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Abstract: In this paper, on-road trajectory planning is solved by introducing intelligent computing budget
allocation (ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential
evolution (OODE). The proposed algorithm is named IOODE with ‘I’ representing ICBA. OODE plans the trajectory
in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate
curves, where each curve is evaluated by solving a subproblem with the differential evolution (DE) algorithm. The
more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the
iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected
best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show
that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The
computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other
candidate-curve-based planning methods.
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1 Introduction

1.1 Background

Intelligent vehicles have become a hot topic all
around the world because of their great potential in
increasing road utilization, transportation efficiency,
and driving safety. For the past three decades, the
research of this field focused mainly on two applica-
tions: driver assistance systems (DASs) and driver-
less vehicles. DASs, such as adaptive cruise control
(Bengler et al., 2014), are installed on manned vehi-
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cles to enhance driving experience. Driverless vehi-
cles, such as the vehicles competing in the DARPA
Urban Challenge (Montemerlo et al., 2008; Urmson
et al., 2008) and the autonomous vehicle A1 (Chu
et al., 2012), navigate autonomously in complex en-
vironments (e.g., highways) with only on-board sen-
sors and computers. For either of these applications,
trajectory planning is a fundamental and important
technology as it can be stated as “computing a se-
quence of control values or feasible movement states
for the vehicle to maneuver among obstacles from
an initial state toward a desired terminal state, tak-
ing into account the vehicle’s kinematic and dynamic
model” (Ma et al., 2015).

This paper focuses on on-road trajectory
planning, which deals with the generation of
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trajectories in the urban road environment. This
problem is known to be computationally challenging,
since a simple version of it, the piano mover’s prob-
lem, has proven to be PSPACE-hard (Reif, 1979).
However, there are more difficulties. To obtain the
best driving experience, the trajectory efficiency,
safety, comfort, and economy all need to be care-
fully modeled and optimized, which inevitably intro-
duces computationally expensive trajectory perfor-
mance evaluation. In addition, the driving environ-
ment changes very fast due to the existence of moving
obstacles, and thus the planning result needs to be
updated in real time, which sets a high requirement
for the planning speed. As a consequence, planning
efficiency becomes the most significant concern in
this problem.

1.2 Related work

In the field of on-road vehicle trajectory plan-
ning, researchers have proposed a lot of methods,
many of which were originally designed for robots.
We present an overview of the popular approaches
as follows. Their advantages and disadvantages will
be discussed. The most concerned criterion, their
efficiency (the quality of the returned solution and
the real-time performance), will be commented on.

Potential field methods (Hilgert et al., 2003;
Gehrig and Stein, 2007) can easily produce a
collision-free path in real time, but they suffer from
the local optimum problem. Although the distance
between the vehicle and obstacles can be adjusted by
modifying algorithm parameters, it is hard to model
and optimize other complex trajectory costs with po-
tentials (e.g., jerk and collision risk).

State lattice methods (Ziegler and Stiller, 2009;
McNaughton et al., 2011) apply graph-based search
to produce the optimal path through a search graph
of primitive trajectories (the graph looks like a lat-
tice). With the addition of the vehicle’s velocity
component to the state space, these methods allow
the search algorithm to explore both spatial and tem-
poral dimensions. However, due to the exponential
growth of the search space with respect to the reso-
lution of discretization, state lattice methods are not
efficient enough for dynamic traffic scenarios.

Sampling-based planning methods save large
amounts of computation by building the tree or
graph of short trajectories via repeated sampling

in the obstacle-free state space instead of using an
explicit environment representation. Like state lat-
tice methods, the optimality of the solution depends
on the resolution of sampling. Although sampling-
based methods, such as rapidly-exploring random
tree (RRT) (Kuwata et al., 2009; Ma et al., 2015),
have been implemented to work in real time on pow-
erful computers, they cannot run on simple micro-
processors (Glaser et al., 2010), which are more likely
and feasible to be applied on commercial vehicles in
the near future and will be used in this paper for
algorithm simulation.

Parametric planning methods model the trajec-
tories with parametric expressions, e.g., polynomials
(Papadimitriou and Tomizuka, 2003) and clothoids
(Köhler et al., 2013), where the unknown parameters
are optimized to compute the trajectory solution.
These methods are applied mainly in situations with
high real-time requirements (such as collision avoid-
ance) because of the benefit of their simplicity. How-
ever, since the kinematic constraints are not consid-
ered, accurate execution of the produced trajectory
would be not easy.

To achieve a trade-off between planning speed
and the optimality of the solution, some researchers
developed candidate-curve-based planning methods
(Montemerlo et al., 2008; Urmson et al., 2008; Glaser
et al., 2010; Chu et al., 2012). A set of candidate
curves which satisfy vehicle constraints is first gen-
erated. Then the best curve is picked from the can-
didates, and the velocity profile which characterizes
how the vehicle velocity changes along that curve is
computed. These methods have been successfully
applied on driverless vehicles. However, since they
either use a linear velocity profile or directly spec-
ify the target driving speed, a careful optimization
of the velocity profile is lacking. Also, because the
best curve and the velocity profile are computed sep-
arately, the obtained trajectory is suboptimal.

