
954 Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Apipelined Reed-Solomon decoder based on a

modified step-by-step algorithm∗

Xing-ru PENG1, Wei ZHANG1, Yan-yan LIU‡2

(1School of Electronic and Information Engineering, Tianjin University, Tianjin 300072, China)

(2College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China)

E-mail: tjupengxr@tju.edu.cn; tjuzhangwei@tju.edu.cn; lyytianjin@nankai.edu.cn

Received Sept. 20, 2015; Revision accepted Feb. 16, 2016; Crosschecked Aug. 8, 2016

Abstract: We propose a pipelined Reed-Solomon (RS) decoder for an ultra-wideband system using a modified step-
by-step algorithm. To reduce the complexity, the modified step-by-step algorithm merges two cases of the original
algorithm. The pipelined structure allows the decoder to work at high rates with minimum delay. Consequently, for
RS(23,17) codes, the proposed architecture requires 42.5% and 24.4% less area compared with a modified Euclidean
architecture and a pipelined degree-computationless modified Euclidean architecture, respectively. The area of the
proposed decoder is 11.3% less than that of the previous step-by-step decoder with a lower critical path delay.

Key words: Reed-Solomon codes, Step-by-step algorithm, Ultra-wideband, Pipelined structure
http://dx.doi.org/10.1631/FITEE.1500303 CLC number: TN79

1 Introduction

Reed-Solomon (RS) code is one of the most
frequently used forward-error-correcting codes. Be-
cause of the excellent performance in correcting burst
errors and random errors, RS codes are widely used
in many digital storage and communication sys-
tems, such as the vestigial sideband system, satellite,
mobile communications, and multiband orthogonal
frequency division multiplexing (MB-OFDM) ultra-
wideband (UWB) systems (Batra et al., 2004; Das
et al., 2013). For UWB systems, RS(23,17) codes,
which are shorted version of RS(255,249) codes, are
adopted to protect the important header informa-
tion. The most well-known decoding methods for
RS codes are based on the Berlekamp-Massey (BM)
algorithm (Berlekamp, 1968; Sarwate and Shanbhag,

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (No. 61474080) and the Program for New Century
Excellent Talents in University, China

ORCID: Yan-yan LIU, http://orcid.org/0000-0001-8488-5480
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

2001; Wu, 2015) and the modified Euclidean (ME)
algorithm (Lee, 2003; Baek and Sunwoo, 2006; Guo
and Gai, 2014). These decoding methods share three
main steps: syndrome calculator (SC), key equation
solver (KES), and Chien search and error evaluator
(CSEE).

Massey (1965) presented a totally different de-
coding algorithm, which was known as a step-by-step
(SBS) algorithm. Since a great number of iterations
need to be performed on each symbol, the conven-
tional step-by-step algorithm is very complex. Using
the properties of temporarily changed syndrome ma-
trices, a new step-by-step algorithm for RS codes
was presented (Chen et al., 2000). The algorithm
can directly determine whether the received symbol
is erroneous or not and immediately find the corre-
sponding error value without solving the key equa-
tions. Based on this algorithm, pipelined structures
were presented (Chen et al., 2003; Chen and Tasi,
2007). However, determinants need to be calculated
for each symbol, which leads to high computational
and hardware complexity. Using a new method to



Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961 955

calculate the determinants of temporarily changed
syndrome matrices, a simplified parallel step-by-
step decoding algorithm was proposed (Liu et al.,
2007), which significantly reduces the computational
complexity.

The step-by-step algorithm is especially suitable
for RS codes with small error-correction capacity,
such as the RS(23,17) codes described above, whose
error-correction capacity is three. However, Chen
et al. (2000) and Liu et al. (2007) took two different
ways to decode when the error number is equal to t

or not, which involve a lot of redundant operations.
Hence, the complexity of the step-by-step algorithm
can be further reduced by adopting a unified strategy
to decode those two situations. There are two main
contributions in this study. First, a modified step-
by-step algorithm is proposed, which merges the two
cases and hence reduces the complexity significantly.
Second, since the SC block takes a long time, rather
than reducing the latency efficiently, the parallel al-
gorithm (Liu et al., 2007) increases the hardware
requirements. In this paper, a pipelined architecture
is proposed. This architecture does not introduce
extra latency while reducing hardware complexity,
which increases the hardware utilization efficiency
significantly.

