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Abstract:    In this paper, we address fault-diagnosis agreement (FDA) problems in distributed wireless networks (DWNs) with 
arbitrary fallible nodes and healthy access points. We propose a new algorithm to reach an agreement among fault-free members 
about the faulty ones. The algorithm is designed for fully connected DWN and can also be easily adapted to partially connected 
networks. Our contribution is to reduce the bit complexity of the Byzantine agreement process by detecting the same list of faulty 
units in all fault-free members. Therefore, the malicious units can be removed from other consensus processes. Also, each healthy 
unit detects a local list of malicious units, which results in lower packet transmissions in the network. Our proposed algorithm 
solves FDA problems in 2t+1 rounds of packet transmissions, and the bit complexity in each wireless node is O(nt+1). 
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1  Introduction 
 

Distributed wireless networks (DWNs), such as 
mobile ad hoc networks (MANETs), vehicular ad hoc 
networks (VANETs), and wireless sensor networks 
(WSNs), may experience several types of failures that 
can result in faulty operation of the network and, in 
some cases, complete shutdown of network devices. 
Such faults can range from communication-based 
faults to software and hardware failures and mal-
functions, which may introduce inaccurate infor-
mation into the network. On the other hand, faulty 
behavior of a single node in distributed networks can 
interfere with the task of other units. Many applica-
tions, such as distributed clock synchronization and 
cooperative estimation and motion coordination 
(Jiang and He, 2005; Colon Osorio, 2007; Hsieh and 
Chiang, 2013; Wu and Rabbat, 2013; Silvestre et al., 
2014), need a consensus-based approach to help the 

members reach a common value. Researchers in pre-
vious studies have considered the consensus problem 
in two different approaches. From the first point of 
view, all network members are considered as 
fault-free units (Alekeish and Ezhilchelvan, 2012; 
Maggs et al., 2012). Therefore, there is no adverse 
condition affecting the consensus process. In fact, this 
approach considers all network members as fault-free 
members, and the main goal is to find a common 
value among the members. Maggs et al. (2012) pro-
posed average consensus algorithms for the clock 
synchronization problem in the WSNs. The algo-
rithms compensate clock jitters in each unit. From the 
second point of view, the distributed network subjects 
to various kinds of failure. The Byzantine agreement 
(BA) (Lamport et al., 1982; Wang SC et al., 1995; 
Wang SS et al., 2010) problem is one of the 
well-known problems in the area of distributed con-
sensus. Since the introduction of BA by Lamport et al. 
(1982), various algorithms have been proposed for 
different network models (Okun and Barak, 2008; 
Wang et al., 2010; Pasqualetti et al., 2012). While BA 
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has been studied extensively over the years, the 
original model has mostly continued to be used for 
different topologies. 

A DWN is a system of distributed wireless nodes 
communicating using access points. The access 
points allow a distributed network to have a complete 
connectivity graph and also result in a larger network 
topology by connecting to other access points. The 
main goal of different studies is to develop an opti-
mum algorithm to minimize the number of message 
exchange rounds and communication bits, and also to 
increase the number of allowable faulty units in the 
system. Many algorithms have been designed to solve 
the BA problem in different network structures, such 
as generalized connected and ad hoc networks (Wang 
et al., 1995; Chiang et al., 2009). Pease et al. (1980) 
presented an algorithm to solve the BA problem for 
fully connected networks in t+1 rounds, where t is the 
number of arbitrary faulty nodes in network N (|N|=n, 
n>3t, and |·| gives the number of nodes in network N). 
In general, all the algorithms designed to solve the BA 
problem must satisfy the following conditions: 

1. All fault-free processors should agree on a 
common value. 

2. If the source processor is fault-free, then all 
fault-free processors should consider the initial value 
of the source as the agreement value. 

In this paper, the term ‘processor’ is used for 
faulty or fault-free wireless nodes and a router is 
named an access point. 

Fischer and Lynch (1982) showed that t+1 
rounds are necessary for solving any BA problem. In 
fact, local fault diagnosis will not help solve the BA 
problem in fewer rounds. When a faulty unit is de-
tected by the network, there is no agreement between 
fault-free units about the detection of this fault. In 
other words, a fault-free unit does not know whether a 
specific faulty unit is detected by other fault-free units 
or not. 

