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Abstract: Accurate home location is increasingly important for urban computing. Existing methods either rely on
continuous (and expensive) Global Positioning System (GPS) data or suffer from poor accuracy. In particular, the
sparse and noisy nature of social media data poses serious challenges in pinpointing where people live at scale. We
revisit this research topic and infer home location within 100 m×100 m squares at 70% accuracy for 76% and 71%
of active users in New York City and the Bay Area, respectively. To the best of our knowledge, this is the first time
home location has been detected at such a fine granularity using sparse and noisy data. Since people spend a large
portion of their time at home, our model enables novel applications. As an example, we focus on modeling people’s
health at scale by linking their home locations with publicly available statistics, such as education disparity. Results
in multiple geographic regions demonstrate both the effectiveness and added value of our home localization method
and reveal insights that eluded earlier studies. In addition, we are able to discover the real buzz in the communities
where people live.
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1 Introduction

Home, as one of the most important locations
in people’s mobility patterns, is the key to under-
standing many aspects of urban life and environ-
ments. With the knowledge of where people actually
live, researchers are able to model the distribution
of population, study human mobility patterns, infer
life styles, and even discover the correlation between
home location and other important aspects such as
health conditions, disease diffusion, and environment
changes.

Much of the research in the above mentioned
areas is based on surveys and census, which are costly
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and often incur a delay that hampers real-time anal-
ysis and response. Fortunately, the wide adoption
of geo-tagged social media provides us a new oppor-
tunity to feel the pulse of cities. In this paper, we
present a machine learning based approach to detect
home locations at the population level based only on
geo-tagged tweets and use the estimated home lo-
cations to investigate these crucial aspects of urban
life.

Indeed, any given dataset may carry cer-
tain biases and our Twitter dataset is no ex-
ception. In fact, the average sampling rate
of the U.S. census in each state is about 3%
(https://www.census.gov/acs/www/), which is
similar to the percentage of users we covered out
of all Twitter users. In addition, younger people
and minorities are disproportionably present on
Twitter as compared to the overall makeup of the
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population (http://pewresearch.org/pubs/2007/
twitter-users-cell-phone-2011-demographics). Nev-
ertheless, prior work and our results demonstrate
that tweets can provide powerful and fine-grained
cues of what is going on in cities. There is a trend
that more and more users are ‘active’ on Twitter
and this would help alleviate the biases. To the best
of our knowledge, this is the first time that urban
life has been studied on such open source data at a
fine granularity.

The practicability of a home detection method
for urban studies depends on two metrics. The first
is granularity, which indicates in what resolution a
method can predict one’s home; the second is ap-
plicable scope, which measures the ratio of popula-
tion that a method is applicable to. In some prior
work, granularity is also called ‘resolution’ (Lin et al.,
2012). In this paper, we use these two terms inter-
changeably. To look deep into city life, an acceptable
method should not only precisely determine one’s
home, but also cover as many people as possible.

Significant work has been done to find where
people live based on a wide variety of data sources,
such as Global Positioning System (GPS) data (Hoh
et al., 2006; Krumm, 2007; Sadilek and Krumm,
2012), cellphone recording data (Cho et al., 2011),
and geo-tagged social network data (Scellato et al.,
2011a; Pontes et al., 2012a; 2012b). It has been
shown that, as an important stop in people’s daily
movements, home exhibits certain intrinsic charac-
teristics. For example, it is often the place which
corresponds to the most check-ins of a user’s trace,
and also is probably the daily final destination of a
user. However, previous work suffers from either
coarse granularity or low applicable scope. High
quality data such as continuous GPS data and di-
ary data are required to reduce the possible range of
one’s home location. Krumm (2007) reported that
home can be located with a median error of about
60 m using GPS traces of vehicles. However, the
difficulties in collecting GPS data lead to the low ap-
plicable scope of these types of methods. The wide
adoption of social media can help us overcome the
low applicable scope problem, but much of the exist-
ing work could locate home only at a low resolution
(city level, state level, or even time zone level) based
on social media data (Mahmud et al., 2012).

In this paper, we investigate ways to balance

granularity and applicable scope. In most previ-
ous work based on geo-tagged data, home was sim-
ply estimated as the place visited most frequently
(most check-in place) (Cho et al., 2011; Scellato et
al., 2011a; Pontes et al., 2012a; 2012b). We will
show that this method does not always work espe-
cially when a user visits several places with similar
frequencies. In contrast, we extract the features of
one’s trajectory in terms of temporal, spatial, and
other aspects from a Twitter user’s sparse trace of
locations based on the geo-tagged tweets. A machine
learning method is employed to capture the inherent
properties of home using these mobility features, and
further detect one’s precise home location. We eval-
uate our method on two large Twitter datasets from
the Greater New York City (NYC) Area (Fig. 1) and
the Bay Area, and the results show that our method
is capable of locating homes within a 100 m×100 m
square with an accuracy of 70% and applicable to
76% and 71% active Twitter users in NYC and the
Bay Area, respectively. An active Twitter user is de-
fined as one who sent at least five geo-tagged tweets
using the same definition as in Song et al. (2010), Lin

Stuffy nosee great. I better be 

well by saturday!!