2 Original step-by-step decoding algo-
rithm

For RS(n, k) codes defined in the Galois field
GF(2m), t is the error-correcting capacity which sat-
isfies n− k = 2t. The 2t syndromes are defined as Si

(i=1, 2, . . ., 2t), and a k × k syndrome matrix Lk is
established as

Lk =

⎡
⎢⎢⎢⎣

S1 S2 · · · Sk

S2 S3 · · · Sk+1

...
...

...
Sk Sk+1 · · · S2k−1

⎤
⎥⎥⎥⎦ . (1)

Suppose the error number is v. If v < k, then
det(Lk) = 0; otherwise, det(Lk) �= 0 (det(·) is the
determinant of the syndrome matrix).

By adding a nonzero element β to the jth
(j = 0, 1, . . . , n) symbol of the received codeword,
new syndromes are obtained, defined as Si(β,j) and
Si(β, j) = Si + β · αij , where α is the primitive ele-
ment of the Galois field. Using the new syndromes,
the temporarily changed syndrome matrix Lk(β, j)

is established and its determinant is calculated as

det(Lk(β, j)) = det(Lk) + β

v∑
x=1

α(2x−1)j det(Lxx
k ),

(2)
where Lxx

k is the submatrix of Lk obtained by delet-
ing the xth row and xth column of Lk.

If the error number is v (0< v ≤ t), define Hv,j

and Hv+1,j as
⎧⎪⎪⎨
⎪⎪⎩

Hv,j =
v∑

x=1
α(2x−1)j det(Lxx

v ),

Hv+1,j =
v+1∑
x=1

α(2x−1)j det(Lxx
v+1).

(3)

If Hv,j = 0, the jth symbol must be cor-
rect. However, if Hv,j �= 0, we cannot determine
whether the symbol is correct or not. However, if
Hv+1,j �= 0, the jth symbol must be correct; other-
wise, the jth symbol must be wrong. Supposing the
jth symbol is wrong, the error value is calculated by
β = det(Lv)/Hv,j , which satisfies det(Lv(β, j)) = 0.
In the situation where v < t, Hv+1,j is calculated
to determine whether the jth symbol is erroneous.
Nevertheless, if v = t, Ht+1,j cannot be calculated
directly, since S2t+1 remains unknown. In this case,
Ht,j is calculated first. If Ht,j = 0, the jth sym-
bol must be correct; otherwise, det(Lt+1) and β are
calculated. By adding β to the jth symbol, the er-
ror number may reduce to t− 1 or increase to t+ 1.
Hence, the value of det(Lt+1(β, j)) can be used to de-
termine the error number. If det(Lt+1(β, j)) = 0, it
means that the number of errors reduces to t− 1 and
thus the jth symbol is erroneous and the error value
is β. Otherwise, the jth symbol is correct. Since
det(Lt(β, j)) = 0, the value of det(Lt+1(β, j)) is in-
dependent of S2t+1. Therefore, the value of S2t+1

can be set to any symbol in GF(2m). The flowchart
of the step-by-step algorithm is illustrated in Fig. 1.

3 Modified step-by-step algorithm

To make the parallel algorithm (Liu et al., 2007)
suitable for a pipelined structure, some modifica-
tions are required. The value of Hv,j is calculated
by Eq. (3). Define α(2x−1)j det(Lxx

v,0) = det(Lxx
v,j).

Thus, det(Lxx
v,j) = α2x−1 det(Lxx

v,j−1). Consequently,

Hv,j can be calculated as Hv,j =
v∑

x=1
det(Lxx

v,j) =

v∑
x=1

α2x−1 det(Lxx
v,j−1), which implies that the



956 Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961

Start

Input: S1–S2t
k=t

det(Lk)=0k=k−1

k=t

Compute Hk+1,0 Compute
Ht,0

Output:
r0–rn−1

Output:
r0–rn−1

Y

N Y

N Y NY

Y Y

N N

Y Y

N N

N

Compute
Hk+1,n−1

Hk+1,0=0 Hk+1,n−1=0

Compute β
r0=r0+β

Compute β
rn−1=rn−1+β

Compute
Ht,n−1

Ht,0=0 Ht,n−1=0

Compute β and
det(Lt+1(β,0))

Compute β and
det(Lt+1(β,n−1))

det(Lt+1(β,0))=0 det(Lt+1(β,n−1))=0

r0=r0+β rn−1=rn−1+β

Fig. 1 Flowchart of the step-by-step algorithm

calculation for the jth symbol can be obtained from
the foregoing symbol.