Many fault-diagnosis algorithms have been 
proposed to achieve a reliable distributed system. The 
main aim of fault diagnosis is to isolate faulty pro-
cessors from the network for a better management of 
the network resources. There are two well-known 
types of fault-diagnosis approaches, namely test- 
based approaches (Wang et al., 1990; Elhadef et al., 
2007) and evidence-based approaches (Buskens and 
Bianchini, 1993; Hsiao et al., 2000; Ayeb and Farhat, 

2004). Test-based approaches consist of a test phase 
in which a tester processor uses some test methods on 
the target units to check whether they are faulty or not. 
However, this type of approach is not well applicable 
in malicious systems in which the processors may 
have arbitrary faults. In contrast, evidence-based 
approaches use the information collected from the 
network, usually in consensus processes like BA, to 
detect faulty processors. 

Fault-diagnosis models can also be divided into 
non-agreement (Ayeb and Farhat, 2004; Khosravi et 
al., 2011) and agreement-based (Hsiao et al., 2000) 
models. In non-agreement models, the list of detected 
faulty units may be different from one unit to another. 
In contrast, in agreement-based models, all fault-free 
processors find the same set of faulty units and mali-
cious behavior of faulty units that does not affect the 
process. By solving the fault-diagnosis agreement 
(FDA) problem, faulty units could be removed from 
message transmissions, and this will help solve the 
BA problem in fewer rounds. All FDA algorithms 
must satisfy the following conditions: 

1. Consensus: all the fault-free processors should 
detect the same set of faulty processors. 

2. Fairness: no fault-free processor is falsely 
detected as a faulty unit by any fault-free processor. 

Ayeb and Farhat (2004) proposed some efficient 
strategies for masking and locating faulty units. Their 
algorithm is an early stopping algorithm for solving 
the BA problem, which results in fewer rounds. 
However, their fault-detecting algorithm is an 
NP-hard problem in a general case and will intensify 
the computational complexity when the network size 
increases. Furthermore, they proposed a local 
fault-diagnosis model for situations in which the 
healthy members did not agree on the list of faults. 

The FDAMIX algorithm (Hsiao et al., 2000) 
uses the BA framework to solve the FDA problem. 
FDAMIX examines information collected from the 
BA solution to locate faulty processors. At the end of 
the message exchange phase in a network with n 
processors, the BA process must be performed n times 
on the stored message sets in each processor to find a 
common set of faulty units in all the processors. In 
fact, FDAMIX requires a huge number of messages 
be exchanged between the processors to solve the 
FDA problem. The algorithm proposed in this study 
reduces the number of message exchange rounds, 
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while increasing the number of detected faulty units. 
Each unit has two sets of faulty units. The first set 
stores locally detected faulty units, and the second set 
stores the detected faulty units that are common be-
tween the fault-free processors. Therefore, the num-
ber of faults detected using the proposed algorithm is 
increased compared to previous algorithms. 

Our contributions in this paper include solving 
the FDA problem for a DWN, reducing bit complex-
ity and transmission complexity of the FDA problem, 
and reducing bit complexity and transmission com-
plexity of the BA problem by finding a local list of 
faults. 

 
 

2  The proposed algorithm 
 
In the FDAMIX algorithm (Hsiao et al., 2000), 

all arbitrary faulty units are detected at the end of the 
agreement process. However, the arbitrary faulty 
nodes are detected during the BA process in this study. 
Therefore, as a faulty unit is detected locally by some 
fault-free processors, the fault-free processors stop 
transmitting messages to the detected faulty processor. 
The network members in the proposed algorithm 
make an agreement about diagnosis of faulty units at 
the end of the FDA phase, and the detected faulty 
nodes are removed from the subsequent consensus 
processes. We assumed a fully connected DWN with 
reliable access points and arbitrary fallible processors 
in a synchronous environment. The definitions and 
terms used in this study are as follows: 

S: the source processor of the BA process; 
V: the set of all possible values for the BA 

problem, V={0, 1, λ}, where λ is a default value such 
as NIL (not in list) or zero; 

t: the maximum number of arbitrary faulty units; 
pa: the set of locally faulty units detected by a 

fault-free processor; 
pc: a list of globally faulty units detected in all 

fault-free processors; 

val ( )k
i jP : the value sent from processor Pj to Pi 

at level (round) k; 
FU(Pj): indicating that Pj is a faulty unit. 

2.1  Basic fault identification concepts 

Consider a network N with n processors and 
(n−1)/3 arbitrary faulty processors (Fig. 1). At first, 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
the source processor S sends its initial value to the rest 

of the network. Therefore, 1val ( )i S  will be the value 

received by processor Pi from the source processor at 
the first level of exchanging message. In the second 
round, all receiver processors retransmit the received 
value from the source processor S to other members. 
All processors store the received values in an  
evidence-gathering tree (EG-tree) structure. The 
EG-tree for a fault-free processor contains the mes-
sages received from the neighbors. Similarly, in the 
third round, all non-source processors transmit the 
stored messages from the second round to other units 
and the received messages are stored at the third level 
of the EG-tree. In general, the source processor might 
also have arbitrary faults and send different values to 
different processors. In this case, all non-faulty pro-
cessors must agree on a common value, either the 
majority of transmitted values or the default value λ. 

