
Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 899

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Improving performance portability forGPU-specific
OpenCLkernels onmulti-core/many-core CPUsby

analysis-based transformations∗#

Mei WEN1,2, Da-fei HUANG‡1,2, Chang-qing XUN1,2, Dong CHEN1,2

(1School of Computer, National University of Defense Technology, Changsha 410073, China)

(2National Key Laboratory of Parallel and Distributed Processing, Changsha 410073, China)

E-mail: meiwen@nudt.edu.cn; huangdafei1012@163.com; {xunchangqing, chendong}@nudt.edu.cn

Received Jan. 30, 2015; Revision accepted June 30, 2015; Crosschecked Oct. 19, 2015

Abstract: OpenCL is an open heterogeneous programming framework. Although OpenCL programs are func-
tionally portable, they do not provide performance portability, so code transformation often plays an irreplaceable
role. When adapting GPU-specific OpenCL kernels to run on multi-core/many-core CPUs, coarsening the thread
granularity is necessary and thus has been extensively used. However, locality concerns exposed in GPU-specific
OpenCL code are usually inherited without analysis, which may give side-effects on the CPU performance. Typi-
cally, the use of OpenCL’s local memory on multi-core/many-core CPUs may lead to an opposite performance effect,
because local-memory arrays no longer match well with the hardware and the associated synchronizations are costly.
To solve this dilemma, we actively analyze the memory access patterns using array-access descriptors derived from
GPU-specific kernels, which can thus be adapted for CPUs by (1) removing all the unwanted local-memory arrays
together with the obsolete barrier statements and (2) optimizing the coalesced kernel code with vectorization and
locality re-exploitation. Moreover, we have developed an automated tool chain that makes this transformation of
GPU-specific OpenCL kernels into a CPU-friendly form, which is accompanied with a scheduler that forms a new
OpenCL runtime. Experiments show that the automated transformation can improve OpenCL kernel performance
on a multi-core CPU by an average factor of 3.24. Satisfactory performance improvements are also achieved on Intel’s
many-integrated-core coprocessor. The resultant performance on both architectures is better than or comparable
with the corresponding OpenMP performance.

Key words: OpenCL, Performance portability, Multi-core/many-core CPU, Analysis-based transformation
doi:10.1631/FITEE.1500032 Document code: A CLC number: TP312

1 Introduction

Heterogeneous computing systems, which incor-
porate two or more types of computing devices, are
nowadays widely available from supercomputers to

‡ Corresponding author
* Project supported by the National Natural Science Founda-
tion of China (No. 61272145) and the National High-Tech R&D
Program (863) of China (No. 2012AA012706)
A preliminary version of this paper was presented at Euro-Par
2014 Conference, Porto, Aug. 25, 2014

ORCID: Da-fei HUANG, http://orcid.org/0000-0001-6617-7608
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

smart phones. A typical combination has been CPU
plus GPU accelerator, while Intel’s many-integrated-
core (MIC) coprocessor is an increasingly popular
choice of accelerator, such as in the currently No. 1
supercomputer of the world, Tianhe-2, according to
the TOP500 list released in Nov. 2014 (TOP500.org,
2014). Programming, however, can be a challenge
for using the heterogeneous devices for computa-
tion. The common strategy is to program separately
for each type of computing device. Take, for in-
stance, a CPU-GPU hybrid system. The mainstream

Yunlong Guo
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1500032&domain=pdf

900 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

approach uses CUDA programming for the GPUs,
whereas OpenMP or POSIX threads are used for the
CPUs. Such a device-specific approach requires ex-
tensive programming effort, and is thereby difficult
with respect to code maintenance and portability.
An ideal scenario is thus to have the same source
code base for multiple architectures, while maintain-
ing a good level of performance portability.

OpenCL (Munshi, 2011) was designed with
cross-platform code portability in mind. The advan-
tage of adopting OpenCL programming is that a uni-
fied source code can work on different hardware ar-
chitectures. On the other hand, performance porta-
bility does not come for free with OpenCL. Generally,
performance portability refers to the performance
levels that an application tuned for a particular ar-
chitecture can achieve on other platforms. In this
paper, we focus on improving a specific kind of per-
formance portability, namely the performance porta-
bility of GPU-specific OpenCL kernels on multi-
core/many-core CPUs. To evaluate the resultant
improvement, the performance of the GPU-specific
kernel under the vendor-provided OpenCL runtime
is taken as the baseline, since it is the original kernel
performance that indicates the performance porta-
bility implemented by the vendor.

The majority of existing OpenCL programs are
GPU-specific, written with a bias or consensus to-
ward obtaining good performance through making
use of a massive number of threads, the round-robin
instruction scheduling pattern, and the GPU-specific
memory hierarchy (Baskaran et al., 2008; Stratton
et al., 2013). These GPU-specific implementations,
when executed directly on CPUs with heavy-weight
cores, typically cannot achieve good performance
(Rul et al., 2010; Dong et al., 2012; Pennycook et al.,
2013). For example, for GPU-specific OpenCL ker-
nels written with consensus from the OpenCL com-
munity and GPU vendors (Stratton et al., 2013), cre-
ating and running thousands of threads simultane-
ously to explore inter-workgroup and inter-workitem
(intra-workgroup) parallelism would be unrealistic
on a commodity multi-core CPU system. Another
major problem is the distinct memory hierarchy of
the OpenCL platform model, such as local-memory
which makes it hard to natively map the memory
hierarchy to other architectures.

Code transformation can give performance
portability from a GPU-specific OpenCL program to

multi-core/many-core CPUs. A common technique
of transformation is to enforce a coarser thread gran-
ularity, or the so-called work-item coalescing (Lee
et al., 2010) or serialization (Stratton et al., 2008;
2010), which means that the OpenCL work-items
in one work-group are combined into a single, se-
quential CPU thread. Moreover, work-items within
a work-group are a primary source of vector- and
instruction-level parallelism, both of which can be
effectively exploited by a single CPU thread. How-
ever, the prior work concerning OpenCL code trans-
formation has largely neglected the incorporation of
CPU-specific performance properties, such as spa-
tial and temporal data locality (Gummaraju et al.,
2010), or directly inherits data locality features from
a GPU-specific OpenCL kernel, often resulting in
poor performance on CPUs (Stratton et al., 2008;
2010). Moreover, when handling local memory and
barriers, the existing automated code transforma-
tions have concentrated mainly on functionality and
semantics but not performance, and without relevant
analysis.

Our idea is to exploit CPU-specific performance
properties, not fully depending on the original GPU-
specific performance concerns. We propose a new
approach to transforming GPU-specific OpenCL ker-
nels into a high-performance form that suits multi-
core/many-core CPUs. It is based on a precise anal-
ysis of memory accesses, with the help of a linear
array-access descriptor. The resulting code trans-
formation can thus remove all the unnecessary ar-
rays that are allocated in OpenCL’s local memory.
In addition, all the unnecessary thread synchroniza-
tions are properly removed, instead of blindly using
the known technique of loop fission. Thereafter, a
post optimizer performs CPU-specific loop-level op-
timizations, by making use of the parallelism prop-
erties and data locality, which can be extracted from
the GPU-specific kernel. More specifically, we have
developed a fully automated source-to-source code
transformation tool chain. The input is GPU-specific
OpenCL kernel code, and the output is an optimized
function, which is of good data locality, effectively
vectorized, and free of unnecessary local-memory us-
age and thread synchronization. An accompanying
scheduler is also developed to execute the trans-
formed OpenCL kernel on the multi-core/many-core
architecture, by effectively using POSIX threads.
Finally, a new OpenCL runtime implementation is

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 901

presented, with our automated kernel transforma-
tion tool chain as the key part.

Our contributions over existing work include:
1. A novel work-item coalescing methodology in-

cluding removal of unnecessary local-memory arrays
and synchronizations. The methodology is based
on a linear array-access descriptor that accurately
uncovers the actual array access patterns. The
costs due to data replication and synchronization
are greatly reduced, while easing subsequent CPU-
specific optimizations.

2. A CPU-targeting post optimizer for the coa-
lesced code, which incorporates loop-level optimiza-
tion techniques, by extracting information of paral-
lelism and locality embedded in the original GPU-
specific kernel. The optimizer considers the archi-
tectural details of multi-cores/many-cores to enable
a satisfactory performance boost on both CPUs and
MICs.

