deviation δ

0.05 A5 <35.5 0.500
0.10 A5 <35.5 0.500
0.15 A5 <35.5 0.436
0.20 A5 <35.5 0.367
0.25 A4 30.6–41.9 0.317

using the fuzzy network for prediction is more accu-
rate than using the traditional network.

The prediction of centralization is the same. We
can obtain x̄ = 26.69, σ = 4.23, and the real value
x11 = 29.48 in the traditional network. Moreover,
we can obtain x̄ = 14.04, σ = 7.62, and the real
value x11 = 15.21 in the fuzzy network. We use the
trapezoidal membership function and set step length
θ = αx̄. Let α = 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively. Then we calculate the deviation value
δ from the real value.

Through Fig. 7, we know that with the same
parameter, the deviations of the prediction obtained
through metrics of the fuzzified network are smaller
than those of the traditional network in terms of
both centralization and network density. This in-
dicates that utilization of the fuzzy Markov chain
would result in a more accurate result in the fuzzy
network than in the traditional network in predict-
ing centralization and density. In addition, we use a
10-day phone call network for this experiment. As
Fig. 8 shows, most values of the metric predicted in
the fuzzy network have a smaller deviation than in
the traditional network. This means that the fuzzy
method can improve the accuracy of metric predic-
tion in a different sense.

Similarly, we use the fuzzy network based on the
OWA method to do the experiment. As Figs. 3 and
4 show, we select some attributes such as CN, Katz,
Salton, RA, and PA. We can calculate the deviation
values using the same method (Fig. 9).

We know that the fuzzy network based on the
OWA method can also have a good performance in
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prediction. However, it costs much more time.

5.2 Impact on prediction results with varied
fuzzy parameters

The membership function μA(x), which is used
to divide the state, is the pivot of the prediction
method. We examine the impact of the membership
function by adjusting the parameters. In addition to
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trapezoidal function, the Cauchy function is intro-
duced here as a membership function:

μAi(x) =
1

1 + α(x − a)β
,

where a can be ±0.5σ ∼ ±1.5σ according to the
sample-standard deviation grading method, and β is
an even number. Take the fuzzy network data from
Jan. to Oct. as observations, and let α = 0.04 and
β = 2. By predicting the network density, we obtain
the predicted membership degree as follows:

Ẽ∗
n = (0.001 0.003 0.004 0.008 0.038).

The true degree of membership for each membership
state is as follows:

Ẽn = (0.011 0.017 0.022 0.030 0.065),

where the predicted maximum membership degree is
0.038 and the true maximum membership degree is
0.065, both at state A5. The bias value is δ = 0.544.

Let α = 0.004 and β = 2. The predicted mem-
bership degree by predicting the network density is
as follows:

Ẽ∗
n = (0.109 0.177 0.231 0.306 0.489).

The true degree of membership for each membership
state is as follows:

Ẽn = (0.103 0.152 0.189 0.240 0.412).

In the above results, we have the predicted maximum
membership degree 0.489 and the true maximum
membership degree 0.412, with both at state A5,
which is also accurate. The bias value is δ = 0.009.

The experimental results indicate that under
the same conditions, trapezoidal distribution out-
performs Cauchy distribution in terms of accuracy.
Besides, the uncertainty of the state range is a flaw
when used here. In addition to using data from Jan.
to Nov. to forecast the Dec. data, we use data from
Jan. to Oct. to predict the Nov. data. Then the
data is combined with the predicted data from Nov.
1 to Oct. to predict the Dec. data. Then deviation is
calculated. When α = 0.05, the predicted maximum
degree of membership is in a limited range. We can
obtain its state interval. Its membership is obtained
as follows:

Ẽ∗
n = (0 0 0.190 0.810 0).

x∗
11 is most likely in state A4. The range of mem-

bership state A4 is (29.1, 34.9), taking the number of
intermediate states as 32, along with data from Jan.
to Sept. to forecast Nov. data. Also, let α = 0.05,
0.10, 0.15, 0.20, and 0.25, respectively. The devia-
tion value δ with respect to the true value is shown
in Fig. 10.
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Fig. 10 The difference in deviation with different
steps

Fig. 10 shows that under the same conditions,
the deviation to use the two-step fuzzy Markov chain
prediction is slightly larger than that of the one-step
method, but the real value falls into the predicted
maximum membership degree range, which means
that the prediction is accurate. The results show that
although the time range of samples is limited, the use
of multi-step prediction in the fuzzy network can still
maintain a certain degree of accuracy and choosing
a reasonable state interval can increase accuracy.