The previous step-by-step algorithms take two
different ways to decode when the error number is
equal to t or not. Therefore, two different blocks
are needed for the decoder. However, when decoding
each received codeword, only one block is working
while the other one is idle, which results in high hard-
ware complexity. Consequently, a unified strategy is
proposed as follows to decode both situations. For
t-error correcting codes, suppose the error number is
v (0 ≤ v ≤ t). For the jth symbol, Hv,j and Hv+1,j

are calculated first. As described above, the nonexis-
tent S2t+1, which may be needed to calculate Hv+1,j ,
can be set to 0. Therefore, alternative-error-value β

and det(Lv+1(β, j)) can be calculated, regardless of
whether v equals t or not. If det(Lv+1(β, j)) = 0,
the jth symbol is erroneous and the error value is β;
otherwise, the jth symbol is correct.

Based on the properties described above, a mod-
ified step-by-step algorithm is proposed. First, the
syndrome values Si (i = 1, 2, . . . , 2t) are calcu-
lated. Second, det(Lk) (k = 0, 1, . . . , t + 1) and

det(Lxx
k ) (k = 0, 1, . . . , t + 1; x = 0, 1, . . . , k)

are calculated. Since the value of S2t+1 is set to
0, the calculation associated with S2t+1 can be ig-
nored. Then det(Lk) (k = 0, 1, . . . , t) are consecu-
tively tested to determine the error number v. Once
v is determined, det(Lv), det(Lv+1), det(L

xx
v,0) (x =

0, 1, . . . , t), and det(Lxx
v+1,0) (x = 0, 1, . . . , t+ 1)

are selected and saved. Third, from r0 to rn−1, Hv,j

and Hv+1,j are calculated by summing det(Lxx
v,j) and

det(Lxx
v+1,j), respectively. Thereafter, each det(Lxx

v,j)

and det(Lxx
v+1,j) are multiplied by α2x−1 to update

for the calculation of the next symbol. After the cal-
culation of Hv,j , an alternative-error-value is calcu-
lated by β = det(Lv)/Hv,j . Finally, det(Lv+1(β, j))

is calculated to determine the error value. The mod-
ified step-by-step algorithm is presented in Algo-
rithm 1 and the flowchart is shown in Fig. 2.

4 Pipelined step-by-step decoding ar-
chitecture for UWB systems

Since the error-correction capacity is small,
the RS(23,17) codes adopted by the MB-OFDM



Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961 957

Algorithm 1 Modified step-by-step algorithm
1: Calculate the syndrome values by Si = r(αi) (i =

1, 2, . . . , 2t), and simply set S2t+1 = 0.
2: Calculate det(Lk) and det(Lxx

k ) (k = 0, 1, . . . , t+

1; x = 0, 1, . . . , k). Then determine the
error number v. Thereafter, select and save
det(Lv),det(Lv+1),det(L

xx
v,0) (x = 0, 1, . . . , t), and

det(Lxx
v+1,0) (x = 0, 1, . . . , t+ 1).

3: For each symbol rj (j = 0, 1, . . . , n)

3.1: Calculate

Hv,j =
t∑

x=1

det(Lxx
v,j);

Hv+1,j =
t+1∑

x=1

det(Lxx
v+1,j);

β = det(Lv)/Hv,j ;
det(Lxx

v,j+1) = α(2x−1) · det(Lxx
v,j)

(x = 1, 2, . . . , t);
det(Lxx

v+1,j+1) = α(2x−1) · det(Lxx
v+1,j)

(x = 1, 2, . . . , t+ 1).
3.2: Calculate det(Lv+1(β, j)) by

det(Lv+1(β, j)) = det(Lv+1) + β ·Hv+1,j.
If det(Lv+1(β, j)) = 0, then r′j = rj + β;
otherwise, r′j = rj .

4: Finish

UWB system are quite suitable for the step-by-step
decoding algorithm. Based on the modified step-
by-step algorithm above, a pipelined decoder archi-
tecture is proposed in this section. Fig. 3 shows
the block diagram of the pipelined decoder, which
comprises an SC, an error number calculator (ENC),
and an error corrector (EC). The first-input first-
output (FIFO) memory is used to store the received
codeword.

