
Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 885

Autonomous fault-diagnosis and decision-making algorithm for

determining faulty nodes in distributed wireless networks

Adel KHOSRAVI†, Yousef SEIFI KAVIAN
(Electrical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz 61357-43337, Iran)

†E-mail: a-khosravi@phdstu.scu.ac.ir

Received June 2, 2015; Revision accepted July 26, 2015; Crosschecked Aug. 16, 2016

Abstract: In this paper, we address fault-diagnosis agreement (FDA) problems in distributed wireless networks (DWNs) with
arbitrary fallible nodes and healthy access points. We propose a new algorithm to reach an agreement among fault-free members
about the faulty ones. The algorithm is designed for fully connected DWN and can also be easily adapted to partially connected
networks. Our contribution is to reduce the bit complexity of the Byzantine agreement process by detecting the same list of faulty
units in all fault-free members. Therefore, the malicious units can be removed from other consensus processes. Also, each healthy
unit detects a local list of malicious units, which results in lower packet transmissions in the network. Our proposed algorithm
solves FDA problems in 2t+1 rounds of packet transmissions, and the bit complexity in each wireless node is O(nt+1).

Key words: Fault diagnosis, Decision making, Byzantine agreement, Distributed wireless networks, Consensus
http://dx.doi.org/10.1631/FITEE.1500176 CLC number: TP393

1 Introduction

Distributed wireless networks (DWNs), such as
mobile ad hoc networks (MANETs), vehicular ad hoc
networks (VANETs), and wireless sensor networks
(WSNs), may experience several types of failures that
can result in faulty operation of the network and, in
some cases, complete shutdown of network devices.
Such faults can range from communication-based
faults to software and hardware failures and mal-
functions, which may introduce inaccurate infor-
mation into the network. On the other hand, faulty
behavior of a single node in distributed networks can
interfere with the task of other units. Many applica-
tions, such as distributed clock synchronization and
cooperative estimation and motion coordination
(Jiang and He, 2005; Colon Osorio, 2007; Hsieh and
Chiang, 2013; Wu and Rabbat, 2013; Silvestre et al.,
2014), need a consensus-based approach to help the

members reach a common value. Researchers in pre-
vious studies have considered the consensus problem
in two different approaches. From the first point of
view, all network members are considered as
fault-free units (Alekeish and Ezhilchelvan, 2012;
Maggs et al., 2012). Therefore, there is no adverse
condition affecting the consensus process. In fact, this
approach considers all network members as fault-free
members, and the main goal is to find a common
value among the members. Maggs et al. (2012) pro-
posed average consensus algorithms for the clock
synchronization problem in the WSNs. The algo-
rithms compensate clock jitters in each unit. From the
second point of view, the distributed network subjects
to various kinds of failure. The Byzantine agreement
(BA) (Lamport et al., 1982; Wang SC et al., 1995;
Wang SS et al., 2010) problem is one of the
well-known problems in the area of distributed con-
sensus. Since the introduction of BA by Lamport et al.
(1982), various algorithms have been proposed for
different network models (Okun and Barak, 2008;
Wang et al., 2010; Pasqualetti et al., 2012). While BA

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

 ORCID: Adel KHOSRAVI, http://orcid.org/0000-0002-8493-4462
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 886

has been studied extensively over the years, the
original model has mostly continued to be used for
different topologies.

A DWN is a system of distributed wireless nodes
communicating using access points. The access
points allow a distributed network to have a complete
connectivity graph and also result in a larger network
topology by connecting to other access points. The
main goal of different studies is to develop an opti-
mum algorithm to minimize the number of message
exchange rounds and communication bits, and also to
increase the number of allowable faulty units in the
system. Many algorithms have been designed to solve
the BA problem in different network structures, such
as generalized connected and ad hoc networks (Wang
et al., 1995; Chiang et al., 2009). Pease et al. (1980)
presented an algorithm to solve the BA problem for
fully connected networks in t+1 rounds, where t is the
number of arbitrary faulty nodes in network N (|N|=n,
n>3t, and |·| gives the number of nodes in network N).
In general, all the algorithms designed to solve the BA
problem must satisfy the following conditions:

1. All fault-free processors should agree on a
common value.

2. If the source processor is fault-free, then all
fault-free processors should consider the initial value
of the source as the agreement value.

In this paper, the term ‘processor’ is used for
faulty or fault-free wireless nodes and a router is
named an access point.

Fischer and Lynch (1982) showed that t+1
rounds are necessary for solving any BA problem. In
fact, local fault diagnosis will not help solve the BA
problem in fewer rounds. When a faulty unit is de-
tected by the network, there is no agreement between
fault-free units about the detection of this fault. In
other words, a fault-free unit does not know whether a
specific faulty unit is detected by other fault-free units
or not.

Many fault-diagnosis algorithms have been
proposed to achieve a reliable distributed system. The
main aim of fault diagnosis is to isolate faulty pro-
cessors from the network for a better management of
the network resources. There are two well-known
types of fault-diagnosis approaches, namely test-
based approaches (Wang et al., 1990; Elhadef et al.,
2007) and evidence-based approaches (Buskens and
Bianchini, 1993; Hsiao et al., 2000; Ayeb and Farhat,

2004). Test-based approaches consist of a test phase
in which a tester processor uses some test methods on
the target units to check whether they are faulty or not.
However, this type of approach is not well applicable
in malicious systems in which the processors may
have arbitrary faults. In contrast, evidence-based
approaches use the information collected from the
network, usually in consensus processes like BA, to
detect faulty processors.