1.3 Motivation

For the planning methods based on candidate
curves, the curves should be distributed densely
enough to cover all possible maneuvers on roads. To
obtain a globally good trajectory, it is also important
to consider the variation of the velocity profile when
comparing candidate curves. Thus, the key challenge
is how to efficiently select a satisfactory curve from
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the candidates.

In our previous work (Fu et al., 2015), based
on candidate curves, the planning problem was for-
mulated as a non-linear programming (NLP) model,
which optimizes the trajectory curve and the accel-
eration profile simultaneously (the velocity profile is
the integral of the acceleration profile). To solve
the NLP model in real time, we developed a hybrid
intelligent optimization algorithm named ‘ordinal-
optimization-based differential evolution’ (OODE).
OODE compares the rough (biased but computa-
tionally easy) performance evaluations of candidate
curves, from which a good curve is selected in a short
time. Then the acceleration profile was optimized
with that curve. OODE can generate a trajectory
of time length 1.5 s in 250 ms. The solution was
ensured to be globally good enough in the sense of
probability.

In Fu et al. (2015), the rough evaluation of each
candidate curve is the optimal value of a correspond-
ing objective function, optimized by the differential
evolution (DE) algorithm. The more iterations DE
performs, the more accurate the evaluation will be-
come. However, since an equal number of iterations
is conducted for each curve while we need only to pick
the best one, a large amount of computing time is
spent on obtaining better evaluations of unconcerned
curves. If a larger portion of the computing budget
(measured by the total number of iterations for all
curves) is allocated to those curves that are critical
to identifying the best, the efficiency of OODE can
be improved.

The ranking-and-selection (R&S) procedures,
which are intended to select the best of a finite set
of alternatives, have been extensively researched in
the past three decades (Branke et al., 2007; Chen
and Lee, 2010; Chen et al., 2015). The best is de-
termined with respect to the largest/smallest mean,
but the mean must be inferred via statistical sam-
pling (Bechhofer et al., 1995). There are two points
of view on defining the evidence for correct selection,
which motivate two categories of approaches to the
selection problem: (1) frequentist approaches, e.g.,
the indifference zone (IZ) (Kim and Nelson, 2001);
(2) Bayesian approaches, e.g., the expected value
of information procedure (VIP) (Chick and Inoue,
2001) and the optimal computing budget allocation
(OCBA) (Chen et al., 2000). The IZ approaches

typically allocate samples to provide a guaranteed
lower bound for the frequentist probability of cor-
rect selection. The VIP and OCBA approaches de-
scribe the evidence for correct selection with the
Bayesian posterior distribution of the unknown mean
performance of each alternative, and allocate the fur-
ther samples to maximize that evidence. A vari-
ant of OCBA also proposes a different perspective:
minimize the total computation cost with a desired
level of selection quality achieved (Chen and Yüe-
san, 2005). The above approaches achieve higher
selection efficiency than the plain equal allocation
schema.

Note that the procedure of identifying the best
curve based on rough curve evaluation in OODE is
similar to the R&S procedures. The curve evalua-
tion is random (as DE is a random algorithm) and
converges to its true value as the number of itera-
tions increases. Thus, the computing budget can also
be allocated sequentially. Inspired by the Bayesian
approaches for R&S, we can define a similar mea-
surement of selection quality, based on the posterior
distribution of each unknown curve evaluation. Then
we allocate the budget intelligently according to that
measurement. The computing cost can be reduced.
In this paper, the new algorithm is named ‘IOODE’,
short for intelligent OODE.

2 Candidate-curve-based trajectory
planning

2.1 Trajectory optimization model

The vehicle trajectory is modeled in two parts:
the trajectory curve and the acceleration profile. A
trajectory curve can be determined by the curve’s
total length sf and a function κ = u(s) from driv-
ing distance s (0 ≤ s ≤ sf) to curve curvature κ.
Here, u(s) is implemented as a polynomial function.
We combine the polynomial coefficients of u(s) and
sf to form a vector of size ζ, which is defined to be
the trajectory curve’s parameter vector p (p ∈ R

ζ).
Then with p, we can compute the vehicle’s pose vec-
tor s (s = [x y θ κ]T) at any point of the curve, which
consists of position (x, y), orientation (θ), and curva-
ture (κ). The trajectory curve is divided into N seg-
ments of equal length, where the vehicle is assumed
to move at constant acceleration in each segment.
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The accelerations a1, a2, . . . , aN in N segments are
stored in the acceleration vector a (a ∈ R

N ), which
denotes the acceleration profile. Therefore, with
given (p,a), a trajectory is determined.