3. A complete tool chain that automatically
transforms GPU-specific kernels into an optimized
form, which can effectively run on the multi-
core/many-core architecture.

2 Related work

There are many publications that address the
challenge of adapting OpenCL code for the multi-
core/many-core architecture and targeting perfor-
mance portability. These can be classified into two
categories: code transformation and auto-tuning.
The work presented in this paper falls in the first
category, which directly translates GPU-specific
OpenCL code into another code fit for CPUs.

Previous research that implements OpenCL for
CPU platforms varies widely in the chosen approach
to coalescing work-items and capturing SIMD par-
allelism. The Twin Peaks method (Gummaraju
et al., 2010) uses ‘setjmp’ and ‘longjmp’ to merge
fine-grain work-items into a single OS-thread, and
performs vectorization within a work-item, but does
not explore inter work-item parallelism. Region
serialization methods (Stratton et al., 2008; 2010)
coalesce work-items by constructing thread loops
and performing loop fission to reproduce the simi-
lar functionality of inter work-item synchronizations.
They rely on an auto-vectorization technology within
loop iterations to exploit parallelism. Intel’s im-
plementation of OpenCL for x86, being the least

explicitly disclosed or studied, directly targets
SIMD instructions and efficiently exploits vector-
parallelism within a work-group (Intel Corporation,
2013b). None of the above implementations, how-
ever, handle data locality well enough, so they may
result in a strided access pattern by executing one or
more work-items as long as possible, instead of inter-
leaving the accesses of the work-items that can share
the elements on one cache line. Stratton et al. (2013)
relied on CEAN expression to do a more advanced
handling of spatial locality.

With regard to the local memory and accom-
panying synchronization, the state-of-the-art meth-
ods usually use arrays in OpenCL’s global memory
(main memory as to CPU) to simulate the ones in
local memory, while ignoring the existence of caches
on the CPU. As for barriers, the Twin Peaks method
directly uses jump instructions to simulate the func-
tion, which results in excessive overhead and breaks
the locality in the kernel code. Other approaches
above fully depend on the technique of loop fission,
which also results in overhead of loop control instruc-
tions and variable expansions. The issue of ineffec-
tive use of local memory and synchronization has
been studied recently. In our previous paper (Huang
et al., 2014), we proposed our work for the first time
and emphasized the work-item coalescing method,
but only slightly touched on the optimizations af-
ter coalescing. As an extension, this paper demon-
strates our whole transformation tool chain includ-
ing post optimizations and with a supporting sched-
uler in more detail, and provides a more systematic
view of our work. Similar to our work, Fang et al.
(2014a) presented a method to remove local memory
usage automatically and effectively. However, their
method was designed for use combined with auto-
tuning, so the performance impact of local memory
elimination was not considered in the transforma-
tion process. They also provided a performance im-
pact indicator for local memory usage (Fang et al.,
2014b), but had not yet integrated it into their code
transformer.

Auto-tuning (Du et al., 2012; Pennycook et al.,
2013) is another widely used methodology. A set of
performance-critical parameters is first identified in
the code, and the best performance is achieved by
tuning these parameters into the best combination.
Compared with code transformation, some short-
comings are unavoidable: the manual coding work

902 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

is heavy, and the original OpenCL code should be
rewritten or reconstructed to expose all parameters
that possibly affect performance. Auto-tuning is also
time-consuming and relatively non-robust. Some im-
portant parameters for one architecture may have no
effect on another architecture, but auto-tuning may
not realize this by itself, which results in wasting
a lot of time. Pennycook et al. (2013) presented
an architecture-independent method for developing
single-source implementations targeting acceptable
performance (instead of high performance) on differ-
ent architectures.

The work of Phothilimthana et al. (2013) aimed
at portable performance on heterogeneous architec-
tures by combining the above two methodologies.
They introduced and extended the PetaBricks lan-
guage and its compiler. They have also automated
the OpenCL code generation for multiple devices,
while their code optimization depends mainly on an
auto-tuner.

3 A linear descriptor of array access

An accurate identification of local and global
memory access patterns is the key to a high-quality
transformation from GPU-specific kernels to the
CPU-matching counterparts. However, most of the
previously proposed descriptors of array access pat-
terns have been designed for the scenario of nested
loops, providing useful information for optimizations
such as automatic parallelization and privatization.
Moreover, existing descriptors often use approxima-
tion, and are thus not accurate enough to extract
dependencies between work-items in the context of
parallel SPMD OpenCL kernels. Examples include
triplet notation (Shen et al., 1990) and linear mem-
ory access descriptor (Paek et al., 2002). These exist-
ing descriptors record some basic features of array ac-
cesses, such as induction variables, upper and lower
bounds of each induction variable, and stride be-
tween two accessing elements. Linear equalities and
inequalities have been used to form linear constraint
systems for describing array accesses, such as region
in Triolet et al. (1986), data access descriptor in Bala-
sundaram and Kennedy (1989), and the state-of-the-
art polyhedral model in Bastoul (2004), but none of
the above targets parallel programs. Among existing
descriptors for data-parallel programs, the descrip-
tor presented by Jang et al. (2011) models memory

access patterns in a loop nest as a translation guid-
ance targeting data-parallel architectures, which is a
memory access matrix plus offset vector. Based on
their work, Fang et al. (2014b) proposed a descrip-
tor for OpenCL kernels. With that descriptor, they
developed a performance impact indicator for local
memory usage, which takes the descriptor and plat-
form architecture as input and outputs the estimated
performance impact if local memory is used.

In this paper, we propose a precise yet more
flexible linear descriptor of array accesses, based on
the observation that most array accesses in a GPU-
specific kernel can be expressed linearly. For ex-
ample, the only exception to linear array accesses
that can be found in Nvidia computing SDK and the
SHOC benchmark suite (Danalis et al., 2010) con-
sists of indirect array accesses; i.e., array access in-
dexes are elements of another array. In other words,
although such a descriptor is limited to describing
linear and direct memory accesses, it can cover the
vast majority of GPU-specific OpenCL programs.

For each array that is accessed in any loop
within a GPU-specific OpenCL kernel, our new
array-access descriptor expresses the array index as
a linear subscript function of the work-item/work-
group IDs, the loop induction variable, and the in-
put arguments to the OpenCL kernel. In addition, a
set of linear constraints, i.e., equalities and inequali-
ties, are derived from the conditions of branches and
loops to accurately pinpoint the range of the array
index. As an example, Fig. 1 shows the OpenCL
kernel function implementation of matrix multipli-
cation, C = A × B, available from Nvidia GPU
computing SDK (Here, some of the variables are re-
named for clarity, and Lid denotes the local work-
item ID, whereas Gid denotes the global work-group
ID). Within the outer loop of the kernel function
there are six different array accesses: write access
to AS and read access to A on line 8, write access
to BS and read access to B on line 9, read access
to both AS and BS on line 12. Descriptors of the
array accesses to AS and A are listed in Fig. 2,
where f denotes the linear subscript function, Con-
straint denotes the set of linear constraints, and Iterx
(x = a, b, k) represent the normalized loop induction
variables. Descriptors of the array accesses to BS

and B are very similar and are not listed in Fig. 2.
The derivation of a linear array-access descrip-

tor, as shown in Fig. 2, is fully automated as a part

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 903

Fig. 1 The original GPU-specific kernel of matrix
multiplication from Nvidia GPU computing SDK

of the tool chain to be presented in Section 5.

4 Transforming GPU-specific OpenCL
kernels

With the linear descriptor of array accesses at
hand, transformation of GPU-specific OpenCL ker-
nels will be carried out in two stages: analysis-
based work-item coalescing and hardware-adaptive
post optimization. The overall objective is to se-
cure good performance of the transformed OpenCL
kernels on the multi-core/many-core architecture.

4.1 Analysis-based coalescing

Recall that work-item coalescing (or serializa-
tion) aims to enforce a coarser thread granularity,
by merging the work-items of an entire work-group

into a single CPU thread. The standard technique
of coalescing is to construct a nested thread loop,
where the loop levels correspond to the dimension of
a work-group, the loop induction variables match the
local work-item IDs, and the loop body is the orig-
inal GPU-specific kernel code. A complicating fac-
tor with work-item coalescing, however, arises with
thread synchronization in the GPU-specific kernel.
The state-of-the-art methods are to adopt loop fis-
sion to handle thread synchronization in connection
with coalescing. An example of thread loop con-
struction can be found in Fig. 3, which shows that
an original GPU-specific kernel that has a barrier
statement is transformed into two nested loops due
to loop fission. The negative effects of loop fission
are additional control statements, and possible vari-
able expansions to prevent variables from being over-
written before their use in subsequent thread loops.
Our remedy for this performance problem is to adopt
an accurate dependence analysis, based on the lin-
ear descriptor of array accesses, so that unnecessary
thread synchronizations can be eliminated, thereby
avoiding loop fission. The details will be discussed
in Section 4.1.2.