Day 2 of death. Hate 

being sickkkk

Geographic distribution of me-

dian income by quintile in NYC

2 200-38 501
38 501-50 051
50 051-60 502
60 502-74 252
74 252-140 255

Fig. 1 Visualization of the health conditions and in-
come levels of sample Twitter users in New York City.
Two examples of ‘sick tweets’ and their origins are
plotted in the figure. The income levels of zip code
aligned areas are represented by a color scale. Blue
colors indicate higher income levels and orange colors
indicate lower income levels. This study explores to
what extent online social media can be used to locate
where people live, and predict the impact of a num-
ber of environmental and community demographic
factors on health. References to color refer to the
online version of this figure
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et al. (2012), and Smith et al. (2014).

As another major contribution of this study, we
demonstrate that highly precise and applicable scope
home location estimation provides us the ability of
looking deep into people’s movements and habits.
In particular, we study human mobility patterns
in NYC. Furthermore, using the rich text content
within tweets, we explore the health conditions of
people in different zip code districts. Note that
the zip code district in NYC has an average area
of 3.6 km2, and the radii of many of them are less
than 1 km. Therefore, finer granularity methods are
required. As we will show, our results correlate well
(r = 0.473, p-value=0.006) with the data from the
New York City Department of Health and Mental
Hygiene (NYC DOHMH). We take a step further
to study the correlation between the health condi-
tions and various demographics of a zip code district.
Consistent with previous social science studies, our
results show that education level is the most impor-
tant factor for health. This is the first time such
analysis has been done in such a fine-grained fashion
using social media data. Moreover, we discover the
popular topics of the residents of different districts in
the Bay Area. It is interesting to observe the distinc-
tive lifestyles implied by the unique topics of certain
districts. Not surprisingly, such distinctive signals
of life style disappear when we extract topics based
only on where the tweets come from.

2 Related work

2.1 Home location based user behavior
understanding

Home location is crucial for modeling human
mobility patterns. With the knowledge of home lo-
cations, we can gain a better insight into mobility
patterns, as well as lifestyle in general. In Cho et al.
(2011) and Scellato et al. (2011a; 2011b), home lo-
cation is the key origin to calculate the distance that
people travel and estimate the distance between so-
cial network users in a pairwise fashion. Researchers
found that home location, as a crucial personal lo-
cation, can be inferred from the information user
posted online at a certain granularity (Krumm, 2007;
Pontes et al., 2012a; 2012b). Home location was
also used to model individuals’ living conditions and

lifestyles by Sadilek and Kautz (2013).

2.2 Home location detection

2.2.1 Using social network data

Mahmud et al. (2012) used Twitter data at-
tached with geo-information, especially tweet con-
tent, to infer the home locations at city, state, and
time zone levels. In their study, the accuracies were
58%, 66%, 78% at city level, state level, and time
zone level, respectively. Pontes et al. (2012a) devel-
oped ‘single-attribute’ models based on different so-
cial network features, for example, taking the value of
users’ ‘employment’ as their home city in Google+.
They inferred the user home city using geo-tagged
data from Foursquare, Google+, and Twitter with
67%, 72%, and 82% accuracy, respectively. Pontes
et al. (2012b) also used geo-tagged social network
data (Foursquare) to infer the home city within
50 km. A content-based method was used by Cheng
et al. (2010) to detect Twitter users’ home cities.
They could place 51% of active Twitter users within
100 miles of their actual home locations. Cho et al.
(2011) used a dataset containing the traces of two
million mobile phone users from a European country
to estimate the home locations according to the most
visited places. They reported that by manual check-
ing, the most check-in method can achieve 85% accu-
racy when they divided the area into 25 km×25 km
cells. Scellato et al. (2011a) simply assigned the most
check-in places as users’ home locations, but they
did not provide experiments to verify the accuracy
of their method. The location of a person’s home
was estimated by fitting a two-dimensional Gaussian
to all his/her locations between 1 A.M. and 6 A.M.
(Sadilek and Kautz, 2013). The mean of this Gaus-
sian was taken as the most likely home location. In
summary, most of the home detection methods based
on social media data require geo-tagged information.
Although the accuracies reported in the above stud-
ies are reasonable, the granularity levels are so coarse
that these methods are not applicable to district or
finer level study.