As shown in Fig. 4, the SC block is used to
generate the 2t=6 syndromes. It takes n=23 clock
cycles to calculate the syndromes. Shorted from the
RS(255,249) codes, the symbols as well as the arith-
metic of RS(23,17) codes are defined in GF(28). Con-
sequently, the multipliers used in the SC block are
constant multipliers in GF(28), which are much sim-
pler than regular multipliers.

The ENC block is used to calculate the deter-
minant of syndrome matrices and determine the er-
ror number, whose functional block diagram is given
in Fig. 5. The determinant calculator is shown in
Fig. 6 with critical path delay Tmult + 2Tadd, where
Tmult and Tadd are delays of the multiplier and adder,
respectively.

Since t=3 for RS(23,17), the maximum dimen-
sion of the syndrome matrices is 4, whose determi-

Start

Input: S1–S2t
v=t, j=0

det(Lv)=0v=v−1 Y

j=j+1

j<n

rj=rj+β

N

YN

N

Y
Finish

det(Lv+1(β,j))=0

det(Lv+1(β,j))=det(Lv+1)+βHv+1,j

Compute Hv,j, Hv+1,j, β

Update det(Lv,j)
and det(Lv+1,j)

xx

xx

Fig. 2 Flowchart of the modified step-by-step
algorithm

Syndrome
calculator

Error
number
calculator

Alternative-error-value
calculator

FIFO
memory

Error corrector

Error value detector

r(x)

r(x)

r'(x)

Fig. 3 Block diagram of the pipelined step-by-step
decoder

S1

r0, r1, ..., rn−1

...

S2 S6

α1 α2 α6

Fig. 4 Syndrome calculation block

nants can be calculated directly. As S7 is set to 0,
the calculation associated with S7 can be ignored.
Moreover, using the intermediate values of det(Li),
the complexity of calculating det(Lxx

i ) can be sig-
nificantly reduced. For instance, S1 · S5 has been
calculated during calculating det(L4) and S3 ·S3 has
been calculated during calculating det(L3). Hence,
the calculation of det(L22

3 ) = S1 · S5 + S3 · S3 needs
only one adder. After that, det(Lk) are tested to



958 Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961

determine the error number. When the error number
v is determined, the ENC block also selects and saves
det(Lv), det(Lv+1), det(L

xx
v,0) (x = 0, 1, . . . , t), and

det(Lxx
v+1,0) (x = 0, 1, . . . , t+1). Moreover, if x > v

or x > v + 1, det(Lxx
v,0) or det(Lxx

v+1,0) is set to 0.

Determinant calculator

Zero checker

Multiplexor array

0

S1 S2 S3 S4 S5 S6

det(L1) det(L2) det(L3)

det(L4)
det(Lk),
k=1, 2, , t+1

xx

det(Lv)det(Lv+1)det(Lv)xx xxdet(Lv+1)

Fig. 5 Block diagram of the error number calculator

D

...

D D

S1 S3S2 S2 S3 S3S2 S4 S1 S4 S3S2

S5 S3 S4

det(L1) det(L2) det(L3)

Fig. 6 Determinant calculator

Thereafter, a symbol-by-symbol error correc-
tion method is used. The EC block consists of
an alternative-error-value calculator (AEVC) and an
error-value detector (EVD) block. The AEVC block
computes the alternative-error-value β and Hv+1,j

simultaneously. As shown in Fig. 7a, during each
clock cycle, det(Lxx

v,j) (x = 1, 2, . . . , t) are summed
up to calculate Hv,j and multiplied by α2x−1 to cal-
culate det(Lxx

v,j+1) (x = 1, 2, . . . , t). After that, β
is calculated by β = det(Lv)/Hv,j. A similar archi-
tecture for calculating Hv+1 is given in Fig. 7b. The
critical path delay of AEVC block is Tmult.

After obtaining the values of β and Hv+1,j ,
the EVD block computes det(Lv+1(β, j)) by
det(Lv+1(β, j)) = det(Lv+1) + β · Hv+1,j . Ac-
cording to the modified step-by-step algorithm, if

det(Lv+1(β, j)) = 0, the error value equals β; other-
wise, the error value equals 0. When the error value
is selected by a multiplexor, error correction is car-
ried out afterwards. The architecture of the EVD
block is shown in Fig. 8 and its critical path delay is
TEVD = Tmult + Tadd.