Another performance-critical factor, in con-
nection with work-item coalescing, is the use of
OpenCL’s local memory. It is very common that
GPU-specific kernels use arrays that are allocated in
the local memory, for the purpose of good perfor-
mance when executed on GPUs. This GPU-specific
strategy is well motivated because OpenCL’s local
memory is directly mapped to a GPU’s on-chip fast
memory. However, CPUs and MICs do not pro-
vide such a hardware support for OpenCL’s local
memory, which is in this case emulated by a seg-
ment of the slow main memory attached to a CPU
or MIC. Blind usage of local-memory arrays on the
multi-core/many-core architecture will thus result
in a performance penalty, due to unnecessary data
copies and additional thread synchronizations. This

⎧
⎨

⎩

fread
A = (uiWA × BLOCK_SIZE×Gid.y +BLOCK_SIZE× Itera) + uiWA× Lid.y + Lid.x,

ConstraintreadA = {Itera ≥ 0 ; Itera < uiWA/BLOCK_SIZE; Gid.y ≥ 0; Gid.y < GLOBAL_SIZE;

Lid.x ≥ 0; Lid.x < BLOCK_SIZE; Lid.y ≥ 0; Lid.y < BLOCK_SIZE},
{

fwrite
AS = Lid.x+ Lid.y × BLOCK_SIZE,

Constraintwrite
AS = {Lid.x ≥ 0; Lid.x < BLOCK_SIZE; Lid.y ≥ 0; Lid.y < BLOCK_SIZE},

{
fread
AS = Iterk + Lid.y × BLOCK_SIZE,

ConstraintreadAS = {Iterk ≥ 0; Iterk < BLOCK_SIZE; Lid.y ≥ 0; Lid.y < BLOCK_SIZE}.

Fig. 2 Array access descriptors of accesses to AS and A in matrix multiplication

904 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

Fig. 3 Work-item coalescing by constructing thread
loops: (a) original kernel with barrier; (b) coalesced
kernel using thread loop and loop fission

performance dilemma, which is induced by local-
memory arrays, has not received sufficient attention
so far in work on work-item coalescing. Our novel
contribution is therefore to eliminate all the unnec-
essary local-memory arrays during coalescing auto-
matically. This again will be based on a precise anal-
ysis of memory access patterns, enabled by the linear
array-access descriptor from Section 3.

4.1.1 Eliminating unnecessary local-memory arrays

The functionality of local memory usage in
GPU-specific kernels can be classified into four types:

Type 1 (buffering): to improve temporal and
spatial data locality within the kernel code, recently
accessed data to be reused is buffered in OpenCL’s
local memory, so that long-latency global memory
accesses can be replaced by faster local memory ac-
cesses.

Type 2 (reorganization): data is loaded from
OpenCL’s global memory and stored in local mem-
ory using a different pattern, which allows coalesced
memory accesses and effectively avoids bank con-
flicts when the data is later read from local memory.
A representative example is the transposed matrix
multiplication (C = A × AT) kernel (Nvidia Cor-
poration, 2011a), where tiles of matrix A are loaded
in rows but stored into columns of a local-memory
array.

Type 3 (enabling communication and re-
ducing computation): intermediate results of a
work-item are stored in OpenCL’s local memory be-

fore another work-item uses them. This type of usage
not only reduces duplicated computations among dif-
ferent work-items, but also enables inter work-item
communication.

Type 4 (avoiding register spilling): if work-
items have a mass of private data that exceeds the
capacity of private memory (registers), private data
will spill into low-speed off-chip memory. This type
of usage treats local memory as an extension of pri-
vate memory to store private data.

On the multi-core/many-core architecture,
functionality Type 3 also has to use OpenCL’s lo-
cal memory, and thus work-item coalescing should
not change this usage of local memory. Local mem-
ory with functionality Type 4 is also irreplaceable,
because here local memory is used to store inter-
mediate results and there is no other memory space
declared to store the spilled data. For functionality
Type 2, although OpenCL’s local memory is emu-
lated only by a segment of the main memory, and
that data copy overhead arises due to the data reor-
ganization, subsequent more efficient accesses to the
reorganized data may still draw overall performance
benefits. Regarding functionality Type 1, however,
the usage of OpenCL’s local memory becomes obso-
lete because the same effect can be achieved by the
cache hierarchy on CPUs (including MIC). Redun-
dant memory copies are a plain waste. Therefore,
such a usage of local memory should be eliminated
during coalescing. This requires an automated code
analysis that can distinguish between the four us-
age types, together with automated replacement of
local-memory array accesses with the corresponding
global-memory array accesses.

As long as a local-memory array does not have
the functionality Type 3 or 4, but has functionality
Type 1 or 2 or both, the sequence of accesses to this
array must match the procedures below, which are
also suggested in Nvidia Corporation (2011b):

1. Loading data from global memory and storing
the data into the local memory array.

2. Possible synchronization with all the work-
items in a work-group, so that each work-item can
safely read the data that has been stored by different
work-items.

3. Reading data from the local-memory array
and using the data.

4. Possibly an additional synchronization if
these procedures are iterative, so that data in the

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 905

local-memory array cannot be overwritten before
usage.

For example, as shown in the code example of
Fig. 1, two local-memory arrays, AS and BS, are
used for the purpose of buffering data shared within
a work group. These two arrays are used exactly
as in the above procedures. The values of AS and
BS correspond directly to segments of the global-
memory arrays A and B, as shown in lines 8 and
9. We can also see in lines 10 and 13 the associated
thread synchronizations.

Loads from local-memory arrays can be trans-
lated to direct global memory loads, provided that
the following two conditions are both satisfied:

Condition 1: For a pair of local array write and
read, by examining their array access descriptors,
if some of the variables in the write descriptor are
substituted with the variables of the read descriptor,
the two descriptors become identical including the
subscript functions and constraints.

Condition 2: In this local array read-write pair,
the write data is from a global memory read. This
condition can be checked by using a definition-use
chain (Steven, 1997), and the local array write and
the respective global array read are usually in the
same statement.

Loads from local-memory arrays with the func-
tionality Type 3 or 4 do not satisfy the above two
conditions because their elements are not read from
global memory at any time.

Code transformation can be carried out as fol-
lows. For a local array read-write pair that satisfies
the above two conditions, we can replace the local
array read with its corresponding global array read.
The local array write will become dead code, and can
be removed by the compiler afterwards. An exam-
ple is the following local array read-write pair from
Fig. 2:

⎧
⎪⎪⎨

⎪⎪⎩

fwrite
AS = Lid.x+ Lid.y × BLOCK_SIZE,

Constraintwrite
AS =

{Lid.x ≥ 0; Lid.x < BLOCK_SIZE; Lid.y ≥ 0;

Lid.y < BLOCK_SIZE},
(1)

⎧
⎪⎪⎨

⎪⎪⎩

f read
AS = Iterk + Lid.y × BLOCK_SIZE,

ConstraintreadAS =

{Iterk ≥ 0; Iterk < BLOCK_SIZE; Lid.y ≥ 0;

Lid.y < BLOCK_SIZE}.
(2)

If we substitute Lid.x in Eq. (1) with Iterk from
Eq. (2), the two descriptors become identical, which
satisfies Condition 1. Moreover, the write data of
Eq. (1) is read from global array A according to line
8 in Fig. 1, which satisfies Condition 2:

f read
A = (uiWA× BLOCK_SIZE×Gid.y+

BLOCK_SIZE× Itera) + uiWA× Lid.y + Lid.x.
(3)

So, a transformation from local memory load to
direct global memory load is legal, by performing the
substitution of Lid.x with Iterk in Eq. (3) and using
it to replace Eq. (2):

f read
AS = Iterk + Lid.y × BLOCK_SIZE

⇒
f read
A = (uiWA × BLOCK_SIZE×Gid.y+

BLOCK_SIZE× Itera) + uiWA× Lid.y + Iterk.
(4)

Such a transformation can be applied to local
arrays not having the communication functionality
nor containing spilled data. However, for local arrays
with the data reorganization functionality, it is legal
but not performance-beneficial. So, an intuitive or
heuristic condition is induced here to guarantee that
a local array does not have the functionality of data
reorganization: looking at the linear subscript func-
tions of a local array write and its respective global
memory read, if variable Lid.x has the same coef-
ficient in the two functions (or that Lid.x does not
exist; i.e., the coefficient is 0), this local array does
not have the functionality of data reorganization.