To evaluate the performance of a trajectory,
the vehicle’s body is represented by K circles
Φ1, Φ2, . . . , ΦK (Fig. 1), which are used to calcu-
late the collision risk between the vehicle and ob-
stacles. The trajectory’s static performance evalua-
tion Jpath(p) and dynamic performance evaluation
Jdrive(p,a) are computed as the weighted sum of
path costs and driving costs, respectively:

Jpath(p) = wLeng · CLeng + wpCurv · CpCurv

+ wdCurv · CdCurv + wOffs · COffs, (1)

Jdrive(p,a) = wTime · CTime + wpAcce · CpAcce

+ wdAcce · CdAcce + wSpd · CSpd + wColl · CColl,

(2)

where wLeng, wpCurv, wdCurv, wOffs are the weights
of path costs CLeng, CpCurv, CdCurv, COffs, respec-
tively, and wTime, wpAcce, wdAcce, wSpd, wColl are
the weights of driving costs CTime, CpAcce, CdAcce,
CSpd, CColl, respectively. The computations of path
costs and driving costs are given in Table 1, where
Δsf = sf/N is the length of each trajectory curve
segment. For the nth trajectory segment, the colli-
sion risk is

en =

D∑

d=1

K∑

k=1

ρ(vo, do),

where ρ(·) is an exponential function, vo and do
are the relative velocity and distance between the
kth circle Φk (which represents the vehicle body,
k = 1, 2, . . . , K, Fig. 1) and the dth obstacle,
respectively, and D is the total number of obstacles.

x

EV

Φ1

Φ2

Φk

ΦK

Fig. 1 Representation of a vehicle’s body

From Table 1, trajectory safety is evaluated with
the illegal velocity risk (CSpd) and the collision risk
(CColl). Trajectory efficiency is evaluated with the

Table 1 Path costs and driving costs

Cost Computing formula Interpretation

CLeng sf Trajectory curve length

CpCurv
1

2

∫ sf
0 κ(s)2ds κ(s) is the trajectory

curve curvature

CdCurv
1

2

∫ sf
0 κ̇(s)2ds κ̇(s) is the curve

curvature derivative

COffs
1

2

N∑

n=1
χ2
n ·Δsf χn is the curvature

difference between
trajectory curve
and lane centerline

CTime tN Time consumed for
trajectory execution

CpAcce

N∑

n=1
an2 ·Δsf an is the acceleration

CdAcce

N∑

n=1
Δan2 ·Δsf Δan is the acceleration

increment

CSpd

N∑

n=1
ηn ·Δsf ηn is the illegal velocity risk

CColl

N∑

n=1
en ·Δsf en is the collision risk

Δsf = sf/N

trajectory curve length (CLeng) and the execution
time (CTime). Trajectory economy is evaluated with
the integral of the squared curvature (CpCurv) and
the sum of the squared accelerations (CpAcce). Tra-
jectory comfort (including jerk) is evaluated with the
integral of the squared curvature derivative (CdCurv)
and the sum of the squared acceleration increments
(CdAcce). Therefore, Jpath(p) and Jdrive(p,a) to-
gether describe the comprehensive performance of
the vehicle trajectory determined by (p,a).

However, since p∈Rζ , a∈RN , the feasible region
of the trajectory solution grows exponentially with
the increase of ζ and N . To narrow the search, a
set of candidate trajectory curves {Γ1, Γ2, . . . , ΓG}
is generated, and the best curve is picked from
{Γ1, Γ2, . . . , ΓG}. Each curve Γg (g ∈ I, I =

{1, 2, . . . , G}) is designed to lead the vehicle to a
predefined goal pose sg. The parameter vector of Γg,
denoted by pg, is obtained by optimizing the static
performance evaluation Jpath(p):

Ψg : min
p

Jpath(p), p ∈ R
ζ

s.t. fi(sg,p) = 0 (i = 1, 2, 3, 4), l(p) > 0,
(3)

where fi(sg,p) = 0 is defined for each component of
the pose vector for i = 1, 2, 3, 4, to guarantee that
the curve determined by p is ended with sg, and
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l(p) = sf > 0 is introduced to bound the element sf
of p.

Now with G candidate trajectory curves, the
vehicle trajectory is planned by optimizing the tra-
jectory curve index g and the acceleration vector a
in the following NLP model:

Π1 : min
g,a

[J1(g) + J2(g,a)] , g ∈ I,a ∈ R
N ,

s.t. hj(a) ≥ 0, j = 1, 2, . . . , 2N,

(4)

where hj(a) ≥ 0 (j = 1, 2, . . . , 2N) are the bound-
ary constraints for the elements in a. Since
J1(g) = Jpath(pg) and J2(g,a) = Jdrive(pg,a),
[J1(g) + J2(g,a)] is the performance evaluation of
the trajectory determined by (pg,a). For details
about the trajectory optimization model, please re-
fer to Fu et al. (2015).

2.2 Framework of OODE

The search space can be much reduced by in-
troducing candidate curves, but it is still chal-
lenging to solve Π1, because trajectory evaluation
is quite time-consuming (J2(g,a) involves complex
non-linear costs, e.g., CColl) while Π1 needs to be
solved in real time. Therefore, OODE is proposed to
solve Π1.

First, Π1 is rewritten in a two-layer form as
min
g

[
min
a

(J1(g) + J2(g,a))
]
, which can be further

decomposed into an inner-layer problem Ωg and an
outer-layer problem Π2:

Ωg : min
a

J2(g,a), a ∈ R
N

s.t. hj(a) ≥ 0, j = 1, 2, . . . , 2N,
(5)

Π2 : min
g

JO(g), g ∈ I, (6)

where JO(g) = J1(g) + min
a

J2(g,a) depends on the
optimal objective function value of Ωg. Since JO(g)

represents the performance evaluation of the optimal
trajectory on curve Γg (with given pg, only a is op-
timized), JO(g) can be seen as the evaluation of Γg.
Then solving Π2 means picking the best curve from
{Γg: g ∈ I} by comparing evaluation JO(g).

