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Abstract:    This paper describes a novel model known as the shadow obstacle model to generate a realistic corner-turning be-
havior in crowd simulation. The motivation for this model comes from the observation that people tend to choose a safer route 
rather than a shorter one when turning a corner. To calculate a safer route, an optimization method is proposed to generate the 
corner-turning rule that maximizes the viewing range for the agents. By combining psychological and physical forces together, a 
full crowd simulation framework is established to provide a more realistic crowd simulation. We demonstrate that our model 
produces a more realistic corner-turning behavior by comparison with real data obtained from the experiments. Finally, we per-
form parameter analysis to show the believability of our model through a series of experiments. 
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1  Introduction 
 

Human crowd is a fascinating phenomenon in 
the real world. The simulation of human crowds has 
recently drawn increasing attention from experts in 
various types of fields, including computer graphics, 
social sciences, traffic engineering, architecture, ur-
ban planning, and robotics.  

The primary challenges of crowd simulation lie 
in two aspects (Thalmann et al., 2009). One is the 
realistic simulation of a crowd, while the other is the 

efficiency of the simulation model. This study focuses 
mainly on the improvement of realistic crowd  
simulation. 

Several factors need to be considered in realistic 
crowd simulation, including crowd behavior, indi-
vidual animation, and scene rendering. Among these 
factors, the generation of realistic crowd behavior is 
crucial to crowd simulation. Many approaches have 
been proposed, such as the social force model (Hel-
bing et al., 2000), the rule-based model (Reynolds, 
1999), and reciprocal velocity obstacle (RVO) (van 
den Berg et al., 2008). However, current simulation 
models are still inconsistent with the empirical ob-
servations because of the complexity of human be-
haviors. Corner-turning behavior is one of the prob-
lematic issues that have not been studied in depth. 
Although several studies on this topic exist (Watt, 
1993; Snook, 2000; Rojas et al., 2013), only a few 
have considered the effect of human psychology and 
individual differences in this issue. 
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Hashimoto et al. (2013) analyzed human be-
haviors at corners and reported that when people turn 
into a corner, they tend to choose a safe route instead 
of the shortest path. Inspired by the observations in 
this survey, we present a novel model known as the 
shadow obstacle (SO) model, which generates a more 
realistic corner-turning behavior. The proposed model 
can be easily integrated into current local behavior 
models. We combine our SO model with a rule-based 
model in the current study. A corresponding frame-
work is established to conduct a full crowd simulation. 
The believability of the model is demonstrated 
through a series of simulations. 

 
 

2  Related work 
 

Extensive research has been conducted on crowd 
simulation, and we refer the readers to some of the 
recent surveys (Pelechano et al., 2008; Thalmann et 
al., 2009; Zhou et al., 2010). This section highlights 
some of the most relevant studies on crowd simulation. 

2.1  Global navigation 

Traditional crowd simulation generally consists 
of two parts: global navigation and local behavior 
simulation. The most common methods to deal with 
global navigation are A* and Dijkstra’s algorithms 
(Cui and Qin, 2010; van Toll et al., 2012). These 
approaches are accessible but may cause various 
unexpected problems when integrated with local be-
havior models. For example, agents may be stuck if 
they deviate from the planned trajectory. The naviga-
tion field method (Patil et al., 2011) uses a vector- 
based field to direct the crowd movement. Therefore, 
this method is well suited for local force-based mod-
els such as the social force model and the rule-based 
model. Jin et al. (2008) proposed a simple but effec-
tive way for authoring crowd scene using radial basis 
functions (RBFs) based vector fields, which are sim-
ilar to the navigation field.  Furthermore, the way 
portals method (Curtis et al., 2012) is a great im-
provement for traditional path planning approaches. 

2.2  Local behavior models 

The social force model (Helbing et al., 2000) is a 
well-known model for simulating local crowd be-
haviors, particularly for a panic crowd. Potential- 

based force is used to denote the psychological be-
haviors of crowds, such as collision avoidance. Body 
collision is explained as a large physical force. 
However, the individual in this model lacks difference 
because it treats every individual in the crowd the 
same. Another fatal issue is that the force for collision 
avoidance is generated based on only an individual’s 
position. Therefore, the individual’s visual infor-
mation is ignored. Moussaïd et al. (2011) proposed a 
cognitive model to overcome this issue. 