Fault-diagnosis models can also be divided into
non-agreement (Ayeb and Farhat, 2004; Khosravi et
al., 2011) and agreement-based (Hsiao et al., 2000)
models. In non-agreement models, the list of detected
faulty units may be different from one unit to another.
In contrast, in agreement-based models, all fault-free
processors find the same set of faulty units and mali-
cious behavior of faulty units that does not affect the
process. By solving the fault-diagnosis agreement
(FDA) problem, faulty units could be removed from
message transmissions, and this will help solve the
BA problem in fewer rounds. All FDA algorithms
must satisfy the following conditions:

1. Consensus: all the fault-free processors should
detect the same set of faulty processors.

2. Fairness: no fault-free processor is falsely
detected as a faulty unit by any fault-free processor.

Ayeb and Farhat (2004) proposed some efficient
strategies for masking and locating faulty units. Their
algorithm is an early stopping algorithm for solving
the BA problem, which results in fewer rounds.
However, their fault-detecting algorithm is an
NP-hard problem in a general case and will intensify
the computational complexity when the network size
increases. Furthermore, they proposed a local
fault-diagnosis model for situations in which the
healthy members did not agree on the list of faults.

The FDAMIX algorithm (Hsiao et al., 2000)
uses the BA framework to solve the FDA problem.
FDAMIX examines information collected from the
BA solution to locate faulty processors. At the end of
the message exchange phase in a network with n
processors, the BA process must be performed n times
on the stored message sets in each processor to find a
common set of faulty units in all the processors. In
fact, FDAMIX requires a huge number of messages
be exchanged between the processors to solve the
FDA problem. The algorithm proposed in this study
reduces the number of message exchange rounds,

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 887

while increasing the number of detected faulty units.
Each unit has two sets of faulty units. The first set
stores locally detected faulty units, and the second set
stores the detected faulty units that are common be-
tween the fault-free processors. Therefore, the num-
ber of faults detected using the proposed algorithm is
increased compared to previous algorithms.

Our contributions in this paper include solving
the FDA problem for a DWN, reducing bit complex-
ity and transmission complexity of the FDA problem,
and reducing bit complexity and transmission com-
plexity of the BA problem by finding a local list of
faults.

2 The proposed algorithm

In the FDAMIX algorithm (Hsiao et al., 2000),

all arbitrary faulty units are detected at the end of the
agreement process. However, the arbitrary faulty
nodes are detected during the BA process in this study.
Therefore, as a faulty unit is detected locally by some
fault-free processors, the fault-free processors stop
transmitting messages to the detected faulty processor.
The network members in the proposed algorithm
make an agreement about diagnosis of faulty units at
the end of the FDA phase, and the detected faulty
nodes are removed from the subsequent consensus
processes. We assumed a fully connected DWN with
reliable access points and arbitrary fallible processors
in a synchronous environment. The definitions and
terms used in this study are as follows:

S: the source processor of the BA process;
V: the set of all possible values for the BA

problem, V={0, 1, λ}, where λ is a default value such
as NIL (not in list) or zero;

t: the maximum number of arbitrary faulty units;
pa: the set of locally faulty units detected by a

fault-free processor;
pc: a list of globally faulty units detected in all

fault-free processors;

val ()k
i jP : the value sent from processor Pj to Pi

at level (round) k;
FU(Pj): indicating that Pj is a faulty unit.

2.1 Basic fault identification concepts

Consider a network N with n processors and
(n−1)/3 arbitrary faulty processors (Fig. 1). At first,

the source processor S sends its initial value to the rest

of the network. Therefore, 1val ()i S will be the value

received by processor Pi from the source processor at
the first level of exchanging message. In the second
round, all receiver processors retransmit the received
value from the source processor S to other members.
All processors store the received values in an
evidence-gathering tree (EG-tree) structure. The
EG-tree for a fault-free processor contains the mes-
sages received from the neighbors. Similarly, in the
third round, all non-source processors transmit the
stored messages from the second round to other units
and the received messages are stored at the third level
of the EG-tree. In general, the source processor might
also have arbitrary faults and send different values to
different processors. In this case, all non-faulty pro-
cessors must agree on a common value, either the
majority of transmitted values or the default value λ.

Assume that the fault-free processor Pi has a
(t+1)-level EG-tree as depicted in Fig. 2. In general,
processors at level k of the message exchange phase
send the stored messages from level k−1 to processor

Pi. Let 1val () val()k
i j j iP P P  be the values that Pi

receives directly from processor Pj at level k−1 and
1val (val ()) val()k k

i v j j v iP P P P  be the same values

received by Pi from Pj via Pv at level k. Therefore, the
following statement holds:

if val() val() then

FU() FU(),

j i j v i

j v

P P P P P

P P




 (1)

where ‘ ’ is the logical OR symbol.

Fig. 1 A fully connected network with n processors and

(n−1)/3 faulty processors

Source processor

Fault-free processor

Byzantine processor

S

P1

Pi

Pj

Pn−1

...

...

... ...