OODE is designed based on ordinal optimiza-
tion (OO), which has two tenets: (1) ‘order’ is easier
than ‘value’; (2) settle for the ‘good enough’ instead
of insisting on obtaining the ‘best’ (Ho et al., 2007).
As only the curve index g is optimized in Π2, it is

unnecessary to compute the accurate curve evalua-
tion JO(g). If we settle for obtaining a good enough
curve from {Γg: g ∈ I}, Π2 can be solved efficiently
by comparing the rough curve evaluations (biased
but computationally easy) instead of JO(g).

The two-step framework of OODE is shown in
Fig. 2. In step 1, for each candidate curve Γg (g ∈ I),
J1(g) is directly computed with pg, and then Ωg

is roughly solved by the DE algorithm. ‘Roughly’
means that a lower trajectory model resolution is
applied: (1) The trajectory curve is divided more
crudely. The number of trajectory segments takes
Nc (Nc < N) instead of N , which reduces the prob-
lem size of Ωg. (2) The vehicle body representation
is simplified. The vehicle body is represented by
Kc (Kc < K) circles, which simplifies the calcula-
tion of trajectory evaluation. Let acopt,g denote the
rough solution of Ωg after DE performs I iterations.
The rough evaluation of Γg, denoted by ĴO(g, I), is
computed as

ĴO(g, I) = J1(g) + J2(g,acopt,g). (7)

Then the ‘best’ curve in {Γg: g ∈ I}, denoted by
Γg̃, is determined by solving g̃ = argmin

g∈I

ĴO(g, I). In

step 2, the acceleration profile is optimized on curve
Γg̃. Then Ωg̃ is ‘accurately’ solved by applying the
original trajectory model resolution. Let ag̃ denote
the accurate solution of Ωg̃. The solution finally
returned by OODE is (pg̃,ag̃). OODE can obtain
a ‘good enough’ trajectory curve without consuming
too much time, and then focuses on optimizing the
acceleration profile with the obtained curve.

Π1: min [J1(g)+J2(g, a)]
g, a

Π1: min [min(J1(g)+J2(g, a))]
g a

g=1 g=2 g=G
J1(1) J1(2) J1(G)
+ + +

a
Ω1: min J2(1, a)

a
Ω2: min J2(2, a)

a
ΩG: min J2(G, a)

JO(G, I)
^JO(2, I)

^JO(1, I)
^

Π2: min JO(g), JO(g)=J1(g)+min J2(g, a)
g a

Π2: min JO(g, I)g

^

a
Ωg: min J2(g, a)~ ~

Perform I iterations
to solve Ωg for g=1,
2, , G

Step 1: select the best curve
based on rough evaluations

Step 2: optimize the
acceleration vector

g~

Fig. 2 Framework of ordinal-optimization-based
differential evolution (OODE)
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Note that OODE performs an equal number
(I) of iterations in solving Ωg for different g. In
other words, during the computation of evaluation
ĴO(g, I), equal quantities of the computing bud-
get are allocated to different curves. However, as
ĴO(g, I) becomes more accurate with the increase of
I while we pick only the best curve, we can allocate
more budget to the curves that are more likely to be
wanted, so as to accelerate the identification of the
best. Then the efficiency of OODE is enhanced.

3 IOODE

3.1 Framework of IOODE

The algorithm IOODE is developed by intro-
ducing intelligent computing budget allocation into
OODE. To show the feasibility of this idea, we first
demonstrate the influence of rough curve evaluation
on the solution quality. For a set of candidate curves
{Γg: g = 1, 2, . . . , G} within a given traffic scenario,
we compute their accurate evaluations JO(g) by ac-
curately solving Ωg, so that the real rank of each
curve in all curves is obtained. Then for each of
these curves, four rough evaluations ĴO(g, I) (I =

20, 40, 60, 80) are computed by roughly solving Ωg.
By comparing ĴO(1, I), ĴO(2, I), . . . , ĴO(G, I), we
pick the curve with the best rough evaluation and
record its real rank. We perform this evaluating
and comparing process 500 times, and use the top
rank percentage (TRP) to denote the percentage
of the experiments where the selected curve truly
ranks in the top-ξ% of all curves. Then we can com-
pute the TRPs of the above four rough evaluations
at ξ% = 2%, 4%, . . . , 10%, which are listed in Ta-
ble 2. An example of rough evaluations ĴO(g, I) at
I = 20, 80,∞ and accurate evaluations JO(g) are
given in Fig. 3, where curves 1–31 are right lane
change curves, curves 32–62 are left lane change
curves, and curve 63 is a lane keeping curve.