2.2.2 Using GPS and diary data

GPS and diary data are much more dense
and continuous than social network location data,
which makes home detection more precise and easier.
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However, such data are more difficult to obtain.
Most of the work using GPS data suffered from the
small number of users. In Krumm (2007), devices
that recorded location every several seconds were in-
stalled on 172 subjects’ vehicles. These devices col-
lected the mobility data when the cars were moving.
The ground truth of home location was filled by the
drivers themselves. The author used four heuristic
algorithms to compute the coordinates of each sub-
ject’s home, and found that the best one is the ‘last
destination of a day’. We also include this feature
in our extracted mobility features. The median dis-
tance error of the author’s best algorithm was 60.7 m.
Hoh et al. (2006) clustered the GPS traces of users
agglomeratively until the clusters reached an average
size of 100 m. Next, they eliminated clusters with no
recorded points between 4 P.M. and midnight and
clusters falling outside the residential areas by man-
ual checking.

Semantically labeling places is another im-
portant topic related to home location detection.
Sadilek and Krumm (2012) used GPS data from
307 people and 396 vehicles. They divided the world
into 400 m×400 m squares, and assigned each GPS
reading to the nearest cell. They found that the
top 10 frequently visited locations usually can be se-
mantically labeled as ‘home’, ‘work’, ‘favorite restau-
rant’, and so on. Krumm and Rouhana (2013) per-
formed experiments using two diary datasets from
the American Time Use Survey (ATUS) and the
Puget Sound Regional Council (PSRC)’s Household
Activity Survey, in which each location has a seman-
tic label such as ‘home’ or ‘school’. They extracted
several features of a location and trained place clas-
sifiers using machine learning. They reported a clas-
sification accuracy above 90% on locations labeled
as ‘home’.

In summary, existing home detection methods
suffer from either low applicable scope (GPS data
and diary data) or coarse granularity problems (geo-
tagged social media data), making them inadequate
for urban computing problems that require both high
applicable scope and fine granularity. Most check-in
has been widely used to estimate user homes, and
proved valid at a coarse granularity. However, its ef-
fectiveness is still doubtable when employed at finer
granularity. We will show that most check-in does
not always work for a more precise estimation. Our

first contribution is in devising a method that can
predict user home locations with a high accuracy
using comprehensive features derived from sparse
tweets. We also demonstrate the effectiveness of pre-
cise home location in representative applications in
urban computing.

3 Methodology

3.1 Dataset and pre-processing

We collected all the geo-tagged tweets sent from
the Greater New York City Area during July 2012
and also those sent from the Bay Area during the
summer of 2013 through a vendor. A typical geo-
tagged tweet contains the identity (ID) of the poster,
the exact coordinates from where the tweet was sent,
time stamp, and the text content. Due to the in-
herent noise in the geotags, we split the areas into
100 m×100 m squares and treat the center of each
square as the target of home detection. We assign
each tweet to its closest square, and each time a
user tweet appeared in a square we say he/she had
a check-in in this square. Therefore, the granular-
ity of our square based home detection is around
70 m (

√
2 × 100/2 ≈ 70). Similar to Song et al.

(2010), Lin et al. (2012), and Smith et al. (2014),
we focus only on those ‘active users’ who have sent
at least five tweets. Also, following these studies,
we use user’s hourly traces (take only one location
for each hour in our sampling duration) instead of
taking account of every single check-in. If a user’s
location was not observed in an hour, the location for
the corresponding hour is set to ‘Null’; on the other
hand, if a user appeared in several unique squares in
an hour, we take the square with the highest number
of check-ins as the location of this user in this hour.
Typically, the hourly trace Tu of a user U looks like:
T = [Null, Li,Null, ..., Lj ], where Li does not have
to be different from Lj. The lengths of the hourly
traces of all users are the same, equaling the num-
ber of hours of our sampling period. We provide a
snapshot of our dataset in Table 1.

3.2 Ground truth

The challenge is, without being told by the ac-
tual Twitter users, to know which is a person’s home
among all the places he/she visited. Almost all
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Table 1 Statistics of our dataset

Item NYC Bay Area

Number of tweets 2 636 437 3 633 712
Total number of active users 55 237 53 314
Number of tweets labeled by AMT 5000 5 000
Number of home locations (GT) 1 063 987

AMT: Amazon Mechanical Turk; GT: ground truth; NYC:
New York City

previous work had the problem of obtaining a fine
granularity ground truth. To obtain the ground
truth of where people actually live, researchers re-
lied on the information from user profiles (Mahmud
et al., 2012; Pontes et al., 2012a; 2012b) or manually
inspected the detection results (Cho et al., 2011).
Apparently, the location information in user profiles
is coarse (at city level), while manual inspection is
not scalable.