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 888

Since there is a disagreement between the values

transmitted by Pv and Pj, and Pi is a fault-free receiver,
at least one of the processors Pv and Pj is faulty. This
fact is shown by the statement , and
we call it a probabilistic statement as is depicted in
Eq. (1). By comparing the stored messages at the jth
column of the matrices and at the kth level of the
EG-tree, Pi generates a set of probabilistic statements
as follows:

1 2{FU() FU(),FU() FU(),

}, , ,

i v j v j

v j

P P P P P

P P N

  





 (2)

where ∑Pi is the set of probabilistic statements in
processor Pi related to the jth column of the matrices
at the EG-tree and {Pv1, Pv2, …} are the processors

that send different values from 1val () val()k
i j j iP P P 

at level k−1. ∑Pi always leads to a prime argument as
follows:

1 2{FU() (FU() FU())}, , ,j v v v jP P P P P N     

 (3)

where ‘ ’ is the logical AND symbol.
Based on Eqs. (1) and (3), at least one of the

statements FU(Pj) and 1 2(FU() FU())v vP P  must

hold. The statement 1 2(FU() FU())v vP P  implies

that all the processors v={Pv1, Pv2, …} must be faulty.
On the other hand, there are at most t faulty units in
the network:

if | | then FU().jv t P (4)

Eq. (4) implies that if the number of processors

in set {Pv1, Pv2, …} is greater than t, then the

statement 1 2(FU() FU())v vP P  cannot be a diag-

nosis of faults; therefore, FU(Pj) holds.
Let pa={Pj1, Pj2, …} (|pa|=τ) be the set of faulty

processors detected by the fault-free processor Pi. All
probabilistic statements containing at least one of the
units of pa must be removed from the set of proba-
bilistic statements, since they have no more infor-
mation about the undetected faulty units. Also, re-
moving the unacceptable statements from a prime
argument as used in Eq. (3) would be based on t−τ
faulty processors.

Let the following be the jth matrix at the kth
level of the EG-tree of processor Pi and also suppose
Pi to be a fault-free unit:

1 1 1

1 2 1val () [val () val () val ()].k k k k
i j j j j nP P P P  

 

Using a similar argument, Pi compares each

column of val ()k
i jP (i=1, 2, …, n−1) with the corre-

sponding directly received value from P1, P2, …, Pn−1
at level k−1 and prepares a new set of probabilistic

statements. For example, if 1
1val ()k

j vP is different

from 1
1val ()k

i vP , then a new probabilistic statement,

1FU() FU()v jP P , is obtained.

Let Pi be a fault-free receiver processor and the
matrices depicted in Fig. 3 be the messages stored at
the kth level of the EG-tree. Also, suppose that Pj is a
processor whose faulty status Pi wants to verify.
Processor Pi identifies a set of different processors
that have accused processor Pj. For this purpose,
processor Pi compares the shaded section of the
EG-tree in Fig. 3 with the values received directly
from the corresponding processors at level k−1, and if
there is a mismatch between the received messages,
then the accuser processor is added to the list of pro-
cessors that accuse Pj of being faulty, called the

Fig. 2 A (t+1)-level EG-tree of processor Pi in Fig. 1

FU() FU()j vP P

1val ()i S

2 1
1 1

2 1
2 2

2 1
1 1

val () val ()

val () val ()

val () val ()

i

i

i n n

P S

P S

P S 

   
   

   



1
1 1 1 1 2 1 1

1
2 2 1 2 2 2 1

1
1 1 1 1 2 1 1

val () val () val () ... val ()

val () val () val () ... val ()

val () val () val () ... val ()

t t t t
i n

t t t t
i n

t t t t
i n n n n n

P P P P

P P P P

P P P P








    

   

   

   





Processor Pi

Level 1 Level 2 Level t+1

valt+1(Pj): value received by Pi from Pj at level t+1vali

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 889

accuser list, denoted as ALj. Let t and |pa|=τ be the
maximum number of faulty processors in the network
and the number of faulty processors detected by Pi,
respectively. When a new processor is going to be
added to ALj, it has to be checked that the processor
does not belong to pa. Therefore, Rule 1 is used to
identify faulty units in processor Pi:

Rule 1 If |ALj|>t−τ then FU(Pj).

If the fault of Pj is not detected using Rule 1,

continue adding new accuser processors to ALj in the
next rounds. As soon as Pj is detected as a faulty
processor, it is added to pa, and the related matrices
and parameters of Pj for detection of other faulty units
will be removed from the list of accusers.

2.2 Byzantine agreement phase

This subsection illustrates the BA phase for the
proposed algorithm. The BA phase is the first stage of
the consensus process. This phase consists of two
parallel subphases: message exchange and local fault
diagnosis. The message exchange phase starts when
the source processor transmits its initial value to all
other processors, and since then the message ex-
change process is used to build a (t+1)-level EG-tree
in each fault-free processor. The proposed algorithm
benefits from the stored messages, which help iden-
tify faulty processors.

Using Rule 1, processors detect faulty units in
each round. The list of detected faulty processors, pa,
for each fault-free processor is a set of locally de-
tected faulty units. Therefore, at the end of the mes-
sage exchange phase, all processors detect |pa| faulty
units locally. Fig. 4 shows the procedure for finding
the agreement value in fault-free processor Pi. Now,
all processors are ready to move to the FDA phase.

2.3 Fault-diagnosis agreement phase

To obtain a same set of faulty units for all fault-
free processors, the processors are moved to the FDA
phase. Using this phase, a general decision could be
made on the detection of faulty processors. In this
phase, there is no initial source processor as we know
from the original BA problem. However, processors
use their list of detected faulty processors, pa, as the
initial value received from a ‘virtual source’. This
phase consists of two subphases, namely, fault list
exchange and global detection of faulty units.