Table 2 Top rank percentages of four rough curve
evaluations

I
Top rank percentage

top-2% top-4% top-6% top-8% top-10%

20 23% 42% 66% 92% 96%
40 34% 80% 93% 100% –
60 45% 99% 100% – –
80 17% 100% – – –
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(a)
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Index of trajectory curves, g
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Accurate evaluation

E
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n

(c)

Fig. 3 Evaluations of G (G = 63) candidate trajectory
curves: (a) ĴO(g, 20) vs. JO(g); (b) ĴO(g, 80) vs.
JO(g); (c) ĴO(g,∞) vs. JO(g)

The relationship between rough and accurate
curve evaluations can be described as

ĴO(g, I) = JO(g) + Ec + Ei(I), (8)

where Ec and Ei(I) are the errors due to the reduced
trajectory model resolution and insufficient iteration,
respectively. Note that Ec depends on how much the
model resolution is decreased, and Ei(I) (Ei(I) >

0) tends to 0 as I goes to infinity. Table 2 and
Fig. 3 show that the real rank of the selected curve
determined by solving min

g
ĴO(g, I) is improved in the
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sense of probability with the increase of I. When I =

80, the selected curve truly ranks in the top-4% with
probability 1.00. Note that the rough evaluations in
Fig. 3a are enough to identify some curves which are
impossible to be the truly best (e.g., curves 1–31),
and thus we do not have to iterate 80 times for every
curve.

We want to allocate the iterations intelligently
so that the total number of iterations can be reduced.
As shown in Fig. 4, we do the allocation in an iter-
ative way. Let Q represent the set of all candidate
curves. A subset of Q, denoted by Pl, is defined to
contain the promising curves which have potential to
be selected as the best, with l being the number of
performed allocation procedures. Pl is initialized as
P0 = Q. Each time instead of Q, we allocate only
the computing budget to the elements in Pl with Ic
iterations performed for each curve. Thus, the rough
evaluation ĴO(g, τg) is updated to be ĴO(g, τg + Ic),
where τg is the number of iterations performed for
curve Γg. After that, by comparing the evaluations
of all candidate curves, the promising ones are picked
out from Q to make up the set Pl+1. This process is
repeated until only one promising curve is selected
(i.e., |Pl+1| = 1) or the largest allowed number of
allocation procedures is reached (i.e., l+ 1 = Lmax).
Then the curve with the best rough evaluation is se-
lected and its curve index is saved in g̃. Step 2 of
IOODE is the same as the one of OODE.

Compared with OODE, IOODE always concen-
trates the computing resource on promising designs,
and thus achieves higher efficiency. However, each
time the promising curves should be carefully se-

Π2: min JO(g), JO(g)=J1(g)+min J2(g, a)
g a

l

l=l+1
g=gl,1 g=gl,2 l

J1(g)+Ωg J1(g)+Ωg J1(g)+Ωg
^
JO(g, τg+Ic)

^
JO(g, τg+Ic)

^
JO(g, τg+Ic)

^
JO(g, τg)

Pick out promising curves

No

Yes

Π2: min JO(g, τg)
g

^Step 1: select the best curve
based on rough evaluations

Step 2: optimize the
acceleration vector

g~

Ωg: min J2(g, a)
a

~ ~

Perform Ic
iterations to solve
Ωg for Γg l l − l

g=gl,| |

l+1

| l+1|=1 or l+1=Lmax?

Fig. 4 Framework of IOODE

lected to minimize the number of selected curves.
We should also ensure that the truly best curve is
selected with a high enough probability.

As I increases, ĴO(g, I) converges to the true
evaluation ĴO(g,∞). For the purpose of comparing
curves which have executed various numbers of iter-
ations, it is natural to predict ĴO(g,∞) based on the
values of ĴO(g, I) at I = 1, 2, . . . , τg for each curve
Γg. Then based on the prediction results we deter-
mine the promising curves inQ. Thus, the evaluation
prediction model (EPM) is developed. The predic-
tion result is denoted by Yg. Then because of the
random prediction error in Yg, EPM further com-
putes the posterior probability distribution (PD) of
ĴO(g,∞), which is denoted by the PD of random
variable Xg. Each time, Yg and Xg of the curves
in Pl are updated and sent into the curve selection
model (CSM). CSM determines Pl+1 based on the
probability that the truly best is contained in Pl+1.
This process is shown in Fig. 5. Details of EPM and
CSM will be given in the next two subsections.

Figs. 4 and 5 show how to iteratively allocate the
computing budget to promising designs, which can
also be generalized to other candidate-curve-based
planning methods. The key is the EPM whose eval-
uation accuracy depends on the consumed compu-
tational resource, and the CSM which determines
the promising designs based on uncertain or biased
evaluations.

3.2 Predicting rough curve evaluation

The promising curves in Q are determined by
comparing ĴO(g,∞). Because ĴO(g, I) converges
when I increases, we can predict the limit of the
sequence {z(n)} (z(n) = ĴO(g, n)) as the estimation
of ĴO(g,∞).
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Γg Γg
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Yg Xg Yg Yg YgXg Xg Xg
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^
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^

l − l

l

l+1

Fig. 5 Picking out the promising curves
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For curve Γg in Pl, since τg iterations have
been performed in roughly solving Ωg, we can com-
pute the rough curve evaluation ĴO(g, I) at I =

1, 2, . . . , τg with Eq. (7), so the sequence {z(n) :

n = 1, 2, . . . , N, N = τg} is obtained. EPM uses
a power function curve z = ẑ(θ, n) to fit the points
(1, z(1)), (2, z(2)), . . . , (N, z(N)) in the Cartesian n-
z coordinate plane, and computes ẑ(θ,∞) as the
estimate of z(∞). Here, ẑ(θ, n) is defined as