Assume that the fault-free processor Pi has a 
(t+1)-level EG-tree as depicted in Fig. 2. In general, 
processors at level k of the message exchange phase 
send the stored messages from level k−1 to processor 

Pi. Let 1val ( ) val( )k
i j j iP P P   be the values that Pi 

receives directly from processor Pj at level k−1 and 
1val (val ( )) val( )k k

i v j j v iP P P P   be the same values 

received by Pi from Pj via Pv at level k. Therefore, the 
following statement holds: 

 
if val( ) val( ) then

FU( ) FU( ),

j i j v i

j v

P P P P P

P P




             (1) 

 
where ‘ ’ is the logical OR symbol. 

Fig. 1  A fully connected network with n processors and 

(n−1)/3 faulty processors 
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Since there is a disagreement between the values 

transmitted by Pv and Pj, and Pi is a fault-free receiver, 
at least one of the processors Pv and Pj is faulty. This 
fact is shown by the statement                              , and 
we call it a probabilistic statement as is depicted in 
Eq. (1). By comparing the stored messages at the jth 
column of the matrices and at the kth level of the 
EG-tree, Pi generates a set of probabilistic statements 
as follows: 
 

1 2{FU( ) FU( ),FU( ) FU( ),

},     , ,

i v j v j

v j

P P P P P

P P N

  





   (2) 

 
where ∑Pi is the set of probabilistic statements in 
processor Pi related to the jth column of the matrices 
at the EG-tree and {Pv1, Pv2, …} are the processors 

that send different values from 1val ( ) val( )k
i j j iP P P   

at level k−1. ∑Pi always leads to a prime argument as 
follows: 

 

1 2{FU( ) (FU( ) FU( ) )}, , ,j v v v jP P P P P N       

      (3) 
 

where ‘ ’ is the logical AND symbol. 
Based on Eqs. (1) and (3), at least one of the 

statements FU(Pj) and 1 2(FU( ) FU( ) )v vP P   must 

hold. The statement 1 2(FU( ) FU( ) )v vP P   implies 

that all the processors v={Pv1, Pv2, …} must be faulty. 
On the other hand, there are at most t faulty units in 
the network: 

 

if | | then FU( ).jv t P                 (4) 

 
Eq. (4) implies that if the number of processors 

in set {Pv1, Pv2, …} is greater than t, then the  

 
 
 
 
 
 
 
 
 
 

statement 1 2(FU( ) FU( ) )v vP P   cannot be a diag- 

nosis of faults; therefore, FU(Pj) holds. 
Let pa={Pj1, Pj2, …} (|pa|=τ) be the set of faulty 

processors detected by the fault-free processor Pi. All 
probabilistic statements containing at least one of the 
units of pa must be removed from the set of proba-
bilistic statements, since they have no more infor-
mation about the undetected faulty units. Also, re-
moving the unacceptable statements from a prime 
argument as used in Eq. (3) would be based on t−τ 
faulty processors. 

Let the following be the jth matrix at the kth 
level of the EG-tree of processor Pi and also suppose 
Pi to be a fault-free unit: 

 
1 1 1

1 2 1val ( ) [val ( ) val ( ) val ( )].k k k k
i j j j j nP P P P  

   

 
Using a similar argument, Pi compares each 

column of val ( )k
i jP  (i=1, 2, …, n−1) with the corre-

sponding directly received value from P1, P2, …, Pn−1 
at level k−1 and prepares a new set of probabilistic 

statements. For example, if 1
1val ( )k

j vP  is different 

from 1
1val ( )k

i vP , then a new probabilistic statement, 

1FU( ) FU( )v jP P , is obtained. 

Let Pi be a fault-free receiver processor and the 
matrices depicted in Fig. 3 be the messages stored at 
the kth level of the EG-tree. Also, suppose that Pj is a 
processor whose faulty status Pi wants to verify. 
Processor Pi identifies a set of different processors 
that have accused processor Pj. For this purpose, 
processor Pi compares the shaded section of the 
EG-tree in Fig. 3 with the values received directly 
from the corresponding processors at level k−1, and if 
there is a mismatch between the received messages, 
then the accuser processor is added to the list of pro-
cessors that accuse Pj of being faulty, called the  

Fig. 2  A (t+1)-level EG-tree of processor Pi in Fig. 1 
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accuser list, denoted as ALj. Let t and |pa|=τ be the 
maximum number of faulty processors in the network 
and the number of faulty processors detected by Pi, 
respectively. When a new processor is going to be 
added to ALj, it has to be checked that the processor 
does not belong to pa. Therefore, Rule 1 is used to 
identify faulty units in processor Pi: 
 
Rule 1    If |ALj|>t−τ then FU(Pj). 