For example, in Eqs. (1) and (3), Lid.x has coef-
ficient 1 in both fwrite

AS and f read
A , and array accesses

by Eqs. (1) and (2) are the only accesses to local ar-
ray AS. By using the condition above, we can con-
clude that local array AS does not have the func-
tionality of data reorganization (only when a local
array has no reorganization functionality, will its re-
moval potentially benefit the resulting performance
on multi-core/many-core CPUs). By removing all
the local arrays that have only the functionality of
data buffering, and replacing them with direct ac-
cesses to global arrays, we can thus ensure good per-
formance after work-item coalescing. Fig. 4 shows
the code snippet of the matrix multiplication kernel
after eliminating the unnecessary local arrays AS

and BS, which both have the functionality of data
buffering (line numbers in Fig. 4 are the same as in
Fig. 1).

906 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

Fig. 4 Code snippet of the matrix multiplication ker-
nel after eliminating unnecessary local memory usage

4.1.2 Dependence analysis and synchronization
elimination

If different work-items in a work group access
the same memory location, thread synchronization
is typically needed, without which the result of ker-
nel execution can be unpredictable. Barrier state-
ments in GPU-specific kernels often lie very close to
the local memory accesses, because local memory is
shared within a work-group. However, the existence
of a barrier does not necessarily mean that there is
actual dependence (RAW, WAR, or WAW) between
the different work-items, which is the root need for
synchronization. For example, as pointed out in Sec-
tion 4.1.1, only local memory usage of the communi-
cation functionality (Type 3) means that one work-
item cannot proceed without another work-item’s
intermediate result. For local memory usages only
with the other three functionalities, barriers are in-
duced but without actual dependence between work-
items. If each work-item directly accesses global
memory for its own needed data, barriers are not
necessary. That is, barriers induced by the reorgani-
zation and buffering functionalities of local memory
can be eliminated.

The effect of synchronizations has two aspects.
If loop fission is used to replace barriers during
thread loop construction, additional costs such as
control statements and variable expansion will be in-
troduced. However, barriers also have the ability to
change the execution flow of a work-group, which
sometimes provides better temporal and spatial lo-
cality. Our strategy of handling synchronizations is:
first we let work-item coalescing eliminate the syn-
chronizations while neglecting their possible benefits
to locality; then we re-exploit the locality that fits for
the multi-core/many-core architecture through post
optimizations, which will be presented in Section 4.2.

Synchronization elimination happens after the
unnecessary local arrays are removed. However, we

cannot simply delete all the barriers, since these may
serve other local arrays that are not removed, or the
synchronizations may use global memory. To check
whether a barrier can be eliminated safely, depen-
dence analysis is needed. Here, dependence analysis
is very different from the typical scenario, because
it is the dependence between different work-items
that we care about (dependences within a work-item
are naturally preserved by sequential execution of
statements and have nothing to do with synchroniza-
tions). The basic idea of our dependence analysis is
that, if two work-items have accesses (one of the ac-
cesses must be a write operation) to the same local or
global array, and the target access regions of the ar-
ray overlap, then there is actual dependence between
the two work-items.

When performing dependence analysis for a cer-
tain barrier, we first divide the kernel into basic
blocks, each referring to a maximal group of state-
ments such that one statement in the group is exe-
cuted if and only if every other statement is executed,
except that barriers are also boundaries of the basic
blocks. Then we examine every pair of array ac-
cesses (one of the accesses must be a write operation
and both touch the same local or global array) that
are located separately in two basic blocks before and
after the barrier. In the upper part of Fig. 5, rect-
angles with dashed edges show the partitioning of
basic blocks with different control structures, and
arrows show the basic blocks within which array ac-
cess pairs must be examined. The lower part of Fig. 5
emphasizes that the examinations are for different
work-items. When performing an examination, we

Fig. 5 An example of dependence analysis

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 907

combine the two descriptors of the access pair to form
a linear Diophantine inequation system. If there is
a solution to the inequation system where not all
the three pairs of local IDs are required to be equal,
actual dependence exists and the barrier cannot be
removed.

Eq. (5) shows the construction of an inequa-
tion system, where Coe denotes the vector of co-
efficients, Var the vector of variables, and Const a
constant. Note that each local ID is no longer treated
as the same variable in f1 and f2, so we use different
names. A barrier must be reserved if the inequa-
tion system has a solution without the restriction
{Lid.x = Lid.x′; Lid.y = Lid.y′; Lid.z = Lid.z′}.
{

f1 = Coe1 ·Var1
T +Const,

Constraint1 Var1 = (...,Lid.z,Lid.y,Lid.x),

{
f2 = Coe2 ·Var2

T +Const,

Constraint2 Var2 = (...,Lid.z′,Lid.y′,Lid.x′),

⇒
⎧
⎨

⎩

f1 = f2,

Constraint1,

Constraint2.
(5)

By using the above dependence analysis, we
can eliminate all the removable barriers in a GPU-
specific kernel, and then enclose the kernel body by
a thread loop. For non-removable barriers, loop fis-
sions are inserted so that those barriers become im-
plicit, thus completing the work-item coalescing pro-
cess. Fig. 6 shows the matrix multiplication kernel
after coalescing, where both the barriers in the orig-
inal kernel are eliminated. As shown, there are no
more direct costs of synchronizations.

However, the execution flow of the entire work-
group adopted by the original GPU-specific kernel
is changed. Fig. 7a shows the original access se-
quence to global arrays A and B, where each short
row segment of matrix A is accessed 16 times se-
rially, and rows of each matrix block in B are ac-
cessed in turn for 16 iterations in a coalesced manner
(the threads in a half warp access a row simultane-
ously). Fig. 7b shows that of the coalesced code,
where matrices are no longer blocked and iterative
accesses to array A go through the whole long row,
and accesses to B go through the whole column,
resulting in successive cache misses. Furthermore,
no SIMD parallelism is exploited. The coalesced
code therefore needs some post optimizations that
aim at specifically re-exploiting data locality and

Fig. 6 Code snippet of the matrix multiplication ker-
nel after work-item coalescing

parallelism for the target CPU architecture, but not
trying to recover the original locality in the GPU-
specific implementation. This process of post opti-
mization will be the subject of Section 4.2, with the
aim of achieving the result shown in Fig. 7c for this
particular example. In Fig. 7c, each scalar element
of A is expanded into a vector, and each set of eight
adjacent accesses to B is vectorized to produce a new
vector. Then computational operations are fully vec-
torized. In addition, the iterative array accesses are
restricted in small blocks, so that the CPU cache can
play a very good role.

4.2 Architecture-adaptive post optimizations

After work-item coalescing is done as described
in Section 4.1, the thread granularity becomes
coarser so that a work-group can be well executed
as a CPU thread. However, there are still two unex-
ploited CPU-specific performance properties of im-
portance. The first is that inter work-item paral-
lelism may be buried, leading to insufficient utiliza-
tion of the SIMD capability of a multi-core/many-
core CPU. The other is that loops in a coalesced code
may be fused to such a degree that results in poor
CPU-specific data locality. In this study, we adopt
two post optimizations of the coalesced code: vector-
ization and locality re-exploitation. Both optimiza-
tions will try to retain GPU-specific performance
advantages and, more importantly, insert changes
for CPU-specific performance improvement.

908 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

Fig. 7 Different access sequences to arrays A and B

in connection with a matrix multiplication C = A×B:
(a) access sequences in the original GPU-specific ker-
nel; (b) access sequences after work-item coalescing;
(c) access sequences after post-optimizations

4.2.1 Vectorization

For the coalesced code, compilers such as ‘icc’
can automatically perform loop vectorization to use
the SIMD capability of each core in a commodity
multi-core/many-core CPU. However, compilers can
vectorize only the innermost level of a loop nest (Intel
Corporation, 2012), which may be un-vectorizable
or not the most appropriate loop level to vector-
ize. We will therefore not rely on compiler vectoriza-
tion, but explicitly insert vector instructions instead.
Such a post optimization relies on the parallelism
information existing in the GPU-specific kernel im-
plementation, while addressing the specifics of multi-
core/many-core CPUs.