D

Hv,j

Inverter

β

D D

D

α1 α3 α5

det(Lv)11 det(Lv)22 det(Lv)33

det(Lv)

(a)

DD D D

Hv+1,j DD

α7α5α3α1

det(Lv+1)11 det(Lv+1)22 det(Lv+1)33
det(Lv+1)44

(b)

Fig. 7 Architecture of alternative-error-value calcu-
lator (a) and Hv+1 calculator (b)

det(Lv+1)

rj

Zero checker

D

0

β

Hv+1,j

det(Lv+1(β,j))

rj'

Fig. 8 The error-value detector

5 Analyses

5.1 Hardware and latency

The hardware requirements without the FIFO
memory for each part of the proposed decoder are
illustrated in Table 1. Since the hardware complex-
ities of the ME architecture (Lee, 2003), pipelined



Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961 959

degree-computationless modified Euclidean (pD-
CME) architecture (Lee and Lee, 2008), and the pre-
vious step-by-step decoder (Chen et al., 2003; Chen
and Tasi, 2007) are related to t, the corresponding
hardware requirements for RS(23,17) codes can be
easily obtained. Table 2 shows the hardware com-
parisons between the proposed pipelined architec-
ture and the existing RS decoders. In GF(28), by
applying the composite field arithmetic, a regular
multiplier can be implemented by 64 XOR gates and
48 AND gates while an inverter consists of 121 XOR
gates and 36 AND gates. The gate number of a
constant multiplier is determined by the constant
multiplicand, and its average area is 10 times that
of an XOR. Each AND or OR gate requires 3/4 of
the area of an XOR, and each 2-to-1 multiplexor
(Mux) or memory cell has an area equal to that of
an XOR. Moreover, the area of each register (Reg) is
about three times that of an XOR (Zhu et al., 2009;
Zhang and Zhu, 2010; García-Herrero et al., 2011).
As shown in Table 2, for RS(23,17) codes, the pro-
posed architecture involves (10 090−5798)/10 090 =
42.5% and (7674−5798)/7674= 24.4% less area than
the ME architecture and the pDCME architecture,
respectively. Moreover, the decoders (Chen et al.,
2003; Chen and Tasi, 2007) contain three determi-
nant calculators, which need more multipliers and
adders. Consequently, the area of the proposed de-
coder is (6536−5798)/6536=11.3% less than that of
the previous step-by-step decoder.

The critical path delay in the proposed decoder
is Tmult+2Tadd, which exists in the determinant cal-
culator. However, the critical path delay of the previ-
ous step-by-step decoder is as large as Tmult+3Tadd,
which exists during calculating det(N

′j
t+1). As de-

scribed above, the latency of the SC block is n = 23
clock cycles. The ENC and EC blocks take 4 clock
cycles and n + 5 = 28 clock cycles, respectively.
Hence, the decoder can be divided into two pipelin-
ing stages: the SC block and ENC block are in one
pipelining stage, while the EC block is in another
pipelining stage. The decoding latency is determined
by the longest pipelining stage latency. Therefore,
the latency of the proposed decoder is 28 clock cy-
cles. In addition, the decoding timing schedule is
shown in Fig. 9.

To make the advantage of the proposed archi-
tecture more obvious, hardware requirements of de-
coders for RS(255,251) codes are also considered,
whose critical path delay is Tmult + Tadd. As shown
in Table 3, the number of the required XOR gates of
the proposed architecture is 61.3%, 49.1%, or 9.97%
less than that of ME, pDCME, or the previous SBS
architecture, respectively.

SC+ENC #1

SC+ENC #3

EC #1Received codeword1
Received codeword2
Received codeword3

28 28 28

SC+ENC #2 EC #2

Fig. 9 Timing schedule of the proposed decoder

Table 1 Hardware requirement for the proposed decoder

Component
Number of Number of Number of Number of Number of Number of
multipliers adders multiplexors registers constant multipliers invertors

SC 0 48 0 48 6 0
ENC 36 184 152 264 0 0
EC 2 56 8 112 7 1

Total 38 288 160 424 13 1

SC: syndrome calculator; ENC: error number calculator; EC: error corrector

Table 2 Hardware requirement and comparisons of decoders for RS(23,17) codes

Architecture
Number Number Number Number Number of Number Total

of of of of constant of number
multipliers adders multiplexors registers multipliers invertors of XORs