 
If the fault of Pj is not detected using Rule 1, 

continue adding new accuser processors to ALj in the 
next rounds. As soon as Pj is detected as a faulty 
processor, it is added to pa, and the related matrices 
and parameters of Pj for detection of other faulty units 
will be removed from the list of accusers. 

2.2  Byzantine agreement phase 

This subsection illustrates the BA phase for the 
proposed algorithm. The BA phase is the first stage of 
the consensus process. This phase consists of two 
parallel subphases: message exchange and local fault 
diagnosis. The message exchange phase starts when 
the source processor transmits its initial value to all 
other processors, and since then the message ex-
change process is used to build a (t+1)-level EG-tree 
in each fault-free processor. The proposed algorithm 
benefits from the stored messages, which help iden-
tify faulty processors. 

Using Rule 1, processors detect faulty units in 
each round. The list of detected faulty processors, pa, 
for each fault-free processor is a set of locally de-
tected faulty units. Therefore, at the end of the mes-
sage exchange phase, all processors detect |pa| faulty 
units locally. Fig. 4 shows the procedure for finding 
the agreement value in fault-free processor Pi. Now, 
all processors are ready to move to the FDA phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3  Fault-diagnosis agreement phase 

To obtain a same set of faulty units for all fault- 
free processors, the processors are moved to the FDA 
phase. Using this phase, a general decision could be 
made on the detection of faulty processors. In this 
phase, there is no initial source processor as we know 
from the original BA problem. However, processors 
use their list of detected faulty processors, pa, as the 
initial value received from a ‘virtual source’. This 
phase consists of two subphases, namely, fault list 
exchange and global detection of faulty units. 

The fault list exchange subphase is similar to the 
message exchange phase mentioned in Section 2.2. In 
this phase, each processor sends the list of detected 
faulty units, pa, to other units. To provide a better 
vision to the exchange of lists of faulty units, each list 
is shown in a binary format. For example, if there are 
seven processors in network N and pa={S, P5} for 
processor P2, then pa is given as follows: 

 
pa=[1  0  0  0  0  1  0].                   (5) 

 
Values 1 and 0 in Eq. (5) indicate faulty and 

fault-free statuses of a unit, respectively. 
A tree structure similar to the EG-tree, called 

Fig. 3  Level k of the EG-tree stored in processor Pi (The 
shaded area is used to check the faulty status of Pj) 

Fig. 4  Finding the Byzantine agreement value in fault- 
free processor Pi (T=source processor and MAJ is the 
majority function) 
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FG-tree, is used here to store the detected faulty sets 
received from processors. Fig. 5 shows the FG-tree of 
Pi for two rounds. The FDA phase needs t+1 message 
exchange rounds for the agreement. If we consider pa 
as the set of faulty units detected by Pi, then 

1
aval ( )i iP p  is considered as the value sent from the 

virtual source, as is presented in Fig. 5. Each pro-
cessor sends its list of detected faulty units in a second 
round to other processors. In next rounds, the pro-
cessors send the latest stored messages in their 
FG-tree to the rest of the network. However, vertices 
with repeated index are excluded from message 
transmission. For example, if val(PjPi) is the value 
received by Pi from Pj in the current round, then Pi 
would not send it to Pj in the next round to save en-
ergy. When processors have prepared a (t+1)-level 
FG-tree, they are ready to move to the subphase of 
global detection of faulty units and determine which 
of the detected faulty units is detected by all fault-free  
processors. 
 
 
 
 
 
 
 
 
 
 
 
 

In the subphase of global detection of faulty 
units, processors make a common decision about the 
faulty status of each processor in the network and put 
the commonly detected faulty units in list pc. For this 
purpose, a decision-making strategy is implemented 
on each column of received lists of faulty units. Fig. 6 
shows the flowchart of the subphase of global detec-
tion of faulty units. Fault-free processor Pi uses the 
messages stored at level θ=k to prepare the voted 
messages for level θ=k−1. Therefore, when Pi pre-
pares the final matrix of voted messages at level θ=2, 
this matrix can be used to make an agreement about 
the detection of faulty units. Let [val(P1), val(P2), …, 
val(Pn−1)] be the prepared matrix of voted messages at 
the second level of the FG-tree. If the number of el-
ements with value 1 in [val(P1), val(P2), …, val(Pn−1)] 

corresponding to processor Pjk (Pjkpc and Pjk≠Pj) is 
more than t−|pc|, then processor Pi adds Pj to pc. 