The fault list exchange subphase is similar to the
message exchange phase mentioned in Section 2.2. In
this phase, each processor sends the list of detected
faulty units, pa, to other units. To provide a better
vision to the exchange of lists of faulty units, each list
is shown in a binary format. For example, if there are
seven processors in network N and pa={S, P5} for
processor P2, then pa is given as follows:

pa=[1 0 0 0 0 1 0]. (5)

Values 1 and 0 in Eq. (5) indicate faulty and

fault-free statuses of a unit, respectively.
A tree structure similar to the EG-tree, called

Fig. 3 Level k of the EG-tree stored in processor Pi (The
shaded area is used to check the faulty status of Pj)

Fig. 4 Finding the Byzantine agreement value in fault-
free processor Pi (T=source processor and MAJ is the
majority function)

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 890

FG-tree, is used here to store the detected faulty sets
received from processors. Fig. 5 shows the FG-tree of
Pi for two rounds. The FDA phase needs t+1 message
exchange rounds for the agreement. If we consider pa
as the set of faulty units detected by Pi, then

1
aval ()i iP p is considered as the value sent from the

virtual source, as is presented in Fig. 5. Each pro-
cessor sends its list of detected faulty units in a second
round to other processors. In next rounds, the pro-
cessors send the latest stored messages in their
FG-tree to the rest of the network. However, vertices
with repeated index are excluded from message
transmission. For example, if val(PjPi) is the value
received by Pi from Pj in the current round, then Pi
would not send it to Pj in the next round to save en-
ergy. When processors have prepared a (t+1)-level
FG-tree, they are ready to move to the subphase of
global detection of faulty units and determine which
of the detected faulty units is detected by all fault-free
processors.

In the subphase of global detection of faulty
units, processors make a common decision about the
faulty status of each processor in the network and put
the commonly detected faulty units in list pc. For this
purpose, a decision-making strategy is implemented
on each column of received lists of faulty units. Fig. 6
shows the flowchart of the subphase of global detec-
tion of faulty units. Fault-free processor Pi uses the
messages stored at level θ=k to prepare the voted
messages for level θ=k−1. Therefore, when Pi pre-
pares the final matrix of voted messages at level θ=2,
this matrix can be used to make an agreement about
the detection of faulty units. Let [val(P1), val(P2), …,
val(Pn−1)] be the prepared matrix of voted messages at
the second level of the FG-tree. If the number of el-
ements with value 1 in [val(P1), val(P2), …, val(Pn−1)]

corresponding to processor Pjk (Pjkpc and Pjk≠Pj) is
more than t−|pc|, then processor Pi adds Pj to pc.

The procedure in Fig. 6 is repeated for all col-
umns of pa to determine the statuses of all processors.
An example is provided in the following section to
illustrate different aspects of the proposed algorithm.

3 An example of execution of the proposed
algorithm

This section shows how the proposed algorithm
acts using an example. A network N={S, P1, P2, …, P6}
with seven processors and two faulty processors {S,
P6} are considered. The worst case in the BA problem
is when the source processor is faulty. Therefore, this
situation is considered for the example.

The process starts by the source processor
transmitting its initial value to other processors. Since
the source processor is supposed to be faulty, it might
transmit arbitrary values to the rest of the processors.
According to the number of faulty units in the net-
work, the BA problem needs (7 1)/3 1 3    

rounds of message exchange. Therefore, the message
exchange continues for three rounds to prepare a
three-level EG-tree in each processor. Consider that
the faulty source sends {1, 1, 1, 1, 0, 0} to {P1, P2, P3,
P4, P5, P6} in the first round of message exchange,

Fig. 5 The FG-tree stored in processor Pi for two levels
(T=source processor)

1val ()i iP

2 1

2 1
1 1 1

2 1
2 2 2

2 1
1 1 1

val () val ()

val () val ()

val () val ()

val () val ()

i T

i

i

i n n n

T T

P P

P P

P P  

   
   
   

   




Fig. 6 Flowchart of the subphase of global detection of
faulty units in processor Pi to check the status of Pj

Yes

No

θ=θ−1

Rebuild FG-tree at level θ−1 using:
valθ−1(Pj′)=MAJ[valθ(Pj′Pj1), valθ(Pj′Pj2), ..., valθ(Pj′Pjk)]
for i≠j′

Pj pc

Start

Remove all vali(PjkPj) (value sent by Pjk to Pj

and then sent by Pj to Pi) from last level of FG-
tree.

θ=t+1

θ=2?

∑{val(Pjk)|val(Pjk) FG-tree,
Pjk≠Pj pc}>t−|pc|?

Pj pc

FG-tree=
[val(S), val(P1), val(P2), …,
val(Pn−1)]

i i i i

No

Yes

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 891

respectively. At the next round, the processors send
the received value from the source processor to each
other. Fig. 7 shows the EG-tree saved in fault-free
processor P1 for three rounds. Based on the EG-tree
and Rule 1, processor P1 locates faulty units in the
network. From data stored at the second level of the
EG-tree, P1 adds {P5, P6} to ALS. Also, it can be seen
that the source processor accuses both P5 and P6.
Therefore, S is added to ALP5 and ALP6. From the
received messages at the third level, P6 is added to
ALP4 and ALP5 and {S, P4, P5} is added to ALP6.
Fig. 8 shows the detailed fault detection procedure
from the data stored at the EG-tree in Fig. 7. Proces-
sor P1 has pa={}, pc={}, and t=2 so far. Since
|ALP6|=3>t−|pa|, P6 is detected as a faulty unit and is
added to pa by P1. Now, a new faulty unit is detected,
and P1 must reconsider the evidence received from
other processors. Therefore, P6 is removed from ALS,
ALP4, and ALP5, and also the maximum number of
undetected faulty units decreases to t−|pa|=1. How-
ever, ALS={P5} and ALP4={}, and therefore, no new
faulty processor is detected using Rule 1.