The rule-based model (Reynolds, 1999) is an-
other famous model in the field of crowd simulation. 
In this model, each individual is represented as an 
autonomous agent with a certain level of cognitive 
and reasoning capability, such that an individual is 
able to sense its surroundings and make decisions 
based on its understanding of the current situation. 
The behavior of each agent is constrained by a spe-
cific rule such as seeking and collision avoidance. 
Agents can perform various complex patterns of be-
haviors by combining these rules. The rule-based 
model is often considered as the most natural model 
for crowd simulation. The weaknesses of this model 
lie in the design of the rule and its relatively low 
computation efficiency. Shao and Terzopoulos (2005) 
proposed a hierarchical model to improve the per-
formance of the original rule-based model.  

RVO (van den Berg et al., 2008) is a newly 
proposed model, and its original model, i.e., velocity 
obstacle (Fiorini and Shiller, 1998), is derived from 
robotics. Rather than being affected by external forces, 
the agent itself chooses the proper velocity in the next 
simulation step so as to obtain an obstacle-free path. 
This is not a human-like behavior since people cannot 
always predict others’ movement or choose a precise 
path. Therefore, the process of the decision is more 
like a robot. Based on this model, Guy et al. (2009) 
developed a distributed behavior model to address the 
problem of real-time collision avoidance in multi- 
agent systems. Snape et al. (2012) discussed the  
application of RVO in game development. 

2.3  Corner-turning behavior 

Corner-turning behavior is a specific individual 
behavior in crowd simulation. Several studies have 
been conducted on this topic (Watt, 1993; Snook, 
2000; Rojas et al., 2013). After obtaining the way-
points by using the global path planning algorithm, 
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the Bezier curve or B-spline approaches (Watt, 1993) 
can be used to generate a smooth trajectory. Rojas et 
al. (2013) used some predefined curves to lead indi-
viduals when turning a corner. A navigation field 
(Patil et al., 2011) can also be used as leading infor-
mation for individuals and is often more flexible than 
predefined curves. The drawback of all the afore-
mentioned approaches is that they all use a man-made 
method to generate turning curves, and none of these 
methods take human psychology and individual dif-
ferences into account. 

2.4  Physical collision 

Although physical collision between individuals 
is usually not important in crowd simulation, a bad 
physical model will lead to an unnatural phenomenon. 
In the social force model (Helbing et al., 2000), 
physical force consists of two parts: ‘body force’ 
counteracting body compression and ‘sliding friction’ 
impeding relative tangential motion. Kim et al. (2013) 
used a rigid-body system to generate a physical force 
and proposed a framework to incorporate local be-
havior with physical force. Considering that rigid- 
body systems can better present the physical interac-
tion between individuals, we establish a similar 
framework based on this system in the current study. 

 
 

3  Shadow obstacle model 
 

Hashimoto et al. (2013) showed several obser-
vations of human behaviors in corners. The trajectory 
result is shown in Fig. 1. After analyzing this work we 
obtain the following three observations:  

1. Before turning (area marked as A), people 
tend to go near the centerline of the corridor.  

2. When turning (area B), people will move to 
the centerline of the corridor again to obtain a wide 
viewing range.  

3. After obtaining a wide viewing range (area C), 
people will walk inside the shortcut course in the 
corner even though the risk of collision is high. 

Inspired by these findings, we present the 
shadow obstacle (SO) model to simulate realistic 
corner-turning behavior in this section. We first dis-
cuss the environmental representation of the simula-
tion system. Then the definition of the SO is presented, 
which is the key component for the whole model. 

After defining the blind area, a rule-based approach is 
used to implement the full model. 

 
 
 
 
 
 
 
 
 
 
 
 

3.1  Environment representation 

In our model, agents are constrained to move on 
a 2D plane. Given that the simulation is conducted in 
a 3D scenario, we project the boundary of the agents 
and obstacles onto the 2D plane (Fig. 2). 