On a GPU, the best access pattern for
the global memory is sequential, unit-stride, and
aligned (Nvidia Corporation, 2011a); i.e., the kth
work-item accesses the kth word in an aligned global
memory segment. This access pattern will result in
coalesced memory accesses, which can best utilize a
GPU’s global memory bandwidth. The local mem-
ory accesses of a GPU-specific kernel usually also
use the sequential and unit-stride (not necessarily
aligned) pattern, for the purpose of avoiding bank
conflicts. Another access pattern for the local mem-
ory is to let a half-warp of 16 contiguous work-items
access the same local memory location.

Since OpenCL’s global and local memory both
reside in the main memory attached to a multi-
core/many-core CPU, the best loop level for per-
forming vectorization should be that with induc-
tion variable Lid.x. This is because sequential and
unit-stride memory accesses across iterations can be
transformed to vector loads and stores, whereas ac-
cesses across iterations to the same location can
be transformed to vector-set/broadcast operations.
The remaining arithmetic operations can be vec-
torized using the general loop vectorization method
smoothly, since there is no loop dependence in the
Lid.x loop after work-item coalescing.

Our vectorization-based optimization that can
be applied to the coalesced code has the following
steps:

1. If there are loops in the original GPU-specific
kernel, we perform loop distribution so that the non-
thread-loops become inner loops of the nested thread
loop. This step may induce variable expansion and
more control statements. Compared with the signif-
icant performance boost by vectorization, however,
the extra costs are negligible.

2. For every loop nest, we perform loop inter-
change to move the Lid.x loop to the innermost level
of the whole loop nest. This step is profitable due to
vectorization and is always legal because there is no
dependence across the thread loop levels.

3. Considering the SIMD width of the target
CPU architecture, we perform loop blocking for the
Lid.x loop, so that the induction variable of the
blocked Lid.x loop (denoted as the vLid.x loop)
can be incremented by SIMD-width/element-width.
We then vectorize the innermost loop. For the
Sandy Bridge architecture where the SIMD width
is 256 bits, the loop increment is 8, when the kernel

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 909

operates on single-precision float-point numbers. As
for the MIC Knights Corner architecture where the
SIMD width is 512 bits, the loop increment is 16.
Moreover, since fused multiply-add (FMA) is sup-
ported on Knights Corner, additions and multiplica-
tions in the same statements are fused.

The code snippet of the coalesced matrix multi-
plication kernel after vectorization is shown in Fig. 8,
where a target CPU of 256-bit SIMD width is as-
sumed and vLid.x is normalized. The prefix ‘vec’
stands for a vector data type or vector operation. For
all the three loop nests after blocking Lid.x loops, the
innermost loops are fully vectorized and eliminated.

Fig. 8 Code snippet of the matrix multiplication ker-
nel after vectorization

4.2.2 Data locality re-exploitation

After work-item coalescing and vectorization,
the transformed kernel code has parallelism that is
well suited for the multi-core/many-core architec-
ture. However, data locality remains to be improved.
Most GPU-specific kernels have data-locality consid-
erations such as blocking long-trip loops, but in some
kernels data locality is not well exploited. Take the
‘naive matrix multiplication kernel’, which is pre-
sented in Nvidia Corporation (2011b) as a baseline,

as an example. This naive kernel has the same func-
tionality as that of the kernel we discussed above,
but it has no locality optimizations, and is thus used
by Nvidia to show the usage of local memory.

Our data locality re-exploitation uses the orig-
inal locality considerations for GPUs, while trying
to fit the locality for the target multi-core/many-
core architecture, so that GPU-specific kernels with
poor original data locality can also become efficient
on a multi-core/many-core CPU. Classical loop-level
optimizations such as loop interchange, loop block-
ing, and improvement of register usage are imple-
mented (with possible modifications), and architec-
tural characteristics are also taken into account. Our
process of data locality re-exploitation has the fol-
lowing three steps:

1. Blocking of non-thread-loops. The main idea
is: if a loop whose induction variable appears in the
contiguous dimension of a multi-dimensional array,
but not in any other dimension, then blocking the
loop is usually profitable (Allen and Kennedy, 2002).
For every non-thread-loop, we block the loop if the
following two conditions are both satisfied:

(a) The descriptor of one array access in the
loop body contains the induction variable of the non-
thread-loop, and the coefficient of the induction vari-
able is small enough (A conservative threshold 2 is
adopted, since a larger coefficient will result in ac-
cess pattern with larger stride, which may limit the
effectiveness of loop blocking).

(b) For the array access in (a), we convert the
range of elements accessed during one iteration into
bytes. This memory coverage range per iteration
should be large enough (the threshold is set empiri-
cally to 1/8 of the L1 cache size, which is 4 KB for
both Sandy Bridge and Knights Corner, since a loop
with a narrow memory access range can also fit into
the cache without the need of blocking).

Blocking will transform the non-thread-loop
into two nested loops, and the trip count of the in-
ner loop is set to the work-group size in the lowest
dimension, i.e., the range of Lid.x. Although a typ-
ical loop blocking should include strip mining and
loop interchange, only strip mining is used here and
loop interchange will be considered for all the loops
together in the next step. As shown in Fig. 8, since
the Iterk loop and Itera/Iterb loop of the middle loop
nest are actually two nested loops after blocking, no
loop satisfies the blocking conditions. However, the

910 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

k loop in the naive matrix multiplication kernel will
be automatically detected and blocked.

2. Loop interchange. The heuristic loop inter-
change algorithm proposed by Allen and Kennedy
(2002) is adopted. For loop nest {L1, L2, . . . , Ln}, a
heuristic function is set up to estimate the number of
cache misses incurred by each array access (including
vector loads and stores). For each loop Li, supposing
it is positioned innermost, the number of misses of
the whole nest (called innermost memory cost) is es-
timated as CM (Li). Then the loops are re-arranged
from inner to outer in descending order of their CM

values.
However, the above algorithm assumes infinite

trip count of every loop. Since the thread loops and
inner blocked loops usually have small trip counts,
which embodies temporal data locality, the algo-
rithm will not work effectively. So, we introduce a
modification when calculating the innermost mem-
ory cost of a loop with a small trip count (thresh-
old at the work-group size in the lowest dimen-
sion), by not multiplying with the trip counts of
the outer loops. There are sometimes more than
one advantageous interchange. For the middle loop
nest of the code snippet in Fig. 8, the loop with
Itera/Iterb should be placed outermost, and the Iterk
loop should be placed innermost, but the positions
of the vLid.x and Lid.y loops are exchangeable.

3. Interchange selection for vector register reuse.
Vector registers in CPU cores are scarce, 16 per core
on Sandy Bridge and 32 on Knights Corner. The
degree of vector register reuse can greatly influence
the performance. Improving vector register reuse is
actually equal to improving temporal data locality.
The heuristic function used to calculate CM (Li) is
still adopted here, but with modifications such that
it can quantify the temporal locality. Every vector
operation is assumed as one ‘memory access’, the
cache size is set to the number of vector registers, and
the length of a cache line is set to 1. Then we use the
modified heuristic function to estimate the number
of ‘cache misses’ for each possible loop interchange
identified in Step 2. The loop interchange with the
fewest estimated ‘cache misses’ is adopted. In the
middle loop nest of Fig. 8, if there are 16 256-bit
vector registers, placing the vLid.x loop outside the
Lid.y loop will achieve better temporal locality.

The code snippet of the vectorized matrix mul-
tiplication kernel after the entire process of locality

re-exploitation can be found in Fig. 9 (showing only
the middle loop nest), which is also the final out-
put of the kernel transformation targeting the Sandy
Bridge architecture. The final access sequences to
arrays A and B are as in Fig. 7c, which shows that
the original coalesced accesses in the GPU-specific
kernel are transformed into vector accesses, and the
data locality is greatly improved.

Fig. 9 Final code snippet of the matrix multiplication
kernel after an automated transformation targeting
Sandy Bridge

Fig. 10 shows the output of kernel transforma-
tion targeting Knights Corner, where the positions
of the vLid.x and Lid.y loops are exchangeable. The
differences between Figs. 9 and 10 are due to the
different SIMD widths, the availability of FMA, and
the number of vector registers.