At the end of the message exchange phase, the
processors move to the decision-making phase to find
the agreement value. To find the agreement value, the
last level of the EG-tree should be modified by re-
moving redundant values. The majority function
(MAJ) is performed on each column of the EG-tree to
reconstruct the EG-tree in the previous round. Fig. 9
shows the procedure of finding the agreement value
from the modified EG-tree. Since P1 is a fault-free
receiver, the majority function is used only to find the
values of other processors, and the value received
directly from the source by P1 helps find the final
agreement at the second level as depicted in Fig. 9.

Next, all processors proceed to the next phase to
make an agreement about the detection of faulty units.

At the beginning of the FDA phase, P1 has pa={P6}
and is ready to send it to other processors. However,
in the BA phase, processors P2, P3, P4, and P5 have
detected pa={P6}, pa={P6}, pa={P6}, and pa={S, P6},
respectively, and pa={S, P5}, a random value, for P6 is
sent to P1. In the fault list exchange subphase, pro-
cessors send their detected faulty units to each other.
Fig. 10 shows the stored FG-tree in P1 for three
rounds.

When all processors prepare a three-level
FG-tree, they are ready to find the commonly detected
faulty processors from the FG-tree. For this purpose,
two sets of values should be removed from the last

1
1val () 1S 

2
1 1val () 1P 
2
1 2val () 1P 
2
1 3val () 1P 
2
1 4val () 1P 
2
1 5val () 0P 
2
1 6val () 0P 

3
1 1val () 1 1 1 1 0 0P    
3
1 2val () 1 1 1 1 0 0P    
3
1 3val () 1 1 1 1 0 0P    
3
1 4val () 1 1 1 1 0 0P    
3
1 5val () 1 1 1 1 0 1P    
3
1 6val () 1 1 1 0 0 0P    

Fig. 7 A three-level EG-tree for processor P1 in the
example

Fig. 8 Local fault diagnosis in processor P1 during the
Byzantine agreement process

Fig. 9 Decision-making phase to find the Byzantine
agreement value in processor P1

1
1val () 1S 

3
1 1val () 1 1 1 0 0P    
3
1 2val () 1 1 0 0P     
3
1 3val () 1 1 0 1P     
3
1 4val () 1 1 0 0P     
3
1 5val () 1 1 1 1P     
3
1 6val () 1 1 0 0P     

1 1 1 0 0  

1

1

1

1

0

0

 
 
 
 
 
 
 
 
  

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 892

level of FG-trees. First, if P1 is verifying the status of
Pj, then the majority of values indicating Pj’s opinion
about its own faulty status should be removed from
the FG-tree. Second, processor P1 does not need to
identify its own faulty status. Therefore, the majority
function is not performed on the related values.

Fig. 11 illustrates the subphase of global detec-
tion of faulty units in processor P1. The shaded area in
Fig. 11 indicates the vertices that have performed the
majority function on them, and the resultant values at
the bottom are the values to be replaced at the second
level. However, since P1 is the receiver processor, it is
not necessary to find the majority of values for P1 at

the third level, and 1
1 1val ()P would be used for this

purpose. As soon as the FG-tree is reconstructed at the
second level, an agreement is made about the faulty
processors. For this purpose, P1 counts the number of
elements with value 1 at the columns of the second
level to verify the condition of the corresponding
processor. At first, P1 has pc={}, and if the number of

elements with value 1 in all jth columns is larger than
t−|pc|=2, then Pj−1 is faulty (considering P0=S). Based
on this, P1 adds P6 to pc, and this means that all
fault-free processors have also detected pc={P6}.
Next, P1 rechecks messages at the second level, this

time using t−|pc|=1 bound and noticing that 2
1 6val ()P

must be removed from the messages first. As shown
in Fig. 11, no new faulty unit is added to pc and pro-
cessor P1 finishes the algorithm by pa={} as a set of
locally detected faulty units and pc={P6} as an FDA
list. By detecting a common set of faults, processors
can make a decision to remove faulty processors from
the network or rearrange the network structure based
on this agreement.

The next section provides proofs for correctness
of the proposed algorithm. Also, the complexity of the
proposed algorithm is compared with those of pre-
vious algorithms in terms of the number of message
exchange rounds and bit complexity.

 

1
1 1val ()

0,0,0,0,0,0,1

P 

2
1

2
1 1

2
1 2

2
1 3

2
1 4

2
1 5

2
1 6

val () {0,0,0,0,0,0,0}

val () {0,0,0,0,0,0,1}

val () {0,0,0,0,0,0,1}

val () {0,0,0,0,0,0,1}

val () {0,0,0,0,0,0,1}

val () {1,0,0,0,0,0,1}

val () {1,0,0,0,0,1,0}

S

P

P

P

P

P

P















3
1

3
1 1

3
1

val () {0,0,0,0,0,0,1} {1,0,0,0,0,0,1} {0,0,0,0,0,0,1} {1,1,0,0,0,0,1} {1,0,0,0,0,1,0}

val () {0,0,0,0,0,0,0} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1} {1,0,0,0,0,0,1} {1,0,0,0,0,1,0}

val

S

P

    

   

2

3
1 3

3
1 4

() {0,0,0,0,0,0,0} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1} {1,0,0,0,0,0,1} {1,0,0,0,0,1,0}

val () {0,0,0,0,0,0,0} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1} {1,0,0,0,0,0,1} {0,0,0,0,0,1,0}

val () {0,0,0,0,0,0,

P

P

P

    

    



3
1 5

3
1 6

0} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1} {1,0,0,0,0,0,1} {0,0,0,0,0,0,0}

val () {0,0,0,0,0,0,0} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1} {1,0,0,0,0,1,0}

val () {0,0,0,0,0,0,0} {1,0,0,0,0,0,1}

P

P

   