Each agent in the current model is represented as 
an open disk centered at position P with a radius R 
denoting the collision range. To generate individual 
differences, each agent is given a safety awareness 
factor δ that belongs to [0, 1]. Agents with high safety 
awareness will have large δ values. Obstacles are 
simplified as polygons (often as squares) in a 2D 
plane.  

 
 
 
 
 
 
 
 
 
 
 

3.2  Shadow obstacle 

To simulate the corner-turning behavior ob-
served by Hashimoto et al. (2013), we place an in-
tangible but effective SO on every turning point of the 
environment (Fig. 3). The corner in our study is de-
fined as a ‘convex corner’, which is composed of two 
straight walls. The corresponding turning point is 
described as the intersection point of the two walls. 

Fig. 2  Transformation of the 3D agents and obstacles onto 
the 2D plane 

Fig. 1  Test scenario and the trajectory result in
Hashimoto et al. (2013) 
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We can place the SO either manually, which is more 
accurate, or automatically, according to the location 
of the walls. The SO itself is only an assistive tool for 
the simulation and the setting of the SO is completed 
before the whole simulation; therefore, it will not 
affect the efficiency of the simulation.  

Actually, the SO can have various shapes. For 
simplicity, we represent the SO as a circle (Fig. 3). In 
this case, each SO has four parameters: the range of 
influence (RSO), which is the radius of the circle; the 
center position (CSO), which is the corresponding 
corner point; the inner angle of the corner (AngSO); 
and an extra vector (ExSO), which is a vector that 
divides the corner into two parts. Parameters CSO, 
AngSO, and ExSO are used to describe the static in-
formation of the corner, and RSO is related to agents’ 
safety awareness factor δ, which will be discussed in 
detail in Section 5.5. 

 
 
 
 
 
 
 
 
 
 
 

3.3  Definition of the blind area 

When turning the corner, pedestrians usually 
anticipate to enlarge their viewing range. As shown in 
Fig. 4a, the viewing range itself is not determined by 
only a certain corner. In fact, enlarging the viewing 
range at a certain corner means that the pedestrian 
will decrease the area that cannot be seen. This area is 
defined as the ‘blind area’ in our study, which, at a 
certain corner, is denoted as the area between agents’ 
sight and wall in the dark side (Fig. 4b). 

Suppose agents are trying to turn corner k with 
one SO denoted as SOk. Because the predefined extra 
vector of SOk exactly divides the whole corner area 
into two equal parts, we are able to consider the 
corner-turning behavior from one side. 

The magnitude of the blind area at corner k for 
agent i is quantified by angle α (Fig. 4b). Once the 
agent, such as agent j, obtains a full viewing range of 

the current corner, the blind area will disappear. Thus, 
we can measure the value of the blind area BAi(SOk) 
for agent i at corner k by the following equations: 

 

, 0,
BA (SO )

0, otherwise,i k
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where SOAng ,k  SO ,kC  and SO
kEx  are the three param-

eters for SOk, as defined in Section 3.2, and Pi is the 
current position of agent i. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
From Observation (3) mentioned before, we 

know that once agents obtain a large enough viewing 
range, they would choose to walk in a shortcut course 
in the corner. Accordingly, we define an endurable 
blind area (EBA) for every agent. If the current blind 
area is smaller than EBA, the agent will ignore the 
influence of the SO. 

Fig. 4  Illustration of the blind area 
(a) Definition of the blind area; (b) Computation of the blind 
area at corner k 
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Fig. 3  Setting of the shadow obstacle 
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3.4  Corner-turning rule 

Our model can be easily integrated into current 
local behavior models. In this study, we choose the 
rule-based model as our underlying model, since it is 
always considered as the most natural approach for 
crowd simulation and also matches our model very 
well. 

The first task is to check whether the agent is 
turning the corner or not. This is rather difficult, be-
cause in most of the crowd simulation systems, the 
agent just passively follows the route information to 
reach the destination. In this study, we use an ap-
proximate method to deal with this issue. 