The procedure in Fig. 6 is repeated for all col-
umns of pa to determine the statuses of all processors. 
An example is provided in the following section to 
illustrate different aspects of the proposed algorithm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  An example of execution of the proposed 
algorithm 
 

This section shows how the proposed algorithm 
acts using an example. A network N={S, P1, P2, …, P6} 
with seven processors and two faulty processors {S, 
P6} are considered. The worst case in the BA problem 
is when the source processor is faulty. Therefore, this 
situation is considered for the example. 

The process starts by the source processor 
transmitting its initial value to other processors. Since 
the source processor is supposed to be faulty, it might 
transmit arbitrary values to the rest of the processors. 
According to the number of faulty units in the net-
work, the BA problem needs (7 1)/3 1 3      

rounds of message exchange. Therefore, the message 
exchange continues for three rounds to prepare a 
three-level EG-tree in each processor. Consider that 
the faulty source sends {1, 1, 1, 1, 0, 0} to {P1, P2, P3, 
P4, P5, P6} in the first round of message exchange, 

Fig. 5  The FG-tree stored in processor Pi for two levels 
(T=source processor) 

1val ( )i iP
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respectively. At the next round, the processors send 
the received value from the source processor to each 
other. Fig. 7 shows the EG-tree saved in fault-free 
processor P1 for three rounds. Based on the EG-tree 
and Rule 1, processor P1 locates faulty units in the 
network. From data stored at the second level of the 
EG-tree, P1 adds {P5, P6} to ALS. Also, it can be seen 
that the source processor accuses both P5 and P6. 
Therefore, S is added to ALP5 and ALP6. From the 
received messages at the third level, P6 is added to 
ALP4 and ALP5 and {S, P4, P5} is added to ALP6. 
Fig. 8 shows the detailed fault detection procedure 
from the data stored at the EG-tree in Fig. 7. Proces-
sor P1 has pa={}, pc={}, and t=2 so far. Since 
|ALP6|=3>t−|pa|, P6 is detected as a faulty unit and is 
added to pa by P1. Now, a new faulty unit is detected, 
and P1 must reconsider the evidence received from 
other processors. Therefore, P6 is removed from ALS, 
ALP4, and ALP5, and also the maximum number of 
undetected faulty units decreases to t−|pa|=1. How-
ever, ALS={P5} and ALP4={}, and therefore, no new 
faulty processor is detected using Rule 1. 
 
 
 
 
 
 
 
 
 
 
 

At the end of the message exchange phase, the 
processors move to the decision-making phase to find 
the agreement value. To find the agreement value, the 
last level of the EG-tree should be modified by re-
moving redundant values. The majority function 
(MAJ) is performed on each column of the EG-tree to 
reconstruct the EG-tree in the previous round. Fig. 9 
shows the procedure of finding the agreement value 
from the modified EG-tree. Since P1 is a fault-free 
receiver, the majority function is used only to find the 
values of other processors, and the value received 
directly from the source by P1 helps find the final 
agreement at the second level as depicted in Fig. 9.  

Next, all processors proceed to the next phase to 
make an agreement about the detection of faulty units. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
At the beginning of the FDA phase, P1 has pa={P6} 
and is ready to send it to other processors. However, 
in the BA phase, processors P2, P3, P4, and P5 have 
detected pa={P6}, pa={P6}, pa={P6}, and pa={S, P6}, 
respectively, and pa={S, P5}, a random value, for P6 is 
sent to P1. In the fault list exchange subphase, pro-
cessors send their detected faulty units to each other. 
Fig. 10 shows the stored FG-tree in P1 for three 
rounds. 

When all processors prepare a three-level 
FG-tree, they are ready to find the commonly detected 
faulty processors from the FG-tree. For this purpose, 
two sets of values should be removed from the last 

1
1val ( ) 1S 
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2
1 5val ( ) 0P 
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3
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3
1 5val ( ) 1 1 1 1 0 1P    
3
1 6val ( ) 1 1 1 0 0 0P    

Fig. 7  A three-level EG-tree for processor P1 in the 
example 

Fig. 8  Local fault diagnosis in processor P1 during the 
Byzantine agreement process 

Fig. 9  Decision-making phase to find the Byzantine 
agreement value in processor P1 
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level of FG-trees. First, if P1 is verifying the status of 
Pj, then the majority of values indicating Pj’s opinion 
about its own faulty status should be removed from 
the FG-tree. Second, processor P1 does not need to 
identify its own faulty status. Therefore, the majority 
function is not performed on the related values. 