5 A fully automated tool chain and a
supporting scheduler

To automate the entire code transformation,
which includes deriving array-access descriptors, re-
moving unnecessary local-memory arrays and thread
synchronizations, constructing thread loops, and
post optimizations via vectorization and locality re-
exploitation, we have implemented a fully auto-
mated tool chain that performs source-to-source ker-
nel transformation based on the Clang (LLVM Team
and others, 2012) compiler front end and the LLVM
compiler infrastructure (Lattner and Adve, 2005).
The automated tool chain transforms a GPU-specific
OpenCL kernel into a linkable function, whose input
arguments include the original ones to the GPU-
specific kernel plus a set of work-group IDs. The

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 911

Fig. 10 Final code snippet of the matrix multiplica-
tion kernel after an automated transformation target-
ing Knights Corner

vector operations are enabled by using Intel intrin-
sics (Intel Corporation, 2013a). Each call to the func-
tion is equivalent to executing a corresponding work-
group; that is to say, the granularity for scheduling
is a single work-group.

The transformed OpenCL kernel code, how-
ever, cannot be directly executed by any standard
OpenCL runtime. To assist kernel execution, a
scheduler is needed to call the translated function in
a similar way as a standard OpenCL runtime sched-
ules work-groups. The main idea is to statically as-
sign groups of contiguous work-groups to the CPU
cores as evenly as possible, which means the differ-
ence in assigned work-group counts of CPU cores is
less than one. Such an approach transforms the inter
work-group parallelism to thread-level parallelism.

With our new scheduler, the process of kernel
execution is as follows:

1. The host thread divides the work-groups into
equal sets, and assigns each work-group set contigu-
ously to a logic core on the target multi-core/many-
core platform (A physical core is assumed as two log-
ical cores on Sandy Bridge, and four logical cores on
Knights Corner except that the first available physi-
cal core is neglected).

2. For every logic core, the host thread creates

a POSIX thread as a worker thread, and sets the
affinity of each worker thread to the corresponding
core.

3. Each worker thread calls the translated func-
tion iteratively with designated work-group IDs.

4. The host thread waits for the joining of the
worker threads.

Fig. 11 shows the entire process where a GPU-
specific kernel is transformed by our fully automated
tool chain and then executed with help of the new
scheduler.

To run an entire OpenCL program that has
both host and kernel code, the kernel transforma-
tion tool chain and scheduler support are integrated
into an open source OpenCL implementation called
FreeOCL (Freeocl, 2012). The modules for code gen-
eration and kernel scheduling in FreeOCL are re-
placed by our transformation tool chain and sched-
uler. The other modules that implement OpenCL
host APIs are left unchanged. When compiling the
translated kernel code, Intel C++ compiler v13.0.0
has been used for both CPU and MIC. Compiler
flags ‘-O3, -xHost’ have been adopted for Sandy
Bridge CPUs. As for Knights Corner coprocessors,
offload pragmas are added into the transformed ker-
nel code before compilation, so the whole process of
kernel execution runs on MIC, where the chosen com-
piler optimization option is ‘-O3’. Note that since
we use the offload mode to execute the transformed
kernels, the last core of the coprocessor is reserved
and unavailable for computation. OpenCL programs
with GPU-specific kernels can thus run efficiently
with our OpenCL runtime on multi-core/many-core
platforms.

6 Performance evaluation

Numerical experiments and time measurements
are carried out on two hardware platforms: (1) two
Intel Xeon E5-2650 eight-core CPUs that have 16
physical cores together, as a typical multi-core CPU,
and (2) an Intel Xeon Phi 5110p coprocessor with 60
physical cores, as an emerging many-core CPU. The
Xeon CPUs also act as host where the operating sys-
tem is Red Hat Enterprise Linux 6.2 with kernel ver-
sion 2.6.32-220. The new OpenCL implementation,
including our automated kernel transformation tool
chain and execution support (denoted by OurOCL),
is compared against the OpenCL implementation

912 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

Fig. 11 Transformation and execution of a GPU-specific kernel

from Intel SDK for OpenCL Applications 2013,
which is the official OpenCL runtime provided by
Intel (denoted by IntelOCL).

Six GPU-specific kernels are used as the bench-
marks (Table 1). The first five GPU-specific kernels
are already optimized for running on GPUs, where
Stencil2D comes from SHOC and the remaining four
kernels are from Nvidia GPU computing SDK. The
sixth kernel, NaiveMatrixMul, is the baseline matrix
multiplication from Nvidia Corporation (2011b) as
stated in Section 4.2.2, and its data locality is not
well exploited.

As IntelOCL is usually the most powerful com-
mercial OpenCL runtime on Intel platforms, the
performance of a kernel under IntelOCL is com-
monly the best performance achievable with only
vendor provided optimizations, and can indicate
the ‘official’ performance portability. So, the im-
provement of performance portability can be evalu-
ated by comparing it with the performance under
IntelOCL. We compare running the GPU-specific
kernels via OurOCL, where kernels will be auto-
transformed before execution, against running the
same kernels via IntelOCL. When running the bench-
marks, only the kernel execution times are recorded

and with these the relative performance ratios are
calculated. In Table 2, all the performance ratios are
normalized by the performance of CPU+IntelOCL,
and absolute kernel execution times are also pro-
vided in brackets. The table shows that OurOCL
can improve the performance of GPU-specific kernels
on multi-core CPUs by an average factor of 3.24×,
not including the NaiveMatrixMul kernel. The av-
erage performance improvement of MIC+OurOCL
over MIC+IntelOCL is 2.00×.

IntelOCL is very good at utilizing the inter-
work-group and inter-work-item parallelism by using
the multiple cores and SIMD units. However, its syn-
chronization overhead is experimentally found to be
somewhere between that of the region-based meth-
ods and the Twin Peaks method (Stratton et al.,
2013). So, the performance boost of OurOCL should
be attributed mainly to the elimination of barriers
and local-memory arrays, and partly to the locality
re-exploitation. The oclNbody kernel achieves the
minimum performance improvements on both plat-
forms, because it is the most compute-intensive. The
overheads induced by barriers and redundant mem-
ory copies account for only a small part of the kernel
execution time. As for the two stencil computation

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 913

Table 1 Six benchmarks used for performance evaluation

Kernel name Scale Local work size Description

oclMatrixMul 8000 × 8000 16× 16 Matrix multiplication with blocking
oclFDTD3d 320 × 320 × 320, 32× 32 Finite differences time domain progression, 3D stencil calculation

Radius=16,
Timestep=5

Stencil2D 4096 × 4096, 16× 16 Standard 2D 9-point stencil calculation
1000 iterations

oclDCT8x8 10 240×10 240 32× 2 Discrete cosine transform (DCT) for 8× 8 block
oclNbody 327 680 256 Gravitational simulation of 327 680 bodies
NaiveMatrixMul 8000 × 8000 16× 16 Matrix multiplication without blocking or local memory usage

Table 2 Performance comparison with Intel OpenCL implementation and OpenMP

Kernel name
Performance ratio (execution time)

CPU+IntelOCL CPU+OurOCL CPU+OMP MIC+IntelOCL MIC+OurOCL MIC+OMP

oclMatrixMul 1 (23.30 s) 3.02 (7.71 s) 0.37 (62.98 s) 1.94 (12.03 s) 3.93 (5.93 s) 3.74 (6.23 s)
oclFDTD3d 1 (0.80 s) 6.15 (0.13 s) 2.16 (0.37 s) 2.22 (0.36 s) 5.71 (0.14 s) 4.21 (0.19 s)
Stencil2D 1 (20.65 s) 2.53 (8.16 s) 1.16 (17.80 s) 1.83 (11.26 s) 2.42 (8.53 s) 1.95 (10.59 s)
oclDCT8x8 1 (75.96 ms) 3.42 (22.20 ms) 2.27 (33.46 ms) 1.43 (53.22 ms) 4.18 (18.19 ms) 4.52 (16.81 ms)
oclNbody 1 (10.63 s) 1.20 (8.82 s) 0.74 (14.36 s) 1.13 (9.44 s) 1.24 (8.59 s) 1.38 (7.70 s)
NaiveMatrixMul 1 (258.16 s) 33.44 (7.72 s) 4.10 (62.98 s) 4.55 (56.73 s) 43.76 (5.90 s) 41.44 (6.23 s)

kernels, oclFDTD3d and Stencil2D, improvements
on MIC are much lower than those on CPU. This is
because only a small portion of the execution time is
used for computation as the two kernels are highly
memory-intensive, so MIC can hardly show its su-
perior parallel capability. The intensity of mem-
ory accesses also results in the slightly lower per-
formances on MIC than those on CPU. On the other
hand, the NaiveMatrixMul kernel obtains huge per-
formance boosts because of both overhead removal
and data locality improvement.