Suppose at a certain time t, the position of agent i 
is Pi and the velocity is Vi. The following four condi-
tions should be satisfied if agent i is currently turning 
corner k: 

1. The agent is within the influence range of SOk, 
which is to say SO SO| | .i k kR P C  

2. BAi(SOk)>0. 
3. The agent is currently walking toward the 

corner. 
4. The agent is currently walking toward its goal. 
As shown in Fig. 5, supposing the agent will 

have a clockwise turn, we consider that only the agent 
in Case 1 is currently turning the corner. Conditions 
1–3 will restrict the agent’s position into a red zone 
(Fig. 5), and hence the agent in Case 2 will not be 
considered as a turning behavior. According to Con-
dition 4, the agent in Case 3 is also not considered as a 
turning behavior. The specific form of Conditions 3 
and 4 depends highly on the underlying global navi-
gation strategy. For example, if a waypoint system is 
used and the current goal position of agent i is Gi, 
Condition 4 can be easily translated to (Pi−Gi)Vi>0.  
 
 
 
 
 
 
 
 
 
 
 
 

Condition 3 can be defined with the help of the pre-

vious goal position pre
iG  and therefore translated into 

SO pre SO .i k i k  G C G C  

The observations by Hashimoto et al. (2013) 
show that people have a tendency to enlarge their 
viewing range when turning a corner. From a psy-
chological perspective, this behavior can be explained 
as human safety awareness because with a larger 
viewing range, people can detect more potential col-
lisions and avoid them earlier autonomously. Thus, 
the key for the corner-turning rule is to enlarge the 
viewing range, which implies decreasing the blind 
area.  

Supposing at a certain time t, the position of 
agent i is Pi, the velocity is Vi, and the agent is cur-
rently turning corner k. If the agent has obtained a 
large enough viewing range, which is to say 
BAi(SOk)<EBAi, the agent will not be affected by the 
SO. Therefore, the force is set to zero. Otherwise, we 
have the following two assumptions: 

1. In the next ∆t time, agent i will maintain a 
constant speed SPconst. 

2. Agent i is not able to obtain a full viewing 
range of corner k after the next ∆t time. 

These two assumptions will be asymptotically 
satisfied if ∆t tends to zero. According to Assumption 
1, we can understand that all reachable areas RAi for 
agent i in the next ∆t time are a circular area (Fig. 6). 
To obtain the largest viewing range after the next ∆t 
time, the best direction of motion for agent i should be 
obtained by dealing with the following optimization 
problem: 
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This optimization problem can be simply solved 

by a graphical solution shown in Fig. 6. Therefore, 
Pbest

 should be the tangent point between RAi and 
tangent line Ti. 

Fig. 5  Three cases of agents turning a corner (references 
to color refer to the online version of this figure) 
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We then assume that ∆t tends to be zero. The 

reason why we can do this is the continuity of human 
thinking. Therefore, we can consider that humans will 
make their decisions continuously, which implies that 
the interval between the two decisions (∆t) is close to 
zero. Consequently, tangent line Ti will overlap with 
the offset vector shown in Fig. 6. Therefore, the 
computation of the best direction can be simplified as 
follows: 

 
best

SO *

best
( ) ,k i  

V
C P

V
                (8) 

 

where SO( )k i C P  denotes a normalized vector that 

is perpendicular to SO ,k iC P  and SO *( )k i C P  de-

notes one of the two SO( )k i C P  vectors that can 

enlarge the current viewing range of agent i. It can be 
computed with the help of the extra vector of SO: 
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After obtaining the best velocity direction, we 
can generate the corner-turning force based on the 
social force model: 

best SO *
des

Corner COR COR

( ) SP
= ,i k i i

 
   


V V C P V

F     (10) 

 
where SPdes 

denotes the desired speed for the agent, 
and τCOR denotes the time of relaxation at the corner.  

3.5  Time complexity of the shadow obstacle model 

For our SO model, the time complexity is O(N), 
where N is the number of pedestrians in the scene. 
This is because a pedestrian will be affected only 
when he/she is in the influence range of a certain SO. 
Thus, a pedestrian will be affected only by a limited 
SO (often one or two) in a certain time.  