In this study, we rely on tweet content and hu-
man intelligence. For some tweets, a human can
easily tell from where it was sent. For example, if
a tweet said “The view from my office is awesome!”
and included a picture of the view from a window, we
can tell it was sent from a user’s office. Some tweets
are obviously sent from home. For example, “finally
home!” or “home sweet home”. This is the basis for us
to design a mechanism to build the ground truth for
home location. We polled some faithful Twitter users
what they would like to post when at home. Based on
their answers, we selected a set of keywords, each of
which is likely to be mentioned in tweets sent from
home. This set contains words like ‘home’, ‘bath’,
‘sofa’, ‘TV’, ‘sleep’, and so on. We ended up with
a set of 50 unique words and their variants. Next,
we used a simple keyword filter to obtain all the
tweets that contain at least one of these keywords.
From here we relied on human intelligence through
crowdsourcing on Amazon Mechanical Turk (AMT)
to find the ‘home tweets’, which were sent from home.
We gathered these tweets into questionnaires. Each
questionnaire contains five tweets, where we simply
ask “Do you think these tweets are sent from home?”
and the options include ‘Yes’, ‘No’, and ‘Not sure’.
We then posted these questionnaires to AMT. Each
questionnaire was answered by three unique work-
ers. To ensure the quality of the answers, we in-
serted several testing questions for which we knew
the obvious answers. We found that workers have
quite different thresholds on telling whether a tweet

is sent from home. For example, a tweet said “The
type of day where all I want is my bed and to not
be at work!” and it received three different answers
from three unique workers. Therefore, we retained
only the tweets strictly for which all the three work-
ers thought were sent from home. We checked these
final tweets manually and found that virtually all of
these tweets clearly indicated that the users were at
home.

3.3 Models based on human mobility features

To study the inherent property of home, we ex-
tract several features of every unique location of one’s
hourly trace. In this section, we discuss these fea-
tures in detail. Some of these temporal and spatial
characteristics can be used as baseline methods to
detect home location (e.g., check-in rate, PageRank
score). We will show that although a single feature
can be used to detect home location with a reason-
able accuracy, it usually covers a limited amount of
people. However, combining them appropriately us-
ing a machine learning method brings us significant
gain in applicable scope.

3.3.1 Check-in rate

As we mentioned in Section 2, taking the place
of most check-ins as home is a popular method. We
call this method ‘most check-in’. Due to the different
tweet volumes of users, we do not use the absolute
check-in amount. Although check-in based methods
work well on GPS data (Krumm, 2007), it is not the
case when it is employed on Twitter data. Unlike ve-
hicle GPS devices which keep recording the location
every several seconds, people tweet only when they
feel like to do it. The place with most check-ins def-
initely is important to a user, but ‘important’ does
not necessarily mean it is the home. We found that
the effectiveness of most check-in is closely related
to how much higher is the rate of check-ins of the
most check-in place than the second most check-in
place. Fig. 2 shows that the accuracy of most check-
in increases linearly with the check-in rate margin.
The accuracy is 70% only when the margin is signifi-
cantly higher (50% or higher). Therefore, in addition
to the check-in rate of a place, we include the mar-
gins of check-in rate between a place and its next
higher and lower check-in places. Also, this is the
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reason for the poor applicable scope of most check-in
when high accuracy is required under our granularity
setting (100 m×100 m squares). Fig. 3 is the cumu-
lative distribution. It shows that only about 40%
users have margins which are 50% or larger. The
inset of Fig. 3 reports the distribution of check-in
rate margin between the most check-in place and the
second most check-in place.
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Fig. 2 Accuracy vs. the check-in rate margin between
the most check-in place and the second most check-in
place
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Fig. 3 Accumulated distribution of check-in rate mar-
gin. The inserted figure reports the distribution of
check-in rate margin between the most check-in place
and the second most check-in place. It is observed
that the majority of margins are below 50%

3.3.2 Check-in rate during midnight

Intuitively, the places where people appear at
midnight are probably their homes. Sadilek and
Kautz (2013) took the places with the most check-
ins during midnight (00:00-07:00) as people’s homes.
This method potentially alleviates the biases caused
by other frequently visited places during daytime.
Therefore, we take the check-in rate during midnight
of a place as another feature, separated from the to-
tal check-in rate discussed above. However, as we

will show later, it is not the case among active Twit-
ter users. When an active user checks in at some
place during midnight, this place is most probably
not the home. This reflects the difference between
Twitter data and GPS data. In Twitter data, a user
has to be awake and active to report the current
location at that moment, while in GPS data, the lo-
cation recording is automatic even when the users
are inactive. We will discuss this further later.