ME∗ 25 280 984 2016 13 1 10 090
pDCME∗∗ 25 184 488 1408 13 1 7674
Previous SBS∗∗∗ 45 352 96 400 24 1 6536
Proposed 38 288 160 424 13 1 5798
∗ Lee (2003). ∗∗ Lee and Lee (2008). ∗∗∗ Chen et al. (2003); Chen and Tasi (2007). ME: modified Euclidean; pDCME:
pipelined degree-computationless modified Euclidean; SBS: step-by-step



960 Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961

Table 3 Hardware requirement and comparisons of decoders for RS(255,251) codes

Architecture
Number Number Number Number Number of Number Total

of of of of constant of number
multipliers adders multiplexors registers multipliers invertors of XORs

ME∗ 17 184 664 1360 9 1 6866
pDCME∗∗ 17 120 328 944 9 1 5218
Previous SBS∗∗∗ 18 144 48 216 16 1 2948
Proposed 14 120 104 264 9 1 2654
∗ Lee (2003). ∗∗ Lee and Lee (2008). ∗∗∗ Chen et al. (2003); Chen and Tasi (2007). ME: modified Euclidean; pDCME:
pipelined degree-computationless modified Euclidean; SBS: step-by-step

5.2 Computational complexity and perfor-
mance

The previous pipelined step-by-step architec-
tures (Chen et al., 2003; Chen and Tasi, 2007) need
to calculate det(N0

k ), whose computational com-

plexity is
t∑

i=1

O(i) (O(i) is the number of opera-

tions required to calculate the determinant of an
i × i matrix). Moreover, det(M j

k ) and det(N
′j
k )

must be calculated for each symbol, and the com-

putational complexity is n ·
t−1∑
i=1

O(i) + n ·
t+1∑
i=1

O(i) =

n·O(t+1)+n·O(t)+2n·
t−1∑
i=1

O(i). Therefore, the total

computational complexity of the previous architec-

tures is n·O(t+1)+(n+1)·O(t)+(2n+1)·
t−1∑
i=1

O(i). In

the proposed architecture, the determinants of syn-
drome matrices are calculated and saved first instead
of being calculated for each symbol. Thus, the com-
putational complexity of the proposed architecture
is reduced to O(t + 1) + (t + 2) · O(t) + (t + 1) ·
O(t − 1) +

t−2∑
i=1

O(i). Since n � t, the complexity of

computation can be greatly reduced.
Specifically, for the RS(23,17) codes, the com-

putational complexity of the previous architecture is
23 ·O(4)+24 ·O(3)+47 ·O(2)+47 ·O(1) while that
of the proposed architecture is only O(4)+5 ·O(3)+

4 · O(2) +O(1).
Moreover, as described in Section 3, the pro-

posed algorithm is more suitable for hardware im-
plementation than the simplified step-by-step algo-
rithm (Liu et al., 2007). Although the computational
complexities of these two algorithms are the same,
the decoding process of the proposed algorithm is
much simpler, since a unified decoding strategy is
adopted. In addition, the parallel algorithm is mod-
ified to a recursive algorithm, which is more suitable

for pipelined structure; hence, the hardware utiliza-
tion is significantly improved.

Bit error rate (BER) is an indicator to mea-
sure the performance of decoding algorithms. BM,
ME, and SBS algorithms are hard-decision decoding
(HDD) algorithms, which can correctly decode codes
with fewer than t errors; hence, they have the same
decoding performance. Simulations are also carried
out for short RS codes and long RS codes using ME,
SBS, and the modified SBS algorithms. Simulation
results are shown in Fig. 10. It can be observed that
the modified SBS algorithm can always achieve the
same performance as the ME and SBS algorithms.
That is to say, the modified SBS algorithm can sig-
nificantly improve the hardware utilization without
performance degradation.

6.1

100

B
it 

er
ro

r r
at

e

10-1

10-2

10-3

10-4

10-5

6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
Eb/N0 (dB)

ME for RS(23,17) codes
SBS for RS(23,17) codes
Modified SBS for RS(23,17) codes

ME for RS(255,239) codes
SBS for RS(255,239) codes
Modified SBS for RS(255,239) codes

Fig. 10 Simulation results for RS codes decoding
schemes

6 Conclusions

A modified step-by-step algorithm and a
novel pipelined decoder for RS(23,17) codes are
proposed in this paper. With modification, the
computational complexity is significantly reduced.