To show the extent of performance improve-
ment achieved by OurOCL, performances of cor-
responding OpenMP implementations are also pre-
sented in Table 2. The OpenMP implementations
are based on the serial host implementations that
are used to verify the correctness of kernel execu-
tion and can be found in every adopted benchmark,
by properly adding OpenMP directives (execution
of the OpenMP implementations on MIC uses the
native mode). This kind of implementation does
not mean no other optimizations are conducted. We
note that multi-core/many-core specific optimiza-
tions have already been performed in some of the
host implementations, especially oclDCT8x8, and
the icc can also automatically carry out various op-
timizations more freely without the constraints from
OpenCL semantics. What is more, we note that the

compiler optimizations for MIC are more aggressive
and efficient than those for CPU. As a result, the per-
formance of oclDCT8x8 under MIC+OMP is slightly
better than the performance under MIC+OurOCL.
Although the OpenMP version of oclNbody is not
as optimized as oclDCT8x8, it reports a better
performance compared to MIC+OurOCL. The rea-
son is still under exploration, and we assume that
it is because oclNbody has a relatively simple ar-
ray access pattern and the scheduling strategy of
MIC is also more effective than the static scheduler
in OurOCL. Generally, improved OpenCL perfor-
mances with OurOCL on both CPU and MIC are
comparable with or even better than the OpenMP
implementations. This shows that our automated
code transformation with scheduler support can al-
leviate the negative factors in GPU-specific kernels
and enhance the performance to match the moder-
ately optimized CPU-specific implementations.

Fig. 12 shows the performance improvement
that is due to each step of architecture-adaptive
post optimizations on both CPU and MIC. Rela-
tive performances compared to the relevant origi-
nal GPU-specific kernels are reported in the figure.
Note that only oclMatrixMul and NaiveMatrixMul
under Sandy Bridge are provided with a performance
improvement at the last step, because only those
two have multiple candidate interchange schemes

914 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

after performing loop interchange. For the oth-
ers having a unique loop interchange scheme, the
last step is omitted. From Fig. 12, we can con-
clude that, for the coalesced kernel codes that suffer
from heavy losses in locality and lack of parallelism
after coalescing (oclMatrixMul, oclFDTD3d, oclN-
body), our post optimizations will aggressively ex-
tract parallelism and re-exploit locality. For those
coalesced codes of closer or even better performance
compared to the original GPU-specific kernels (Sten-
cil2D, oclDCT8x8), because the benefits of synchro-
nization and local memory elimination are compa-
rable with the potential losses in locality and par-
allelism, the optimizations can further improve the
performance.

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

(a)

(b)

oclMatrixMul oclFDTD3d Stencil2D

oclDCT8x8 oclNbody NaiveMatrixMul

0.02

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

0.01

0.02

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

Coalesced Vectorized Loop blocking

Step of post optimization

& interchange
Selection for

vector register
reuse

Fig. 12 Performance improvement compared to the
relevant original GPU-specific kernels due to each
step within post optimization: (a) CPU; (b) MIC

According to the figure, the vectorization for
oclMatrixMul and oclFDTD3d can greatly improve
the performance, and some improvements even ex-
ceed the SIMD length. The reason is that loop dis-
tribution and interchange are the first two steps of
the vectorization, which may also benefit the local-
ity, so an additional performance boost is achieved.
However, the vectorization for oclNbody results in

relatively low improvement, because the speeds and
positions of ‘bodies’ are arranged as short vectors,
similar to the array of structure pattern, which baf-
fles efficient vectorization between work-items. The
improvements of NaiveMatrixMul are almost the
same as those of oclMatrixMul, since the coalesced
codes of the two kernels are of the same execution
flow. Loop blocking is applicable to NaiveMatrix-
Mul, and after loop blocking the kernel becomes ex-
actly the same as oclMatrixMul.

7 Conclusions

To improve the performance portability of
OpenCL programs from GPUs to CPUs, code trans-
formation has been widely accepted. This pa-
per presents a novel transformation methodology
for GPU-specific OpenCL kernels targeting perfor-
mance portability on multi-core/many-core CPUs,
aiming at solving two particular problems that have
not been well addressed by existing transformation
methods. One is the potential side-effects induced
by using local-memory arrays on CPUs, including
redundant data copies and the accompanying costly
synchronizations; the other is the possibility of poor
data locality caused by neglecting or blindly inher-
iting locality embedded in the original GPU-specific
kernels.

A new array-access descriptor that can accu-
rately uncover the array access patterns of OpenCL
work-items is the foundation of our work. With the
help of descriptors derived from GPU-specific ker-
nels, our novel work-item coalescing method can re-
move all the harmful local-memory arrays together
with the obsolete barriers. Post optimizations for
coalesced kernel code include vectorization and data
locality re-exploitation, which not only extract par-
allelism and locality in the original GPU-specific ker-
nels, but also consider the architectural details of the
target platform. These transforming procedures are
implemented as a fully automated tool chain, accom-
panied with a scheduler that forms a new OpenCL
runtime.

Experiments are done on Sandy Bridge CPU
and Knights Corner MIC, two leading representa-
tives of the multi-core/many-core architecture. Mea-
surements show that, for GPU-specific kernels, our
new OpenCL implementation outperforms the pow-
erful Intel OpenCL runtime on both platforms. Im-

Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916 915

proved OpenCL performances of our runtime are
comparable with or even better than the perfor-
mances of corresponding OpenMP implementations.
This proves the effectiveness of our code transforma-
tion methodology.

Our proposed approach also exposes some lim-
itations. First, the linear descriptor of array access
can support only affine access patterns and cannot
be applied to indirect array accesses. Although some
application-specific techniques are proposed, it re-
mains an open problem in generic code transforma-
tion research. Second, since this study focuses on
the transformation techniques and uses only a sim-
ple static scheduling strategy, more effective schedule
methods for CPU architecture can be developed to
further boost the overall performance. Third, the
performance impact of local memory is a compli-
cated problem (Fang et al., 2014b), and our analysis
approach is limited to common usages of local mem-
ory. We will look further into this limitation and
improve the applicability of our work. Last but not
least, the transformation is restricted to the scope
within a single work-group, so some performance
factors regarding multiple cores such as the usage of
shared cache (L3 cache of Sandy Bridge and L2 cache
of Knights Corner) remain unexplored. We plan to
study inter-work-group optimization in future work.

References
Allen, R., Kennedy, K., 2002. Optimizing Compilers for

Modern Architectures: a Dependence-Based Approach.
Morgan Kaufmann, San Francisco.

Balasundaram, V., Kennedy, K., 1989. A technique for sum-
marizing data access and its use in parallelism enhanc-
ing transformations. ACM SIGPLAN Not., 24(7):41-
53. [doi:10.1145/74818.74822]

Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., et
al., 2008. A compiler framework for optimization of
affine loop nests for GPGPUs. Proc. 22nd Annual Int.
Conf. on Supercomputing, p.225-234. [doi:10.1145/
1375527.1375562]

Bastoul, C., 2004. Code generation in the polyhedral model
is easier than you think. Proc. 13th Int. Conf.
on Parallel Architectures and Compilation Techniques,
p.7-16. [doi:10.1109/PACT.2004.1342537]

Danalis, A., Marin, G., McCurdy, C., et al., 2010. The
scalable heterogeneous computing (SHOC) benchmark
suite. Proc. 3rd Workshop on General-Purpose Compu-
tation on Graphics Processing Units, p.63-74. [doi:10.
1145/1735688.1735702]

Dong, H., Ghosh, D., Zafar, F., et al., 2012. Cross-
platform OpenCL code and performance portability for
CPU and GPU architectures investigated with a cli-
mate and weather physics model. Proc. 41st Int. Conf.

on Parallel Processing Workshops, p.126-134. [doi:10.
1109/ICPPW.2012.19]

Du, P., Weber, R., Luszczek, P., et al., 2012. From CUDA to
OpenCL: towards a performance-portable solution for
multi-platform GPU programming. Parall. Comput.,
38(8):391-407. [doi:10.1016/j.parco.2011.10.002]

Fang, J., Sips, H., Jaaskelainen, P., et al., 2014a. Grover:
looking for performance improvement by disabling local
memory usage in OpenCL kernels. Proc. 43rd Int.
Conf. on Parallel Processing, p.162-171. [doi:10.1109/
ICPP.2014.25]

Fang, J., Sips, H., Varbanescu, A.L., 2014b. Aristotle:
a performance impact indicator for the OpenCL ker-
nels using local memory. Sci. Progr., 22(3):239-257.
[doi:10.3233/SPR-140390]

Freeocl, 2012. FreeOCL: multi-platform implementation of
OpenCL 1.2 targeting CPUs. Available from https://
code.google.com/p/freeocl [Accessed on Apr. 13, 2014].