3.3.3 Last destination of a day

According to the research by Krumm (2007) on
GPS data, the last destination of a user in a day
(no later than 03:00 in the morning) is probably the
home. It reveals that people’s daily movements end
at their homes. We include this as another mobility
feature after minor modification. First, we extract
all the final destinations of a user over the entire
sampling period. We then sum up the number of
days when a place had been the final destination.
This value, the times of a place being the last stop of
a day, is taken as one of the mobility features of this
place.

3.3.4 Last destination with inactive midnight

Since ‘last destination’ might suffer from the
check-ins sent from non-home places especially when
the night was spent outside, we also consider a vari-
ant feature of last destination. We consider only
tweets sent on the days when people are inactive
during midnight (00:00-07:00). We exclude the days
with active midnight and find the last destination
among the remaining days, and then count the times
of a place being the last destination.

The three features above introduce extra hu-
man behavior information into the original check-in
feature. This helps reduce the applicable scope limi-
tation of the simple check-in rate feature.

3.3.5 Spatial features

As the center of everyday activities of most
users, home is one of the most important starting
points and destinations of their movements. We use
weighted PageRank (Xing and Ghorbani, 2004) and
reversed PageRank scores to model the importance
of a place being an origin point and a destination. To
use PageRank related algorithms, we transfer one’s
trace into a directed graph. Vertices of the graph are



Hu et al. / Front Inform Technol Electron Eng 2016 17(5):389-402 395

the locations visited. A directed edge from location
Li to Lj represents that Lj is visited directly after
Li. To quantify the certainty and importance of tran-
sitions between locations, we assign weight to each
edge. The weight should be inversely proportional to
the length of blank idle between two locations, and
also proportional to the times of a transition appear-
ing in one’s trace. Formally, let t(Li, Lj) represent
the transition between Li and Lj and wt(Li,Lj) rep-
resent the weight. The definition of the weight is as
follows:

wt(Li,Lj) =
∑

kth t(Li,Lj) inT

1

Number of idle hours in the kth t(Li, Lj)
.

(1)

After constructing a user’s movement graph, we
apply the PageRank algorithm to calculate the im-
portance of being a destination for each location in
one’s trace. Meanwhile, to study the importance of
being an origin, we propose a reversed PageRank
score. We reverse each edge’s direction in the move-
ment graph, with the weights of edges unchanged.
The same reversed calculation is performed with the
weighted PageRank algorithm. Compared with the
earlier features, the PageRank score and reversed
PageRank score describe the spatial characteristics
of movements.

3.3.6 Temporal features

According to Krumm (2007), the probability of
being at home varies over time. We extract the
check-in rates of a place in different hours. These
time-related features help us capture the property of
home in terms of temporal patterns.

3.4 Multi-feature prediction

We believe that, as a distinctive place of one’s
trace, home permeates its influence into all the mo-
bility features discussed above. Indeed, one can use

a single feature to detect home location. However,
a single feature captures only one type of charac-
teristic, and thus will lead to low applicable scope of
these methods. We apply a machine learning method
to combine all the features. Because of the com-
plementary effect between features, an appropriate
combination will significantly increase the method’s
applicable scope without loss of accuracy.

Our goal is to distinguish home from other lo-
cations that one has visited. Since we obtain various
features for every place of one’s trace, the original
problem can be transferred to an equivalent classi-
fication problem: given locations and corresponding
feature values, we want to train a model to predict
home among them. The inputs of the model are
transactions identified uniquely by user ID and lo-
cation ID, followed by features calculated from this
user’s hourly trace and a label as ‘home’ or ‘non-
home’. We use a linear support vector machine
(SVM) model to exploit how these features are com-
bined. Given the places and their features for a given
user, the model outputs a score for each place. If the
highest score exceeds a threshold, we take the corre-
sponding place as the user’s home. Otherwise, this
user cannot be covered by our model. In Table 2, we
present significantly positive and negative features
and their weights. Not surprisingly, check-in rate,
PageRank score, and reversed PageRank score re-
lated features are more significant than others. Note
that all features contribute to the better overall ap-
plicable scope.