ẑ(θ, n) = A · n−B + C, (9)

where θ=[A B C], with A, B, and C all being posi-
tive real numbers. The relationship between ẑ(θ,∞)

and z(∞) is shown in Fig. 6, where the green points
represent (1, z(1)), (2, z(2)), . . . , (N, z(N)), and the
red points represent (N + 1, z(N+1)), (N + 2, z(N+

2)), . . . , (∞, z(∞)).

n

z

1 N N+1

z=z(θ, n)^

z(∞)
z(θ, ∞)^

Fig. 6 Prediction of curve evaluation. References to
color refer to the online version of this figure

The fitting error is defined to be WN (θ) =
N∑

n=1

wn · (z(n)− ẑ(θ, n))2, where wn is the weight

of the nth error. Thus, the fitting goal is to com-
pute θ = argmin

θ
WN (θ). To maximize comput-

ing efficiency, EPM is designed to work in an iter-
ative way. With n starting from one, every time a
new point (n, z(n)) comes, θn−1 is updated as θn =

θn−1 + Δθn. The derivation of θn = θn−1 + Δθn

can be found in Bai et al. (2012). Then for curve
Γg, ẑ(θ,∞)|θN is the prediction result for ĴO(g,∞),
which is denoted by Yg.

However, there exists prediction error ERR be-
tween Yg and ĴO(g,∞). We have

Yg = ĴO(g,∞) + ERR, (10)

where ERR is stochastic due to the randomness of
the elements in {z(n)}. In this study, we use the em-

pirical distribution of ERR, which is obtained offline,
to compute the posterior PD of ĴO(g,∞). Totally
1000 trajectory curves that start and end with ran-
dom pose vectors are generated. For each of these
curves (Γg), ĴO(g,∞) is computed. Then EPM is
applied to predict Yg based on different numbers of
iterations (I) and compute ERR = Yg − ĴO(g,∞).
Consequently, with a given I, we have 1000 samples
of ERR, so that the empirical distribution of ERR
can be computed. Fig. 7 shows the empirical distri-
butions of ERR at I = 20, 40, 60, 80. The variance
of ERR decreases with the increase of I. By inves-
tigating the samples of ERR, we also find that the
randomness of ERR is mainly due to the fact that
DE is a random algorithm, but is not very related
to the curve being evaluated. Thus, the discrete dis-
tributions in Fig. 7 are directly used to compute the
posterior PD of ĴO(g,∞) (denoted by the PD of Xg,
Xg = Yg − ERR).
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Fig. 7 Empirical distributions of ERR

3.3 Selecting the promising curves

For each curve Γg, both the predicted rough
evaluation (Yg) and the posterior PD of the true
rough evaluation (PD of Xg) are known. CSM is
applied to select the promising curves from Q.

Let Y[1]≤Y[2]≤ · · ·≤Y[G] be the ordered pre-
dicted evaluations of candidate curves. Let X[1],
X[2], . . ., X[G] be a permutation of the variables
X1, X2, . . ., XG, where X[g] corresponds to the
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same curve as Y[g] for g=1, 2, . . . , G. Note that X[1],
X[2], . . ., X[G] may not satisfy X[1]≤X[2]≤ · · ·≤X[G]

due to the error ERR. Then the curves corre-
sponding to Y[1], Y[2], . . ., Y[q] (1≤q≤G) are se-
lected as the promising curves. A measurement
of selection quality is defined to be the probabil-
ity that the truly best (the smallest element) of
X[1], X[2], . . . , X[G], denoted by Xbest, is included in
the set {X[1], X[2], . . . , X[q]}. Therefore, the goal is
to minimize q with a high enough value of this prob-
ability ensured, i.e.,

Λ : min q, q ∈ N, 1 ≤ q ≤ P

s.t. P{Xbest ∈ {X[1], X[2], . . . , X[q]}} ≥ r%,

(11)
where P{E} is the probability that the event E

occurs.
We define

PB � P{Xbest ∈ {X[1], X[2], . . . , X[q]}}
= 1− P{Xbest ∈ {X[q+1], X[q+2], . . . , X[G]}}
= 1−

G∑
g=q+1

P{Xbest = X[g]}.
(12)

With the discrete distributions of X[1], X[2], . . .,
X[G], we have

P{Xbest = X[g]} =
∑
r

[
P{mr ≤ X[g] < mr+1}

·
G∏

p=1,p�=g

P{X[p] ≥ mr+1}
]
,

(13)
where [mr,mr+1] is the rth interval of X[g] in its dis-
tribution. Thus, with a given q, PB can be computed
with Eqs. (12) and (13).

For the integer programming problem Λ, the
computing burden of PB is not heavy. Thus, a ‘trial
and error’ method is applied to solve it. The C style
pseudo code is shown in Algorithm 1.

Algorithm 1 Algorithm for solving Λ

1: PB ← 1 // Initialize PB

2: g ← G // Initialize the solution
3: loop
4: PB ← PB − P{Xbest = X[g]}
5: if PB < r% then
6: break
7: end if
8: g ← g − 1

9: end loop
10: q ← g // Return the solution

The ‘trial and error’ method cannot guarantee
that the obtained q is globally optimal, but the so-
lution is sufficient for the fast selection of promising
curves from candidates.