Fig. 11 illustrates the subphase of global detec-
tion of faulty units in processor P1. The shaded area in 
Fig. 11 indicates the vertices that have performed the 
majority function on them, and the resultant values at 
the bottom are the values to be replaced at the second 
level. However, since P1 is the receiver processor, it is 
not necessary to find the majority of values for P1 at 

the third level, and 1
1 1val ( )P  would be used for this 

purpose. As soon as the FG-tree is reconstructed at the 
second level, an agreement is made about the faulty 
processors. For this purpose, P1 counts the number of 
elements with value 1 at the columns of the second 
level to verify the condition of the corresponding 
processor. At first, P1 has pc={}, and if the number of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

elements with value 1 in all jth columns is larger than 
t−|pc|=2, then Pj−1 is faulty (considering P0=S). Based 
on this, P1 adds P6 to pc, and this means that all 
fault-free processors have also detected pc={P6}. 
Next, P1 rechecks messages at the second level, this 

time using t−|pc|=1 bound and noticing that 2
1 6val ( )P  

must be removed from the messages first. As shown 
in Fig. 11, no new faulty unit is added to pc and pro-
cessor P1 finishes the algorithm by pa={} as a set of 
locally detected faulty units and pc={P6} as an FDA 
list. By detecting a common set of faults, processors 
can make a decision to remove faulty processors from 
the network or rearrange the network structure based 
on this agreement. 

The next section provides proofs for correctness 
of the proposed algorithm. Also, the complexity of the 
proposed algorithm is compared with those of pre-
vious algorithms in terms of the number of message 
exchange rounds and bit complexity. 
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Fig. 10  The FG-tree stored in processor P1 in FDA’s subphase of global detection of faulty units 

Fig. 11  The subphase of global detection of faulty units in processor P1 
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4  Correctness of the proposed algorithm 
 
This section provides the proofs for the cor-

rectness of the proposed algorithm. At first, we show 
in Theorem 1 that no fault-free processor is detected 
as a faulty unit by the rest of the fault-free processors 
in the FDA phase. In other words, the FDA phase 
makes agreement only about detecting faulty units 
and satisfies the fairness condition. 
Theorem 1    Let N (|N|=n) be a network of wireless 
agents, P0, P1, …, Pn−1 its members, and Pj1, Pj2, ..., Pjt 
the faulty units with ( 1) / 3t n     the maximum 

number of faulty units in N. If Pi is a fault-free pro-
cessor in N, then there will be no agreement about 
detection of Pi as a faulty unit among fault-free pro-
cessors using the proposed algorithm. 
Proof    Since there are at most t faulty units in the 
network and therefore |ALPi|≤t for all fault-free units, 
no fault-free processor sends pa={Pi} in the FDA 
message exchange phase. Based on this fact, there are 
at most ( 1) / 3t n     faulty units that may send 

pa={Pi} to fault-free processors in this phase. This 
situation can be rephrased to a situation in which a 
‘virtual’ fault-free source sends pa={0} to network N 
and only the existing t faulty processors may change 
this value. However, by considering the virtual source 
as a member of N, there will be n+1 processors in the 
network and the virtual source acts as a fault-free 
processor. By removing the values of Pi from the 
message exchange process in the FDA phase, there 
will be n processors in the network and n>3t+1. 
Therefore, by implementing the decision-making 
strategy on the FG-tree and preparing the majority of 
values at the second level, there will be at most 

( 1) / 3t n     elements from Pj1, Pj2, ..., Pjt with 

pa={1}, which indicates Pi is a faulty unit. When pc={} 
in all processors, then c( 1) / 3n t p      and no 

processor adds Pi to pc. On the other hand, if pc≠{}, 
then there will be an agreement about diagnosis of 
some faulty units among fault-free processors, and the 
values related to the detected faulty unit are removed 
from the FG-trees. Based on this, in a general case, the 
number of faulty units that have sent pa={Pi} to the 
network and whose values are not removed from 
FG-trees is not larger than c( 1) / 3n p    , and the 

term c c( 1) / 3n p t p       is true in all fault-free 

processors. 