4 Home location evaluation

4.1 Applicable scope vs. accuracy

To guarantee the practicability of our home de-
tection method, we need to balance granularity and
applicable scope. Because of the natural trade-off be-
tween granularity and detection accuracy, we fix the

Table 2 Significantly positive and negative features and their weights

Positive feature Weight Negative feature Weight

Check-in rate 2.03 Margin below next higher check-in −0.30

Margin over the second highest check-in 0.19 Margin under next higher PageRank −0.28

PageRank score 0.19 Margin under next higher reversed PageRank −0.21

Last destination on inactive midnight 0.12 Rank of reversed PageRank −0.07

Reversed PageRank score 0.09 Rank of PageRank −0.07
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granularity as 100 m×100 m squares and explore the
relationship between accuracy and applicable scope.
The accuracy of each single feature can be adjusted
through the threshold, which also affects applicable
scope. In this section, on both NYC and Bay Area
data we compare our method with three other intu-
itive single-feature based methods: (1) most check-in
(Due to the statistical insignificance of too few check-
ins, we also set a constraint on this method: the
absolute check-in number of the most check-in place
is at least 3); (2) highest PageRank score (Similarly,
the threshold is how much higher the highest PageR-
ank score compared with the second highest one);
(3) highest reversed PageRank score. Figs. 4 and
5 indicate the trend of applicable scope along with
accuracy. Applicable scope decreases rapidly as the
accuracy rises. It shows that, at every accuracy level,
our method covers more users. Specifically, when
we set the accuracy of each method at 70% (which,
we think, is acceptable for urban computing), our
method obtains 76% and 71% applicable scope in
NYC and Bay Area, respectively. As to other meth-
ods, none is able to detect home for more than 50%
users when the accuracy is 70% or higher. It proves
that an intelligent combination model leads to a sig-
nificant increase in applicable scope. Most check-
in works better than PageRank score and reversed
PageRank score, but still suffers from low applicable
scope. The higher applicable scope of our method
implies the complementary effect between these mo-
bility features. This method dose not depend on any
one type of information but combines the informa-
tion of several aspects. For example, when a user’s
check-in features do not provide enough cues to pre-
dict the home, other types of features may pick up
the slack and naturally lead to a higher applicable
scope. The balance of applicable scope and accuracy
facilitates more extensive and deep urban life studies,
which we will describe in the following subsection.

4.2 Resolution of home detection

The detection of home is performed in
100 m×100 m squares, and thus the granularity of
the method is around 70 m. Different urban studies
require different resolutions. To explore this, we fix
the applicable scope of our method at 80%, and vary
the granularity from 100 m to 1000 m to evaluate the
change in accuracy of our method. Fig. 6 indicates
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that the accuracy of our method increases when the
granularity increases. As the granularity becomes
coarser, the increase in the accuracy slows down,
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and peaks at around 80% when the granularity is
about 1000 m. Compared with Pontes et al. (2012a),
our method provides higher granularity with similar
accuracy (around 80%).

In summary, our method achieves a desirable
balance between resolution and applicable scope, and
for geographically and demographically diverse re-
gions in U.S. Consequently, it will prove instrumen-
tal for higher-level urban informatics. Next, we will
show that such precise home location information en-
ables us to study mobility patterns and health con-
ditions and reveals significant insights that eluded
earlier studies on similar subjects.

5 Mobility patterns in New York City

Human mobility pattern is one of the most stud-
ied subjects in urban computing research. However,
without knowing precise locations of people’s homes,
most work is limited to a coarse granularity (Cheng
et al., 2010; Mahmud et al., 2012; Pontes et al.,
2012a; 2012b). We overcome this limitation and dig
deeper on people’s mobility patterns, daily habits,
and even their check-in patterns at home. Due to
the space limit, we report only the results for NYC.

5.1 Active user mobility

Knowing the precise home location of a user, we
can calculate the distance from each check-in to the
home. Note that when a user checks in somewhere
this user must be active at that time. Self-reported
location is one of the most important features of geo-
tagged Twitter data. When the user is not post-
ing locations, though one may infer locations given
user’s historic data (Ashbrook and Starner, 2003;
Backstrom et al., 2010; Cranshaw et al., 2010), such
inference cannot obtain precise knowledge of their
locations. We report our findings in Fig. 7. There
are roughly two peaks in Fig. 7, one at midnight and
the other at mid-day. As we discussed above, though
surprising at first glance, the check-ins at midnight
are most likely not at home. In contrast, active Twit-
ter users are actually quite far from their homes late
at night. At 01:00 A.M., the average distance from
home is at the minimum value. We can also see that,
on Saturday people move further away from home
than on any other day of the week. This tendency
continues to early Sunday morning. Also, on late Fri-

day (after 04:00 P.M.) people tend to move further
than on other workdays.