 
 

4  Full crowd simulation 
 

In this section, a full crowd simulation frame-
work is established. The framework combines global 
navigation, local behavior, and physical collision.  
Fig. 7 provides an overview of the full simulation 
system. 

 
 
 
 
 
 
 
 
 
 
 

4.1  Global navigation strategy 

For simplicity and generality, we choose the A* 
algorithm with navigation mesh (navmesh) as our 
global navigation strategy. Given a start position and 
a target position, we can obtain a series of waypoints 
{Gk|k=0, 1, …}. Given that the current seeking 
waypoint is Gi, based on the social force model, the 
corresponding seeking force is defined as follows: 

 

des
seek seek

Norm( ) SP
,i i i


  


G P V

F        (11) 

Norm( ) .i i
i i

i i


 


G P

G P
G P

                   (12) 

Fig. 6  Direction of the force for generating the largest 
viewing range after the next Δt time 
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Fig. 7  An overview of the crowd simulation system 
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4.2  Collision avoidance 

For agent–agent collision avoidance, a line-of- 
sight test is first used to remove the influence of 
agents who are out of the viewing range. Then the 
force for collision avoidance based on the OpenSteer 
and social force model is generated. The direction of 
the force is exactly the same as the direction in the 
OpenSteer. For the generation of a smooth trajectory, 
the magnitude of the force is slightly changed as  
follows: 

 
 

AA

dist( , )
exp ,ijr i j

A
B

 
  

 
F              (13) 

 
where rij=ri+rj denotes the total radius of agents i and j, 
dist(i, j) denotes the distance between agents i and j, 
and A and B are two constant values. Considering that 
the total radius is always less than or equal to the 
distance, |FAA| should belong to (0, A). 

For agent–obstacle collision avoidance, if the 2D 
presentation of an obstacle is a circle, the force can be 
generated as done in agent–agent collision avoidance 
with one of the agents having zero velocity. If the 2D 
presentation of an obstacle is a polygon, then the 
presentation is further decomposed into several line 
segments and the social force model is used to com-
pute the corresponding force. 

4.3  Physical collision 

To obtain a realistic crowd behavior, a rigid- 
body system is used to generate the physical force 
between agents during collision. Although the psy-
chological forces are generated in a 2D space, the 
rigid-body system uses the exact 3D representation of 
the environment for collision detection. In the simu-
lation scenario, capsule colliders and box colliders are 
used for the 3D representation of the agents and ob-
stacles, respectively. 

 
 

5  Experiments and results  
 

In this section, the proposed SO model was 
tested under various situations in a specific scene  
(Fig. 8). The framework established in Section 4 was 
used for simulation. The whole model was imple-
mented in C# and the Unity3d Game Engine was used 

for visualization. The entity models used in the scene 
can be found in the asset store of Unity3d. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1  Comparison with data from the recent survey 

To demonstrate the believability of the SO model, 
we compared the trajectories computed by our algo-
rithm with the trajectories shown in Hashimoto et al. 
(2013). 

The setting of the scenario was exactly the same 
as that in Hashimoto et al. (2013). Once the experi-
ment started, an agent was placed on the start position. 
The start position was located at the right side of the 
corridor where the individual’s view against the cor-
ner was bad. The agent was given a clockwise navi-
gation field such that it walked toward the left corner 
and then turned right at the corner autonomously. To 
match the real data as well as possible, we tested a 
large number of cases with different data settings, and 
the most matched parameters were set as follows: 

Fig. 8  The 2D (a) and 3D (b) representations of the scene

(b) 

(a) 



He et al. / Front Inform Technol Electron Eng   2016 17(3):200-211 207

A=1, B=0.75, τseek=1, 
EBA=20, τCOR=1, RSO=2. 

 
As shown in Fig. 9, the result matched closely 

with the trajectory result in Hashimoto et al. (2013). 
Since the parameters were chosen manually, the tra-
jectory itself may not be very convincing. Here, we 
note that the real data (trajectory) can also be different 
in different situations. Even the same experiment may 
generate different results because of the complexity 
and unpredictability of human behaviors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
However, the corner-turning behavior patterns 

actually exist. To show that our model can generate 
these patterns, the total simulation process is divided 
into three phases.  