5.3 Network size and time span effect on pre-
diction accuracy

To verify the impact of accuracy with different
sizes, we sample fuzzy network individuals of 80%,
50%, 25%, respectively, 10 times each, and calculate
the average of their fuzzy density and fuzzy central-
ization. The results are shown in Figs. 11–13.

The prediction bias δ is computed as shown in
Fig. 13. It can be found from the experimental re-
sults that the reduction in data scale does not cause
the deviation δ to become larger, and the prediction
is accurate. Furthermore, to verify the influence of
the selection of different time frames on the final pre-
diction, we observe the raw data. It shows that fuzzy
density and centralization both have a significant in-
crease in May and June when they change back to
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the original scope. If we select Apr. to Oct. data
to predict Nov. data, the time sheet data that is
no longer than that from Jan., the data fluctuates
less within its scope. The average density from Apr.
to Oct. is x̄ = 27.35 and the standard deviation is
σ = 9.62. Using the trapezoidal membership func-
tion and taking θ = αx̄ and α = 0.05, 0.10, 0.15,
0.20, and 0.25 respectively, the results are as shown
in Fig. 14.

The true value x11 = 32.73 is within the largest
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Fig. 14 The deviation at different time spans

range of membership states of the predicted value
x∗
11, and the deviation δ between them is smaller in

a small state range, for example, when α = 0.05 or
α = 0.10. This shows that although the number of
samples is reduced, the accuracy does not decrease.
We can exclude some of the data and choose a suit-
able state range to increase the prediction accuracy.
In addition, we select Jan. to Sept. data to pre-
dict the Oct. data, with the average centralization
x̄ = 24.55 and standard deviation σ = 9.69. Taking
α = 0.05, 0.1, 0.15, 0.2, and 0.25, we obtain the re-
sults as shown in Fig. 10. The true value x10 = 42.60

is in the interval of the largest membership states of
the predicted value x∗

10. Using Jan. to Sept. data to
predict Oct. data can also have a very good effect.
Experiments show that the fuzzy Markov chain has
catholicity in fuzzifying network metric prediction.

6 Conclusions and prospects

Enron Corporation announced that it was in fi-
nancial crisis in the autumn of 2001, and then the
American Ministry of Economic Affairs inquired this.
The Securities and Exchange Commission (SEC) in-
vestigation began to step in incident investigation.
Through network analysis, it can be learned that
although centralization and density have a consider-
able rise and fall in May and June, they are grow-
ing slowly until Aug. and Sept., which means that
the internal network links have more frequency and
more closeness. Centralization and density in Nov.
decreased as the experiment predicted, which means
that the contacts within the network began to be
weakened. In fact, Enron’s stock price dropped to
four dollars in Nov. 2001 and finally fell to only a
few cents as expected. In Dec. 2001, Enron finally
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quitted the stock market and ended in bankruptcy.
This indicates the importance of global measures in
social network analysis. Through this experiment,
we know that the fuzzy time-series network is more
advantageous than the fuzzy Markov chain in global
measures. In comparison to the traditional time-
series network, it has a smaller standard deviation
under the global measures, thus a smaller fluctua-
tion, which makes forecasting more accurate. Be-
sides, fuzzy network forecasting has shown its accu-
racy in prediction using two-step and node-screened
methods, indicating that it has a universality in time
slice selection and data selection. In addition, it can
be applied to different datasets and obtain a favor-
able result. It is found that there is facility and ad-
vantage in the prediction of a fuzzy time-series net-
work measure with the fuzzy Markov chain model.
However, some problems are raised in the experi-
ment. For example, the border of the membership
function or the bad data that should be repaired will
affect the final prediction accuracy and the method
of expanding the application range of the fuzzy net-
work. So, we will apply the fuzzy network to other
prediction models in a better manner and will choose
appropriate data. Optimization of the observed data
is exactly our future work.
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