5.2 Likelihood of returning home

We also model the probability of returning
home. We find that people return home in a daily
pattern. In other words, the probability of return-
ing home increases significantly every 24 h (Fig. 8).
Cheng et al. (2011) and Pontes et al. (2012b) did sim-
ilar work. They modeled the probability of return-
ing to any place (not limited to home), and found
that in addition to a daily pattern, revisiting also
follows a weekly pattern. In other words, the proba-
bility of revisit also increases every 168 h (one week).
However, in this study we show that when the place
is limited to ‘home’, the weekly pattern disappears.
This makes obvious sense as people normally return
to their homes every day but not many return to
their homes every week. The probability of return-
ing home decreases over longer periods (e.g., 48 h)
because this scenario is naturally less frequent.
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5.3 Likelihood of being at home

We also estimate the probability of a user be-
ing at home (Fig. 9). The daily pattern from our
result is similar to that of Krumm (2007), which was
obtained by recording the continuous GPS trace of
people and calculation based on self-reported home
locations. This proves the effectiveness of our ma-
chine learning based home location method on sparse
and noisy data. To take a deeper look into people’s
mobility patterns, we also model the probability of
being at home over a week. The differences between
our results and those in Krumm (2007) are: (1)
The probabilities are much lower after 03:00 A.M.
in our results, as we discussed above, showing that
‘being away from home at midnight’ is an interest-
ing characteristic of active Twitter users; (2) The
probabilities of being at home during the daytime
are slightly higher in our study. This is probably be-
cause some rarely tweeting users cannot be covered in
our method compared with studies using continuous
GPS data. We also observe the difference between
weekdays and weekends: the probability of being at
home starts decreasing from Friday nights and keeps
decreasing on Saturday nights, suggesting that peo-
ple are more likely at home during the night on other
days in the week.
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Fig. 9 The probabilities of being at home. The red
circle emphasizes the decrease of the probability of
being at home on Friday and Saturday nights. Refer-
ences to color refer to the online version of this figure

6 Buzz by home location

Previous studies on topics of conversation
on Twitter are mostly based on the geoloca-
tion from where the tweets are posted (http://
projects.knightlab.com/projects/neighborhood-buzz).
In this paper, we call the topics of conversation

based on geolocation ‘buzz by location’. Clearly,
tweets sent from a region do not necessarily have to
be sent by people who live there. We call the topics
of conversation of local residents ‘buzz by home’.
What intrigues us is, are these two kinds of buzz the
same? According to our experiments, the answer is
negative. To find out the difference, we group tweets
from the Bay Area by the cities from which they
were tweeted and also by the estimated home city of
their posters, respectively. Note that ‘cities’ in the
Bay Area are some small areas, and the radii of some
of them are only around 1 km (e.g., Emeryville).
Therefore, to find buzz by home in such areas,
fine-grained home detection methods are required.
By extracting the topics following hashtags, we
gather topics from an area. We are interested only
in the topics that are distinctive to a certain city,
and thus we filter out topics appearing in more than
three cities. We find notable differences between
buzz by location and buzz by home. Due to the
limit of space, we report only the most interesting
ones in Table 3. Buzz by home is more life-like than
buzz by location. In several cities, ‘#healthcare’
and ‘#hospitality’ are widely discussed by people
living there, and some topics are closely related to
local population, such as ‘#qa’ (referring to quality
assurance) in Mountain View and ‘#webdesign’ in
San Mateo. Buzz by home is also related to local
events; e.g., ‘#backbenoit’ in Emeryville refers to
a famous baseball game in that summer held near
Emeryville. On the other hand, buzz by location is
more monotonic. Most topics are just the names of
the cities where tweets are sent.

7 Community health condition estima-
tion

With the precise knowledge of where people live,
we are further interested in the relationship between
people’s health conditions and their home locations.
Let us start with how we model the health conditions
of Twitter users.

7.1 Inferring health state

We select prediction features upon previous
work on classification of short text messages (Cu-
lotta, 2010; Paul and Dredze, 2011; Sadilek et al.,
2012) and learn an SVM classifier Cs (the subscript
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Table 3 Buzz by home and buzz by location in differ-
ent cities of the Bay Area

City name Home buzz Location buzz

Mountain View #qa #mountainview
#followmeskip
#skipfollowme

Fremont #hospitality #fremont
San Mateo #webdesign #sanmateo
Emeryville #backbenoit #emeryville