In the first phase, the agent walks toward the left 
corner with the help of the navigation force. The agent 
then went closer to the centerline of the corridor that 
exactly meets Observation 1 in Hashimoto et al. 
(2013). This event is caused by the force for avoiding 
the wall. Given that the magnitude of the force is 
inversely proportional to the distance between the 
agent and the wall, the agent will always keep a cer-
tain distance from the wall. If two walls exist on both 
sides of the agent, the agent will be passively pushed 
to the centerline of the corridor. 

In the second phase, the agent tries to turn right 
at the corner. In this phase, a force generated by the 
SO is exerted on the agent. To enlarge its viewing 
range, the agent passively gets close to the centerline 
of the corridor again. Here, we note that getting close 
to the centerline of the corridor is only an observation 
in a specific scene. We conclude that getting a wider 
viewing range is the cause of this phenomenon. 
Therefore, if the corridor is rather narrow, it is possi-

ble that people will go far away from the centerline to 
get a wider viewing range. 

In the third phase, the agent has a large enough 
viewing range and thus is not affected by the SO. The 
navigation force becomes the leading force such that 
the agent chooses the inner course even though the 
risk is still high. 

5.2  Comparisons with Rojas’s method 

In this section, we compared our model with 
Rojas’s method (Fig. 10). In Rojas’s method, prede-
fined curves are used to lead individuals when turning 
a corner. Therefore, if the position and goal of two 
agents are the same, the trajectories of the two agents 
would also be the same. Furthermore, agents’ trajec-
tories will be limited to those predefined curves when 
turning the corner. Our method takes human psy-
chology and individual differences into account and 
therefore can generate a more realistic corner-turning 
behavior. The trajectories generated by our method 
are diverse and more natural. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3  Influence of corner-turning behavior 

To analyze the influence of the force on the 
corner-turning behavior, three experiments were  

Fig. 10  Comparison of Rojas’s method (a) with our 
method (b) 

Fig. 9  Comparison of the trajectory reported in 
Hashimoto et al. (2013) (black) with the trajectory 
generated by the SO model (white) 
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designed using the following combinations of the 
psychological forces discussed in Section 4: 

1. seek; 
2. seek+obstacle avoidance; 
3. seek+obstacle avoidance+corner turning. 
In each case, both the agent’s trajectory and 

variation of the agent’s viewing range are recorded 
through time. 

In Fig. 11b, the blind area of the agent in Case 3 
decreased drastically from 9 s because of the influ-
ence of the corner-turning force. This result matched 
well with the corner-turning rule designed in  
Section 3.3. However, the variation speed of the blind 
area was slowed down later. Eventually, the agent in 
Cases 1 and 2 received a full viewing range earlier 
than the agent in Case 3. The main reason for this 
phenomenon is the side effect of the corner-turning 
force (Fig. 11a). To enlarge the viewing range, the 
agents will strive to maintain a distance from the 
corner. However, agents who are not affected by the 
SO will continue to shorten the distance between 
them and the corner. Considering that an agent that is 
far away from a corner will have to move a consid-
erable distance to enlarge the viewing range by an 
identical degree, the variation speed of the blind area 
is passively slowed down because of the relatively 
long distance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.4  Parameter analysis of the shadow obstacle 
model 

The influence range of the SO (RSO), endurable 
blind area of the agents (EBA), and relaxation time in 
corner (τCOR) are the three dominating factors in the 
SO model. RSO and EBA affect the duration time of 
the corner-turning force, whereas τCOR determines the 
magnitude of the according force.  

By changing the values of the three parameters, 
several experiments were implemented. The varia-
tions of the blind area through time were measured in 
each experiment. 