    

  {1,0,0,0,0,0,0} {0,0,0,0,0,0,1} {0,0,0,0,0,0,1}   

Processor P1

Level 1 Level 2 Level 3

Fig. 10 The FG-tree stored in processor P1 in FDA’s subphase of global detection of faulty units

Fig. 11 The subphase of global detection of faulty units in processor P1

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 893

4 Correctness of the proposed algorithm

This section provides the proofs for the cor-

rectness of the proposed algorithm. At first, we show
in Theorem 1 that no fault-free processor is detected
as a faulty unit by the rest of the fault-free processors
in the FDA phase. In other words, the FDA phase
makes agreement only about detecting faulty units
and satisfies the fairness condition.
Theorem 1 Let N (|N|=n) be a network of wireless
agents, P0, P1, …, Pn−1 its members, and Pj1, Pj2, ..., Pjt
the faulty units with (1) / 3t n    the maximum

number of faulty units in N. If Pi is a fault-free pro-
cessor in N, then there will be no agreement about
detection of Pi as a faulty unit among fault-free pro-
cessors using the proposed algorithm.
Proof Since there are at most t faulty units in the
network and therefore |ALPi|≤t for all fault-free units,
no fault-free processor sends pa={Pi} in the FDA
message exchange phase. Based on this fact, there are
at most (1) / 3t n    faulty units that may send

pa={Pi} to fault-free processors in this phase. This
situation can be rephrased to a situation in which a
‘virtual’ fault-free source sends pa={0} to network N
and only the existing t faulty processors may change
this value. However, by considering the virtual source
as a member of N, there will be n+1 processors in the
network and the virtual source acts as a fault-free
processor. By removing the values of Pi from the
message exchange process in the FDA phase, there
will be n processors in the network and n>3t+1.
Therefore, by implementing the decision-making
strategy on the FG-tree and preparing the majority of
values at the second level, there will be at most

(1) / 3t n    elements from Pj1, Pj2, ..., Pjt with

pa={1}, which indicates Pi is a faulty unit. When pc={}
in all processors, then c(1) / 3n t p     and no

processor adds Pi to pc. On the other hand, if pc≠{},
then there will be an agreement about diagnosis of
some faulty units among fault-free processors, and the
values related to the detected faulty unit are removed
from the FG-trees. Based on this, in a general case, the
number of faulty units that have sent pa={Pi} to the
network and whose values are not removed from
FG-trees is not larger than c(1) / 3n p    , and the

term c c(1) / 3n p t p      is true in all fault-free

processors.

Based on Theorem 2, whenever the status of a
faulty processor is checked in the FDA phase, we can
suppose that a virtual faulty source has sent different
values to different processors. Also, it shows that this
situation does not affect the FDA phase.
Theorem 2 Let N (|N|=n) be a network, P0, P1, …,

Pn−1 its members, and Pj1, Pj2, ..., Pjt the faulty units

with (1) / 3t n    the maximum number of faulty

units in network N. If Pj is a faulty unit, then the re-

constructed FG-tree at the second level in the sub-

phase of global detection of faulty units is common in

all fault-free processors.

Proof Network N with t faulty processors needs t+1
rounds of message exchange to reach the agreement
among its processors. In the case of the faulty source
in the BA problem, the values reconstructed in the
decision-making phase at the second level of all tree
structures are common among all fault-free proces-
sors. To illustrate the case, suppose that the source
processor has sent value 0 to n′ processors and value 1
to n′ processors in a network with totally n=2n′+1
processors. Since BA results in a common value in all
fault-free processors and also the resultant majority of
values at the second level relating to fault-free pro-
cessors are the same as their received values from the
source processor, the values related to faulty proces-
sors must be common at the reconstructed second
level of all tree structures to have a common agree-
ment. In the FDA phase and the subphase of global
detection of faulty units, when processors want to
verify the faulty status of processor Pj, the exchanged
values of Pj are removed from the FG-trees. Therefore,
the number of remaining faulty units decreases to t−1.
On the other hand, Pj is detected as a faulty unit by
some of the processors, i.e., Pjpa for some proces-
sors and Pjpa for others. This situation is similar to
the case of the virtual faulty source sending pa=1 and
pa=0 to different processors. However, by removing
the values of faulty processor Pj and considering the
effects of the virtual faulty source, the number of
allowable faulty units does not exceed t bound.
Therefore, the numbers of elements with values ‘1’
and ‘0’ are the same at the second level of all FG-trees
after the subphase of global detection of faulty units.

It has been shown in Theorem 2 that if the pro-
cessors check the faulty status of a faulty processor in

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 894

the FDA phase, then the reconstructed matrices at the
second level of all FG-trees are the same. Theorem 3
shows how to find the faulty status of a unit from the
stored data at the second level.
Theorem 3 Let N (|N|=n) be a network, P0, P1, …,
Pn−1 its members, and Pj1, Pj2, ..., Pjt the faulty units

with (1) / 3t n    the maximum number of faulty

units in network N. Let Pj′1, Pj′2, ..., Pj′k be the mem-
bers of pc and val2(Pj′1), val2(Pj′2), …, val2(Pj′k) be
removed from all FG-trees in the subphase of global
detection of faulty units. If in the FDA phase, to check
the status of Pj, there are more than t−|pc| elements
with value ‘1’ at the second level of the reconstructed
FG-tree of fault-free processor Pi, then Pj is a faulty
unit.
Proof Suppose that the fault-free processor Pi has