Gummaraju, J., Morichetti, L., Houston, M., et al., 2010.
Twin peaks: a software platform for heterogeneous
computing on general-purpose and graphics processors.
Proc. 19th Int. Conf. on Parallel Architectures
and Compilation Techniques, p.205-216. [doi:10.1145/
1854273.1854302]

Huang, D., Wen, M., Xun, C., et al., 2014. Automated
transformation of GPU-specific OpenCL kernels tar-
geting performance portability on multi-core/many-core
CPUs. Proc. Euro-Par, p.210-221. [doi:10.1007/978-3-
319-09873-9_18]

Intel Corporation, 2012. A Guide to Vectorization with Intel
C++ Compilers.

Intel Corporation, 2013a. Intel C++ Intrinsic Refer-
ence. Available from https://software.intel.com/sites/
default/files/a6/22/18072-347603.pdf [Accessed on
Feb. 9, 2014]

Intel Corporation, 2013b. Intel SDK for OpenCL Appli-
cations XE 2013 Optimization Guide. Available from
http://software.intel.com/en-us/vcsource/tools/opencl-
sdk-xe/ [Accessed on Feb. 9, 2014]

Jang, B., Schaa, D., Mistry, P., et al., 2011. Exploiting mem-
ory access patterns to improve memory performance in
data-parallel architectures. IEEE Trans. Parall. Distr.
Syst., 22(1):105-118. [doi:10.1109/TPDS.2010.107]

Lattner, C., Adve, V., 2005. The LLVM compiler framework
and infrastructure tutorial. In: Eigenmann, R., Li,
Z.Y., Midkiff, S.P. (Eds.), Languages and Compilers for
High Performance Computing. Springer, p.15-16.

Lee, J., Kim, J., Seo, S., et al., 2010. An OpenCL frame-
work for heterogeneous multicores with local memory.
Proc. 19th Int. Conf. on Parallel Architectures
and Compilation Techniques, p.193-204. [doi:10.1145/
1854273.1854301]

LLVM Team and others, 2012. Clang: a C language family
frontend for LLVM. Available from http://clang.llvm.
org/ [Accessed on Apr. 13, 2014].

Munshi, A., 2011. The OpenCL specification. Available from
http://www.khronos.org/opencl [Accessed on Apr. 12,
2014]

Nvidia Corporation, 2011a. OpenCL Best Practices
Guide. Available from https://hpc.oit.uci.edu/nvidia-
doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Best_
Practices_Guide.pdf [Accessed on Feb. 10, 2014].

http://dx.doi.org/10.1145/74818.74822
http://dx.doi.org/10.1145/1375527.1375562
http://dx.doi.org/10.1145/1375527.1375562
http://dx.doi.org/10.1109/PACT.2004.1342537
http://dx.doi.org/10.1145/1735688.1735702
http://dx.doi.org/10.1145/1735688.1735702
http://dx.doi.org/10.1109/ICPPW.2012.19
http://dx.doi.org/10.1109/ICPPW.2012.19
http://dx.doi.org/10.1016/j.parco.2011.10.002
http://dx.doi.org/10.1109/ICPP.2014.25
http://dx.doi.org/10.1109/ICPP.2014.25
http://dx.doi.org/10.3233/SPR-140390
http://dx.doi.org/10.1145/1854273.1854302
http://dx.doi.org/10.1145/1854273.1854302
http://dx.doi.org/10.1007/978-3-319-09873-9_18
http://dx.doi.org/10.1007/978-3-319-09873-9_18
http://dx.doi.org/10.1109/TPDS.2010.107
http://dx.doi.org/10.1145/1854273.1854301
http://dx.doi.org/10.1145/1854273.1854301

916 Wen et al. / Front Inform Technol Electron Eng 2015 16(11):899-916

Nvidia Corporation, 2011b. OpenCL Programming
Guide for the CUDA Architecture. Available
from https://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/
OpenCL/doc/OpenCL_Programming_Guide.pdf [Ac-
cessed on Feb. 10, 2014].

Paek, Y., Hoeflinger, J., Padua, D., 2002. Efficient and
precise array access analysis. ACM Trans. Progr.
Lang. Syst., 24(1):65-109. [doi:10.1145/509705.509708]

Pennycook, S.J., Hammond, S.D., Wright, S.A., et al.,
2013. An investigation of the performance portability of
OpenCL. J. Parall. Distr. Comput., 73(11):1439-1450.
[doi:10.1016/j.jpdc.2012.07.005]

Phothilimthana, P.M., Ansel, J., Ragan-Kelley, J., et al.,
2013. Portable performance on heterogeneous architec-
tures. Proc. 18th Int. Conf. on Architechtural Support
for Programming Languages and Operating Systems,
p.431-444. [doi:10.1145/2451116.2451162]

Rul, S., Vandierendonck, H., D’Haene, J., et al., 2010.
An experimental study on performance portability of
OpenCL kernels. Symp. on Application Accelera-
tors in High Performance Computing. Available from
https://biblio.ugent.be/publication/1016024

Shen, Z., Li, Z., Yew, P., 1990. An empirical study of
Fortran programs for parallelizing compilers. IEEE
Trans. Parall. Distr. Syst., 1(3):356-364. [doi:10.1109/
71.80162]

Steven, S.M., 1997. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, San Francisco.

Stratton, J.A., Stone, S.S., Hwu, W.M.W., 2008. MCUDA:
an effective implementation of CUDA kernels for multi-
core CPUs. Proc. 21st Int. Workshop on Lan-
guages and Compilers for Parallel Computing, p.16-30.
[doi:10.1007/978-3-540-89740-8_2]

Stratton, J.A., Grover, V., Marathe, J., et al., 2010. Efficient
compilation of fine-grained SPMD threaded programs
for multicore CPUs. Proc. 8th Annual IEEE/ACM
Int. Symp. on Code Generation and Optimization,
p.111-119. [doi:10.1145/1772954.1772971]

Stratton, J.A., Kim, H., Jablin, T.B., et al., 2013. Perfor-
mance portability in accelerated parallel kernels. Tech-
nical Report No. IMPACT-13-01, Center for Reliable
and High-Performance Computing, University of Illi-
nois at Urbana-Champaign, IL.

TOP500.org, 2014. TOP500 lists: November 2014. Avail-
able from http://top500.org/lists/2014/11/ [Accessed
on Nov. 29, 2014].

Triolet, R., Irigoin, F., Feautrier, P., 1986. Direct paral-
lelization of call statements. ACM SIGPLAN Not.,
21(7):176-185. [doi:10.1145/13310.13329]

http://dx.doi.org/10.1145/509705.509708
http://dx.doi.org/10.1016/j.jpdc.2012.07.005
http://dx.doi.org/10.1145/2451116.2451162
http://dx.doi.org/10.1109/71.80162
http://dx.doi.org/10.1109/71.80162
http://dx.doi.org/10.1007/978-3-540-89740-8_2
http://dx.doi.org/10.1145/1772954.1772971
http://dx.doi.org/10.1145/13310.13329

	Introduction
	Related work
	A linear descriptor of array access
	Transforming GPU-specific OpenCL kernels
	Analysis-based coalescing
	Eliminating unnecessary local-memory arrays
	Dependence analysis and synchronization elimination

	Architecture-adaptive post optimizations
	Vectorization
	Data locality re-exploitation

	A fully automated tool chain and a supporting scheduler
	Performance evaluation
	Conclusions