Based on Theorem 2, whenever the status of a 
faulty processor is checked in the FDA phase, we can 
suppose that a virtual faulty source has sent different 
values to different processors. Also, it shows that this 
situation does not affect the FDA phase. 
Theorem 2    Let N (|N|=n) be a network, P0, P1, …, 

Pn−1 its members, and Pj1, Pj2, ..., Pjt the faulty units 

with ( 1) / 3t n     the maximum number of faulty 

units in network N. If Pj is a faulty unit, then the re-

constructed FG-tree at the second level in the sub-

phase of global detection of faulty units is common in 

all fault-free processors. 

Proof    Network N with t faulty processors needs t+1 
rounds of message exchange to reach the agreement 
among its processors. In the case of the faulty source 
in the BA problem, the values reconstructed in the 
decision-making phase at the second level of all tree 
structures are common among all fault-free proces-
sors. To illustrate the case, suppose that the source 
processor has sent value 0 to n′ processors and value 1 
to n′ processors in a network with totally n=2n′+1 
processors. Since BA results in a common value in all 
fault-free processors and also the resultant majority of 
values at the second level relating to fault-free pro-
cessors are the same as their received values from the 
source processor, the values related to faulty proces-
sors must be common at the reconstructed second 
level of all tree structures to have a common agree-
ment. In the FDA phase and the subphase of global 
detection of faulty units, when processors want to 
verify the faulty status of processor Pj, the exchanged 
values of Pj are removed from the FG-trees. Therefore, 
the number of remaining faulty units decreases to t−1. 
On the other hand, Pj is detected as a faulty unit by 
some of the processors, i.e., Pjpa for some proces-
sors and Pjpa for others. This situation is similar to 
the case of the virtual faulty source sending pa=1 and 
pa=0 to different processors. However, by removing 
the values of faulty processor Pj and considering the 
effects of the virtual faulty source, the number of 
allowable faulty units does not exceed t bound. 
Therefore, the numbers of elements with values ‘1’ 
and ‘0’ are the same at the second level of all FG-trees 
after the subphase of global detection of faulty units. 

It has been shown in Theorem 2 that if the pro-
cessors check the faulty status of a faulty processor in 



Khosravi et al. / Front Inform Technol Electron Eng   2016 17(9):885-896 894

the FDA phase, then the reconstructed matrices at the 
second level of all FG-trees are the same. Theorem 3 
shows how to find the faulty status of a unit from the 
stored data at the second level. 
Theorem 3    Let N (|N|=n) be a network, P0, P1, …, 
Pn−1 its members, and Pj1, Pj2, ..., Pjt the faulty units 

with ( 1) / 3t n     the maximum number of faulty 

units in network N. Let Pj′1, Pj′2, ..., Pj′k be the mem-
bers of pc and val2(Pj′1), val2(Pj′2), …, val2(Pj′k) be 
removed from all FG-trees in the subphase of global 
detection of faulty units. If in the FDA phase, to check 
the status of Pj, there are more than t−|pc| elements 
with value ‘1’ at the second level of the reconstructed 
FG-tree of fault-free processor Pi, then Pj is a faulty 
unit. 
Proof    Suppose that the fault-free processor Pi has 

sent 1val 1i   to the rest of the processors in the mes-

sage exchange phase of BA. Since there are not more 
than ( 1) / 3n     faulty processors affecting the MAJ 

function in the decision-making phase and recon-

structing the tree structures in processors, 1val 1i   is 

stored at the second level of all tree structures after the 
reconstruction phase. First, suppose pc={}. If the 
number of elements with value 1 at the second level 
of the reconstructed FG-trees equals τ and τ>t, since 
there are at most t faulty processors in the network, 
the receiver processor is sure that at least one of the 
accuser transmitter processors is fault-free, and based 
on Theorem 1 and Ayeb and Farhat (2004), Pj is de-
tected as a faulty unit. When pc≠{}, data from pro-
cessors that are members of pc are removed from the 
second level of the FG-trees. Therefore, the maxi-
mum number of remaining faulty units in the network 
is t−|pc|, and if τ>t−|pc|, then it results in the detection 
of faulty Pj. 
Corollary 1    From Theorems 1–3, it is observed that 
the proposed algorithm satisfies the FDA conditions, 
and pc is the common list of faults detected in 
fault-free processors and also pa is the local list of 
detected faults. 
Corollary 2    The proposed algorithm needs 2t+1 
rounds of message exchange to solve BA and FDA 
problems simultaneously. 
Corollary 3    The bit complexity for the BA problem 
in the proposed algorithm is O(nt) and for the FDA 
problem is O(nt+1). 