sent 1val 1i  to the rest of the processors in the mes-

sage exchange phase of BA. Since there are not more
than (1) / 3n    faulty processors affecting the MAJ

function in the decision-making phase and recon-

structing the tree structures in processors, 1val 1i  is

stored at the second level of all tree structures after the
reconstruction phase. First, suppose pc={}. If the
number of elements with value 1 at the second level
of the reconstructed FG-trees equals τ and τ>t, since
there are at most t faulty processors in the network,
the receiver processor is sure that at least one of the
accuser transmitter processors is fault-free, and based
on Theorem 1 and Ayeb and Farhat (2004), Pj is de-
tected as a faulty unit. When pc≠{}, data from pro-
cessors that are members of pc are removed from the
second level of the FG-trees. Therefore, the maxi-
mum number of remaining faulty units in the network
is t−|pc|, and if τ>t−|pc|, then it results in the detection
of faulty Pj.
Corollary 1 From Theorems 1–3, it is observed that
the proposed algorithm satisfies the FDA conditions,
and pc is the common list of faults detected in
fault-free processors and also pa is the local list of
detected faults.
Corollary 2 The proposed algorithm needs 2t+1
rounds of message exchange to solve BA and FDA
problems simultaneously.
Corollary 3 The bit complexity for the BA problem
in the proposed algorithm is O(nt) and for the FDA
problem is O(nt+1).

5 Performance analysis

The algorithm proposed in this study aims to

solve the FDA problem in a distributed environment.
The algorithm has three properties: (1) It can detect
locally a high percentage of malicious faulty units
during the BA process; (2) It implements a new
agreement framework to make an agreement among
fault-free processors about diagnosis of faulty units;
(3) The faulty units detected globally are removed
from the next consensus processes to decrease the
number of message exchange rounds.

The proposed algorithm needs 2t+1 message
exchange rounds to solve the BA and FDA problems
simultaneously, in comparison to the (n+1)(t+1)
rounds required by the algorithm proposed by Hsiao
et al. (2000). Also, the bit complexity is improved
from O(n2t+1) to O(nt+1) in the proposed algorithm to
solve the FDA problem. Table 1 compares the pro-
posed algorithm with some known fault-diagnosis
algorithms. The proposed algorithm is able to detect
high percentages of faulty units with minimum mes-
sage overheads.

Here, we investigate the fault-diagnosis capa-

bility of the proposed algorithm in the presence of
Byzantine faults. For this reason, we simulate a
communication network N (|N|=n) with a complete
network graph. The network has (1) / 3n    Byzan-

tine faulty units. Each processor has two sets of values
at the end of the algorithm, including globally de-
tected faulty units and locally detected faulty pro-
cessors. The numbers of globally and locally detected
faulty processors per 100 runs are presented in Fig. 12,
for different fault rates of Byzantine units. The fault
rate of Byzantine units is modeled as the rate of

Table 1 Comparison of FDA algorithms

Algorithm
Local fault
diagnosis

Bit com-
plexity

Number of
rounds

Consensus

BA FDA

Hsiao et al.
(2000)

‒ O(n2t+1) (n+1)(t+1) √ √

Ayeb and
Farhat (2004)

√ O(nt−ρ) t+1−ρ √ ‒

Chiang et al.
(2009)

√ O(n) 3 ‒ ‒

Our method √ O(nt+1) 2t+1 √ √

The algorithm in Ayeb and Farhat (2004) can stop message trans-
mission based on the number of detected faulty units

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 895

randomness of their transmitted value or the proba-
bility of altering the value received from the neigh-
bors. One can predict that the percentage of revealed
faults increases with a higher fault rate. For fault rates
higher than 10%, the chance of detecting a faulty unit
increases dramatically (Fig. 12b). This is because
increasing the number of transmitted messages (evi-
dence) in the network helps a healthy processor find a
faulty unit.

The proposed algorithm is able to identify faulty
processors locally, which is not possible in previous
studies. As presented in Fig. 12a, each healthy pro-
cessor has two sets of detected faults. The globally
detected fault set is the only set that was identified by
Hsiao et al. (2000). However, one can notice from
Fig. 12a that for lower fault rates, the number of faults
detected globally (FDA) is considerably lower than
that of faults detected locally.

Fig. 13 shows the effect of network size on the
performance of the proposed algorithm. For a smaller
network, a small chance exists for healthy members to
identify the faulty processors. Generally, for networks

with less than 7 nodes (where there is only one Byz-
antine unit), regardless of the fault rate, there is a
small chance of reaching the FDA. In contrast, for
larger networks, the chance of reaching FDA im-
proves dramatically. As presented in Fig. 13b, the
fault rate of Byzantine units has a small effect on the
number of faulty units detected for larger networks.

6 Conclusions and future work

In this paper, we provide a solid solution for the

fault-diagnosis problem using the framework of the
Byzantine general problem. The proposed solution is
compared with prominent Byzantine agreement (BA)
algorithms in terms of the number of required mes-
sage transmissions and packet size complexity. The
proposed solution simplifies the solution of fault-
diagnosis agreement (FDA) and BA problems in
complete graph networks. We provide a new
evidence-based fault-diagnosis algorithm that

Fig. 12 Number of faults detected in processor P1: (a)
faults detected globally and locally; (b) total number of
faults detected

Fig. 13 Number of faults detected locally (a) and globally
(b) in processor P1 for different network sizes (FR: fail-
ure rate)

Khosravi et al. / Front Inform Technol Electron Eng 2016 17(9):885-896 896

benefits from contradictory transmissions of Byzan-
tine members to reveal their faulty behavior.