4 Simulation results

In this section, the planning results and per-
formance of IOODE are demonstrated and an-
alyzed. All the simulations are performed in
Visual Studio 2010 using an Intel� CoreTM i5 CPU
M 480@2.67 GHz with 2.0 GB RAM. A typical traffic
scenario on straight roads, which includes three dy-
namic obstacles (vehicles) α, β, γ, is considered. All
obstacles are assumed to move along the lane cen-
terlines at constant speeds. The initial state of the
scenario is denoted by a set of scenario parameters,
whose meanings are shown in Fig. 8. Parameters κ0,
θ0, y0, v0, and a0 are the Ego vehicle (EV)’s initial
curvature, orientation, lateral position, velocity, and
acceleration, respectively. Parameters xα, xβ , xγ are
the longitudinal distances between α, β, γ and EV,
respectively. Parameters vα, vβ , and vγ are the ve-
locities of α, β, and γ, respectively. A problem in-
stance of trajectory planning can be represented by
the scenario parameters. We simulate four specific
scenarios (S1, S2, S3, S4), and introduce a test set of
2000 scenarios, whose scenario parameters take ran-
dom values. Let SR denote such a random scenario.
The parameters of S1, S2, S3, S4, and SR are given
in Table 3. The parameters of IOODE are listed in
Table 4.

4.1 Trajectory planning results

IOODE is applied to plan trajectories in sce-
narios S1 and S2. The planning results are shown
in Figs. 9 and 10, respectively. Figs. 9a and 10a
demonstrate the positions of obstacles and EV at

κ0, v0, a0
Lane B

Lane A

Lane C

vα

vβ

vγ

xα
xβ

xγ

EV
y0

α

β

γ

θ0

Fig. 8 Initial state of the traffic scenario
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t = 0, 0.5, 1.0, 1.5 s (from top to bottom). The
blue line is the generated trajectory curve with a red
circle and a blue star representing the start and end
points, respectively. The bodies of EV and obstacles
are denoted by gray and white rectangles, respec-
tively. Figs. 9b and 10b demonstrate the generated
acceleration profile where the 25 blue blocks repre-
sent the accelerations in 25 trajectory segments.

In scenario S1, the preceding vehicle β moves

Table 3 Parameters of traffic scenarios

Parameter
Parameter value

S1 S2 S3 S4 SR

y0 (feet) −2 3 5 −3 U(−6, 6)

θ0 (rad) 0.1 −0.1 0.3 −0.4 U(−0.5, 0.5)
κ0 (1/feet) 0 0 0.01 0.02 U(−0.02, 0.02)
v0 (feet/s) 35 30 40 20 U(10, 60)

a0 (feet/s2) 0 0 4 −2 U(−6, 6)
xα (feet) 10 0 −50 10 U(−100, 100)
vα (feet/s) 30 50 30 50 U(10, 60)

xβ (feet) 50 50 80 160 U(50, 200)

vβ (feet/s) 20 30 40 50 U(10, 60)

xγ (feet) −30 20 −80 −20 U(−100, 100)
vγ (feet/s) 10 30 50 20 U(10, 60)

U(a, b) represents the uniform distribution on interval [a, b]
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Fig. 9 Planning results in scenario S1: (a) trajectory
curve; (b) acceleration profile. References to color
refer to the online version of this figure

slower than EV. Since Lane A is occupied by α which
stops EV from entering but Lane C is not, the op-
timal trajectory for EV is to perform a lane change
into the left adjacent lane. EV first has to decelerate
to keep a safe distance from β, but afterwards EV
can accelerate (Fig. 9b) to enter Lane C. While in
scenario S2, since Lane A and Lane C are both oc-
cupied, EV can stay only in Lane B and adjust its
speed to follow β (Fig. 10b).

In addition, we simulate IOODE in a rolling
horizon framework. The replanning cycle T0 can be
as small as possible but should be larger than the
time consumed for computing a trajectory. Here, we
set T0 = 0.3 s. Fig. 11 gives an example, where EV
overtakes a slower moving vehicle in the middle lane
by performing a double lane change maneuver.

4.2 Computing budget allocation analysis

The processes of computing budget allocation
for trajectory planning in scenarios S1 and S2 are
depicted in Figs. 12 and 13, respectively. For
scenario S1, the best curve is determined after four
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Fig. 10 Planning results in scenario S2: (a) trajectory
curve; (b) acceleration profile. References to color
refer to the online version of this figure
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rounds of iterative budget allocation. The poste-
rior PDs of the rough curve evaluation ĴO(g,∞) at
l = 0, 1, 2, 3 are shown in Fig. 12. Each short line
depicts the interval where the evaluation possibly
takes its value. The red lines marked with ‘x’ repre-
sent the selected promising curves (i.e., Pl+1), while
the blue lines represent the remaining ones (i.e.,
Q − Pl+1). For example, when l = 0, 14/63≈22.2%
of the curves are selected and the computing budget
will be allocated to them. When l = 3, the curve
with the best rough evaluation is selected as the best
curve.