5  Performance analysis 
 
The algorithm proposed in this study aims to 

solve the FDA problem in a distributed environment. 
The algorithm has three properties: (1) It can detect 
locally a high percentage of malicious faulty units 
during the BA process; (2) It implements a new 
agreement framework to make an agreement among 
fault-free processors about diagnosis of faulty units; 
(3) The faulty units detected globally are removed 
from the next consensus processes to decrease the 
number of message exchange rounds. 

The proposed algorithm needs 2t+1 message 
exchange rounds to solve the BA and FDA problems 
simultaneously, in comparison to the (n+1)(t+1) 
rounds required by the algorithm proposed by Hsiao 
et al. (2000). Also, the bit complexity is improved 
from O(n2t+1) to O(nt+1) in the proposed algorithm to 
solve the FDA problem. Table 1 compares the pro-
posed algorithm with some known fault-diagnosis 
algorithms. The proposed algorithm is able to detect 
high percentages of faulty units with minimum mes-
sage overheads. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Here, we investigate the fault-diagnosis capa-

bility of the proposed algorithm in the presence of 
Byzantine faults. For this reason, we simulate a 
communication network N (|N|=n) with a complete 
network graph. The network has ( 1) / 3n     Byzan-

tine faulty units. Each processor has two sets of values 
at the end of the algorithm, including globally de-
tected faulty units and locally detected faulty pro-
cessors. The numbers of globally and locally detected 
faulty processors per 100 runs are presented in Fig. 12, 
for different fault rates of Byzantine units. The fault 
rate of Byzantine units is modeled as the rate of  

Table 1  Comparison of FDA algorithms 

Algorithm 
Local fault 
diagnosis

Bit com-
plexity 

Number of 
rounds 

Consensus

BA FDA

Hsiao et al. 
(2000) 

‒ O(n2t+1) (n+1)(t+1) √ √

Ayeb and 
Farhat (2004)

√ O(nt−ρ) t+1−ρ √ ‒

Chiang et al. 
(2009) 

√ O(n) 3 ‒ ‒

Our method √ O(nt+1) 2t+1 √ √

The algorithm in Ayeb and Farhat (2004) can stop message trans-
mission based on the number of detected faulty units 
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randomness of their transmitted value or the proba-
bility of altering the value received from the neigh-
bors. One can predict that the percentage of revealed 
faults increases with a higher fault rate. For fault rates 
higher than 10%, the chance of detecting a faulty unit 
increases dramatically (Fig. 12b). This is because 
increasing the number of transmitted messages (evi-
dence) in the network helps a healthy processor find a 
faulty unit.  

The proposed algorithm is able to identify faulty 
processors locally, which is not possible in previous 
studies. As presented in Fig. 12a, each healthy pro-
cessor has two sets of detected faults. The globally 
detected fault set is the only set that was identified by 
Hsiao et al. (2000). However, one can notice from 
Fig. 12a that for lower fault rates, the number of faults 
detected globally (FDA) is considerably lower than 
that of faults detected locally. 

Fig. 13 shows the effect of network size on the 
performance of the proposed algorithm. For a smaller 
network, a small chance exists for healthy members to 
identify the faulty processors. Generally, for networks  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

with less than 7 nodes (where there is only one Byz-
antine unit), regardless of the fault rate, there is a 
small chance of reaching the FDA. In contrast, for 
larger networks, the chance of reaching FDA im-
proves dramatically. As presented in Fig. 13b, the 
fault rate of Byzantine units has a small effect on the 
number of faulty units detected for larger networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions and future work 
 
In this paper, we provide a solid solution for the 

fault-diagnosis problem using the framework of the 
Byzantine general problem. The proposed solution is 
compared with prominent Byzantine agreement (BA) 
algorithms in terms of the number of required mes-
sage transmissions and packet size complexity. The 
proposed solution simplifies the solution of fault- 
diagnosis agreement (FDA) and BA problems in 
complete graph networks. We provide a new  
evidence-based fault-diagnosis algorithm that  

Fig. 12  Number of faults detected in processor P1: (a) 
faults detected globally and locally; (b) total number of 
faults detected 

Fig. 13  Number of faults detected locally (a) and globally 
(b) in processor P1 for different network sizes (FR: fail-
ure rate) 
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benefits from contradictory transmissions of Byzan-
tine members to reveal their faulty behavior. 

BA is a challenging problem in distributed sys-
tems and may lead to impossibility in some network 
topologies where the network graph is incomplete. 
Also, the problem suffers from synchronization and 
requires varying rounds to find the agreement. As an 
alternative to a definite solution for the BA problem, 
one can consider almost sure solutions. Computing 
the probability of a value being the agreement value 
and improving this probability will be an open prob-
lem for future work. 
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