BA is a challenging problem in distributed sys-
tems and may lead to impossibility in some network
topologies where the network graph is incomplete.
Also, the problem suffers from synchronization and
requires varying rounds to find the agreement. As an
alternative to a definite solution for the BA problem,
one can consider almost sure solutions. Computing
the probability of a value being the agreement value
and improving this probability will be an open prob-
lem for future work.

References
Alekeish, K., Ezhilchelvan, P., 2012. Consensus in sparse,

mobile ad hoc networks. IEEE Trans. Parall. Distrib.
Syst., 23(3):467-474.
http://dx.doi.org/10.1109/TPDS.2011.182

Ayeb, B., Farhat, A., 2004. A flexible formal framework for
masking/demasking faults. Inform. Sci., 159(1-2):29-52.
http://dx.doi.org/10.1016/j.ins.2003.03.004

Buskens, R.W., Bianchini, R.P., 1993. Distributed on-line
diagnosis in the presence of arbitrary faults. 23rd Int.
Symp. on Fault-Tolerant Computing, p.470-479.
http://dx.doi.org/10.1109/FTCS.1993.627350

Chiang, M.L., Wang, S.C., Tseng, L.Y., 2009. An early fault
diagnosis agreement under hybrid fault model. Expert
Syst. Appl., 36(3):5039-5050.
http://dx.doi.org/10.1016/j.eswa.2008.06.009

Colon Osorio, F.C., 2007. Using Byzantine agreement in the
design of IPS systems. Int. Performance, Computing, and
Communications Conf., p.528-537.
http://dx.doi.org/10.1109/PCCC.2007.358936

Elhadef, M., Boukerche, A., Elkadiki, H., 2007. An adaptive
fault identification protocol for an emergency/rescue-
based wireless and mobile ad-hoc network. IEEE Int.
Parallel and Distributed Processing Symp., p.1-8.
http://dx.doi.org/10.1109/IPDPS.2007.370589

Fischer, M.J., Lynch, N.A., 1982. A lower bound for the assure
interactive consistency. Inform. Process. Lett., 14(4):183-
186. http://dx.doi.org/10.1016/0020-0190(82)90033-3

Hsiao, H.S., Chin, Y.H., Yang, W.P., 2000. Reaching fault
diagnosis agreement under a hybrid fault model. IEEE
Trans. Comput., 49(9):980-986.
http://dx.doi.org/10.1109/12.869331

Hsieh, H.C., Chiang, M.L., 2013. Robustness improvement for
mobile P2P network by the Byzantine Agreement

problem. 10th Annual Conf. on Wireless On-demand
Network Systems and Services, p.104-106.
http://dx.doi.org/10.1109/WONS.2013.6578329

Jiang, J., He, C., 2005. A novel mutual authentication and key
agreement protocol based on NTRU cryptography for
wireless communications. J. Zhejiang Univ.-Sci., 6A(5):
399-404. http://dx.doi.org/10.1631/jzus.2005.A0399

Khosravi, A., Mohammadi, K., Shiroie, M., 2011. Locating
malicious links in fully-connected networks using a for-
mal framework. Proc. Int. Conf. on Systems Engineering,
p.247-250. http://dx.doi.org/10.1109/ICSEng.2011.51

Lamport, L., Shostak, R., Pease, M., 1982. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382-401. http://dx.doi.org/10.1145/357172.357176

Maggs, M.K., O’Keefe, S.G., Thiel, D.V., 2012. Consensus
clock synchronization for wireless sensor networks. IEEE
Sensors J., 12(6):2269-2277.
http://dx.doi.org/10.1109/JSEN.2011.2182045

Okun, M., Barak, A., 2008. Efficient algorithms for anony-
mous Byzantine agreement. Theory Comput. Syst., 42(2):
222-238. http://dx.doi.org/10.1007/s00224-007-9006-9

Pasqualetti, F., Bicchi, A., Bullo, F., 2012. Consensus com-
putation in unreliable networks: a system theoretic ap-
proach. IEEE Trans. Autom. Contr., 57(1):90-104.
http://dx.doi.org/10.1109/TAC.2011.2158130

Pease, M., Shostak, R., Lamport, L., 1980. Reaching agree-
ment in the presence of faults. J. ACM, 27(2):228-234.
http://dx.doi.org/10.1145/322186.322188

Silvestre, D., Rosa, P., Hespanha, J.P., et al., 2014. Finite-time
average consensus in a Byzantine environment using
set-valued observers. American Control Conf., p.3023-
3028. http://dx.doi.org/10.1109/ACC.2014.6859426

Wang, S.C., Chin, Y.H., Yan, K.Q., 1990. Reaching a fault
detection agreement. Proc. Int. Conf. on Parallel Pro-
cessing, p.251-258.

Wang, S.C., Chin, Y.H., Yan, K.Q., 1995. Byzantine Agree-
ment in a generalized connected network. IEEE Trans.
Parall. Distrib. Syst., 6(4):420-427.
http://dx.doi.org/10.1109/71.372796

Wang, S.S., Yan, K.Q., Wang, S.C., 2010. An optimal solution
for Byzantine agreement under a hierarchical cluster-
oriented mobile ad hoc network. Comput. Electr. Eng.,
36(1):100-113.
http://dx.doi.org/10.1016/j.compeleceng.2009.06.002

Wu, S., Rabbat, M.G., 2013. Broadcast gossip algorithms for
consensus on strongly connected digraphs. IEEE Trans.
Signal Process., 61(16):3959-3971.
http://dx.doi.org/10.1109/TSP.2013.2264056