For scenario S2, the best curve is determined
with only one round of budget allocation performed.
The symbols in Fig. 13 are identically defined as in
Fig. 12. Curve 63 is significantly better than the
rest, and thus it is directly selected even though only
20 iterations are performed.
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0 50 100 150 200 250
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100 150 200 250 300 350
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100 150 200 250 300 350

t=8.1 s

300 350 400 450 500 550

t=14.4 s

300 350 400 450 500 550

t=16.2 s

x (feet)

Fig. 11 IOODE performed in a rolling horizon frame-
work with a replanning cycle T0 = 0.3 s

4.3 Algorithm performance analysis

We apply OODE and IOODE to solve the 2000
random problem instances in the test set. OODE ap-
plies the framework in Fig. 2 to solve Π1, where each
candidate curve is roughly evaluated by executing 80
iterations (equal to the largest possible number of it-
erations for evaluating a curve in IOODE). The real
rank of the ‘best’ curve picked by the two algorithms
is investigated. We can compute the percentage of
the results where the selected curve truly ranks in
the top-ξ%, i.e., TRP. Fig. 14 shows the relation-
ship between ξ% and TRP. The curves of OODE
and IOODE are very close, which means no loss of
solution quality is induced with the introduction of
intelligent computing budget allocation. IOODE ob-
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Fig. 12 Computing budget allocation for trajectory
planning in scenario S1: (a) l = 0; (b) l = 1; (c) l = 2;
(d) l = 3. References to color refer to the online
version of this figure

Table 4 Parameters of IOODE

Parameter Value Interpretation

G 63 Total number of candidate trajectory curves
K 5 Number of circles used to accurately represent EV’s body
Kc 1 Number of circles used to roughly represent EV’s body
N 25 Number of segments, into which the trajectory is accurately divided
Nc 5 Number of segments, into which the trajectory is roughly divided
NPc 10 Population size of DE
Fc 0.85 Differential weight of DE
CRc 0.95 Crossover probability of DE
Ic 20 Number of iterations allocated to each selected promising curve
Lmax 4 Largest allowed number of budget allocation procedures
r% 99.9% Lowest accepted probability that the truly best curve is included in the selected curves
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tains a top-5% trajectory curve with probability 0.95,
and a top-10% curve with probability 0.97.

Then we compare the performance of three algo-
rithms (OODE, IOODE, and the traditional intelli-
gent optimization algorithm DE), which are applied
to solve the problem instances in scenarios S1–S4
and the test set. The results are given in Table 5.
DE assumes that the curve parameter p takes its
value in the minimum continuous set that contains
p1,p2, . . . ,pG, and then directly optimizes p and a.

DE optimizes the trajectory curve continuously
while OODE and IOODE discretize the continuous
space into a limited number of candidate curves.
Thus, DE statistically returns a better solution
than OODE and IOODE (see the column ‘J for
SR’). However, due to the complexity of the high-
dimensional, non-convex solution space, DE con-
sumes much more time and sometimes is trapped
in a local optimum (e.g., ‘J for S4’). We see no
significant difference between the solution quality of
IOODE and OODE, but the average planning speed
of IOODE is about 20% faster than that of OODE. In
the worst case (i.e., all candidate curves have equal
evaluation values), IOODE would deteriorate to be
the equal allocation schema, the same as OODE.
However, this is rare in real applications.
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Fig. 13 Computing budget allocation for trajectory
planning in scenario S2. References to color refer to
the online version of this figure

IOODE generates a trajectory of time length
1.5 s in 200 ms. During the planning period, the
largest position estimation error for an obstacle due
to the constant speed assumption is 0.5× 3.5 m/s2×
(0.2 s)2 = 0.07 m, where 3.5 m/s2 is the obstacle’s
largest acceleration/deceleration. Consequently, this
assumption is believed to be valid and IOODE is
capable of working in real time.

5 Conclusions

We propose a novel candidate-curve-based tra-
jectory planning algorithm named ‘IOODE’ by in-
troducing intelligent computing budget allocation
into OODE. When selecting the best curve based
on curve evaluation, IOODE iteratively allocates the
computing budget to promising designs, which effec-
tively reduces the computing cost. The simulation
results show that IOODE is about 20% faster than
OODE with no loss of solution quality. In addition,
the framework of computing budget allocation shown
here can be applied to other candidate-curve-based
planning methods. The key is to build an evalua-
tion model whose accuracy depends on the comput-
ing cost and a selection model which selects good
designs based on biased evaluations.

However, due to the fact that IOODE spends at
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Fig. 14 Top rank percentage (TRP) vs. ξ% using
IOODE and OODE to select the best curve

Table 5 Algorithm performances of DE, OODE, and IOODE

Algorithm J for S1 J for S2 J for S3 J for S4 J for SR T for SR (ms)

DE 43.66 53.00 30.15 35.32 38.19 2449.9
OODE 46.98 52.86 30.30 32.15 40.55 244.3
IOODE 47.02 52.84 30.35 32.19 40.58 198.8

J for S1, S2, S3, S4 represent the performance evaluations of the obtained solutions in scenarios S1, S2, S3, S4,
respectively; J for SR represents the mean evaluation of the solutions of the problems in the test set; T for SR
represents the mean CPU time for solving the problems in the test set
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least 80% of the CPU time on optimizing the accel-
eration vector (step 2), it is no longer easy to further
improve the planning speed by optimizing curve se-
lection (step 1). Fortunately, though with a lower
model resolution, the problem Ωg̃ which needs to be
solved in step 2, has been roughly solved once in
step 1. Our future work will focus on applying more
knowledge from the optimization result of step 1 to
assist the optimization of the acceleration.
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