Peng et al. / Front Inform Technol Electron Eng 2016 17(9):954-961 961

In addition, much less area is needed for this de-
coder compared with the ME architecture and the
pDCME architecture. As a result, the low computa-
tional and hardware complexities make the proposed
decoder suitable for the UWB system.

References
Baek, J.H., Sunwoo, M.H., 2006. New degree computa-

tionless modified Euclid algorithm and architecture for
Reed-Solomon decoder. IEEE Trans. VLSI Syst.,
14(8):915-920.
http://dx.doi.org/10.1109/TVLSI.2006.878484

Batra, A., Balakrishnan, J., Dabak, A., et al., 2004. Multi-
band OFDM Physical Layer Proposal for IEEE 802.15
Task Group 3a. IEEE P802.15-03/268r2.

Berlekamp, E.R., 1968. Algebraic Coding Theory. McGraw-
Hill, New York.

Chen, T.C., Tasi, M.H., 2007. Hardware implementation of
a high-speed (32, 24, 4) RS decoder. Chung Hua J.
Sci. Eng., 5(4):21-27.

Chen, T.C., Wei, C.H., Wei, S.W., 2000. Step-by-step
decoding algorithm for Reed-Solomon codes. IEE Proc.
Commun., 147(1):8-12.
http://dx.doi.org/10.1049/ip-com:20000149

Chen, T.C., Wei, C.H., Wei, S.W., 2003. A pipeline structure
for high-speed step-by-step RS decoding. IEICE Trans.
Commun., E86-B(2):847-849.

Das, A.S., Das, S., Bhaumik, J., 2013. Design of RS(255,251)
encoder and decoder in FPGA. Int. J. Soft Comput.
Eng., 2(6):391-394.

García-Herrero, F., Valls, J., Meher, P.K., 2011. High-speed
RS(255, 239) decoder based on LCC decoding. Circ.
Syst. Signal Process., 30(6):1643-1669.
http://dx.doi.org/10.1007/s00034-011-9327-4

Guo, W., Gai, W., 2014. Area-efficient recursive degree com-
putationless modified Euclid’s architecture for Reed-
Solomon decoder. Proc. IEEE Int. Conf. on Electron

Devices and Solid-State Circuits, p.1-2.
http://dx.doi.org/10.1109/EDSSC.2014.7061134

Lee, H., 2003. High-speed VLSI architecture for parallel
Reed-Solomon decoder. IEEE Trans. VLSI Syst.,
11(2):288-294.
http://dx.doi.org/10.1109/TVLSI.2003.810782

Lee, S., Lee, H., 2008. A high-speed pipelined degree-
computationless modified Euclidean algorithm architec-
ture for Reed-Solomon decoders. IEICE Trans. Fun-
dament. Electron. Commun. Comput. Sci., E91-
A(3):830-835.

Liu, X., Lu, C., Cheng, T.H., et al., 2007. A simpli-
fied step-by-step decoding algorithm for parallel decod-
ing of Reed-Solomon codes. IEEE Trans. Commun.,
55(6):1103-1109.
http://dx.doi.org/10.1109/TCOMM.2007.898703

Massey, J., 1965. Step-by-step decoding of the Bose-
Chaudhuri-Hocquenghem codes. IEEE Trans. Inform.
Theory, 11(4):580-585.
http://dx.doi.org/10.1109/TIT.1965.1053833

Sarwate, D.V., Shanbhag, N.R., 2001. High-speed architec-
tures for Reed-Solomon decoders. IEEE Trans. VLSI
Syst., 9(5):641-655.
http://dx.doi.org/10.1109/92.953498

Wu, Y., 2015. New scalable decoder architectures for Reed-
Solomon codes. IEEE Trans. Commun., 63(8):2741-
2761.
http://dx.doi.org/10.1109/TCOMM.2015.2445759

Zhang, X., Zhu, J., 2010. High-throughput interpolation
architecture for algebraic soft-decision Reed-Solomon
decoding. IEEE Trans. Circ. Syst. I, 57(3):581-591.
http://dx.doi.org/10.1109/TCSI.2009.2023935

Zhu, J., Zhang, X., Wang, Z., 2009. Backward interpolation
architecture for algebraic soft-decision Reed-Solomon
decoding. IEEE Trans. VLSI Syst., 17(11):1602-1615.
http://dx.doi.org/10.1109/TVLSI.2008.2005575