Based on the results shown in Figs. 12–14, we 
find that a larger RSO leads to an earlier influence of 
the SO, and the growth of the influence is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Variation of the blind area through time with 
different RSO (τCOR and EBA are fixed at 1 s and 45°, 
respectively) 
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Fig. 13  Variation of the blind area through time with 
different endurable blind area (τCOR and RSO are fixed at 
1 s and 5 m, respectively) 
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Fig. 11  Trajectories of the agent with different 
combinations of the psychological forces (a) and the vari-
ation of the blind area through time in the three cases (b)
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proportional to the growth of RSO. A smaller EBA will 
extend the influence, but this effect is covered when 
EBA decreases to a certain value because of the 
waypoint setting and other disturbances. Parameter 
τCOR enlarges the impact of the SO when it becomes 
smaller. Furthermore, the slow-down effect found in 
Section 5.3 is observed in Figs. 12–14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.5  Individual differences 

We first established the relationship between the 
safety awareness factor (δ) and the three dominating 
factors discussed in Section 5.4. Suppose that people 
with higher safety awareness will obtain greater in-
fluence from the SO. Therefore, the relationships are 
established as follows: 

 
RSO=10δ,                           (14) 

EBA=(180−AngSO)(1−δ),              (15) 
τCOR=0.5+5(1−δ).                   (16) 

 
The safety awareness is then divided into three 

levels:  
1. High level: δ=1; 
2. Medium level: δ=0.5; 
3. Low level: δ=0. 
A corner-collision experiment was conducted 

based on the scenario shown in Fig. 15. Two agents 
walked toward the same corner from different direc-
tions. The force for avoiding the obstacles was 
slightly reduced to highlight the contribution of the 
corner-turning behavior. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Various cases were tested by changing the safety 

awareness factor of the two agents. In each case, the  
average speed of the two agents and the distance 
between them when they first saw each other were 
recorded. The results are shown in Fig. 16. 

The results show that when the safety awareness 
of the two agents increased, the average speed of the 
two agents slightly decreased and the distance  
between them increased in most of the cases. The 
lower speed was caused by its frequent variation, 
while the larger distance was due to the side effect of 
the corner-turning force discussed in Section 5.3. 
These two results exactly conform to the definition of 
safety awareness because either decreasing the speed 
or enlarging the distance will give agents more time to 
deal with the collision. Therefore, agents with higher 
safety awareness levels will have lower possibilities 
of colliding with others in the corner. 

5.6  Generation of shadow obstacles in a complex 
scene 

Assume that a single obstacle’s bounding box is 
a cube in our scene. The complex polygonal obstacles  

Fig. 15  Snapshots of the corner-collision experiment 
(a) Before interaction; (b) After interaction 

(a) 

(b) 

Fig. 14  Variation of the blind area through time with 
different τCOR (EBA and RSO are fixed at 45° and 5 m, 
respectively) 
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are formed with many obstacles overlapping with 
each other (Fig. 17). With no overlapping, we can 
automatically generate the SOs using the vertex in-
formation. Each SO (specifically, the center position) 
is set on the vertex. However, when obstacles overlap 
with each other, some vertices are no longer turning 
points and therefore we should eliminate them. In this 
study, we use a ray intersection test to eliminate those 
useless vertices. The test was implemented with uni-
ty’s physics and layer system (Fig. 18a). The final 
result is shown in Fig. 18b. 

 
 
6  Conclusions 
 

This study presents a novel model, the shadow 
obstacle model, to generate the realistic corner- 
turning behavior in crowd simulation. The model was 
inspired by a recent survey that reported several ob-
servations of the safety-aware human behavior at a 
corner. Based on these observations, we implemented 
our model using a rule-based approach, and a corre-
sponding framework was established to perform the 
full crowd simulation. We demonstrated the believa-
bility of our model through a series of simulations, 
including the comparisons with the real data and the 
parameter analysis of the proposed model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Future research on this topic will include pa-

rameter tuning of the proposed model and the com-
bination of different behaviors. The parameters in the 
current model are set manually and thus lack accuracy. 
The whole model may be restricted to some specific 
scenarios. Therefore, it is necessary to tune the pa-
rameters according to real data and experimental 
observations. In addition, the current model can be 
improved by adding different behaviors. To generate 
a more realistic simulation environment, Industry 
Foundation Classes (IFC) is a convenient tool to make 
various shapes of buildings, and a semantically en-
riched 3D environment is interesting for intelligent 
agents (Béhé et al., 2014). 
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