#emeryville
Sunnyvale #engineering #sunnyvale

#healthcare #apocono
#apocono

Santa Clara #marketing #santaclara
San Leandro #love #sanleandro

#fashion
Redwood #manufacturing #redwoodcity

#geekcamp #tryhard
#tryhard #scifi

Hayward #healthcare #hayward
#accounting #green
#letsgooakland

‘s’ indicates sickness to differentiate it from the ear-
lier SVM used for home location) which identifies
tweets that indicate their author is ill. Cs is trained
by directly optimizing the area under the receiver
operating characteristic (ROC) curve. It is robust
even in the presence of strong class imbalance, where
for every health-related message there are more than
1000 irrelevant ones. We use Cs to distinguish be-
tween tweets indicating the author is affected by an
ailment (we call such tweets ‘sick’ tweets) and all
other tweets (called ‘other’ or ‘normal’ tweets). For
SVM features, we use all unigram, bigram, and tri-
gram word tokens that appear in the training data.
For example, ‘so sick of’ is represented by the feature
vector (so, sick, of, so sick, sick of, so sick of)T. As
a result, our SVM operates in more than 1.7 million
dimensions, where each dimension represents a word
or a phrase extracted from the training data. Be-
fore tokenization, we convert all text to lower case,
strip punctuation, and special characters, and re-
move mentions of user names (the ‘@’ tag) and re-
tweets (analogous to email forwarding). However,
we do keep hashtags (such as ‘#sick’), as those are
often relevant to the author’s health state, and are
particularly useful for disambiguation of short or ill-
formed messages. Table 4 lists examples of signifi-
cant features found in the process of learning Cs. We
use the SVM cascade learning procedure described
in Sadilek et al. (2012). The evaluation of Cs on a

Table 4 Examples of positively and negatively
weighted significant features of our SVM model Cs

Positive Weight Negative Weight

Sick 0.9579 Sick of −0.4005

Headache 0.5249 You −0.3662

Flu 0.5051 Lol −0.3017

Fever 0.3870 Love −0.1750

Coughing 0.2910 So sick of −0.0800

Being sick 0.1910 Bieber fever −0.1000

Better 0.1980 Smoking −0.0980

Being 0.1940 I’m sick of −0.0890

Stomach 0.1700 Pressure −0.0830

Infection 0.1680 I love −0.0710

held-out set shows 0.98 precision and 0.97 recall with
respect to labels agreed upon by human annotators.
The ground truth for each tweet is obtained by ask-
ing AMT workers to label the tweet as either ‘sick’
or ‘other’ and subsequently extracting the majority
vote.

7.2 Zip code district health condition

7.2.1 Benchmarking with DOHMH data

We define ‘sickness score’ of a district as the
percentage of ‘sick’ people who live in it. There-
fore, the higher the sickness score is, the worse
the health condition of this district is. To evalu-
ate our home location method and our health in-
ference model, we compare our sickness score with
the data from NYC DOHMH. In the dataset pro-
vided by DOHMH, NYC is divided into 34 areas.
The health condition of individuals has four levels,
‘excellent’, ‘very good’, ‘good’, and ‘fairly good’.
DOHMH provides the percentage of each level of
every area. We calculate the correlation between
our sickness score and the percentages of ‘excellent’,
‘very good’, ‘good’ levels (since the sum of four per-
centages is one, there is no need to calculate the
correlation for all), respectively. Our sickness score
is highly negatively correlated with the ‘excellent’
percentage (r = −0.383, p-value=0.030), and posi-
tively correlated with the ‘good’ percentage of each
area (r=0.473, p-value=0.006). This makes sense be-
cause our health state inference method is based on
the percentage of sick Twitter users, and thus it in-
dicates a rough degree of relatively unhealthy people
in an area. Intuitively, this degree should be nega-
tively correlated with the percentage of people whose
health is in ‘excellent’ condition. Because there are
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only four levels in the health survey and the ‘good’
level is the second worst level among the four levels,
we consider this level as a ‘relatively unhealthy’ met-
ric. Therefore, the positive correlation between our
sickness score and this level makes sense. Although
our method can provide the highest applicable scope
among all the methods, it still suffers from the prob-
lem of small numbers of samples in some districts.
For better data reliability, we exclude all the districts
in which there are fewer than 200 residents detected
by our method. Table 5 shows the correlations with
‘excellent’ (r = −0.569, p-value=0.017) and ‘good’
(r=0.601, p-value=0.010).

7.2.2 Factors that affect health

The United States has one of the world’s largest
health inequalities across its society, where the gap
in life expectancy of the most and the least advan-
taged segments of the population is over 20 years.
It has been reported that this difference is partly
due to a difference in social status, but many aspects
of the phenomenon remain unexplained (Sapolsky,
2004). What we are interested in here is what fac-
tors (such as the poverty level, education level, and
race percentage) of a community may affect resi-
dents’ health condition most? The data provided

Table 5 The sickness score and percentages of people
whose health is in ‘excellent’ or ‘good’ condition

Area name
Sickness Percentage (%)

score Excellent Good

Upper West 0.046 30.7 26.3
Chelsea 0.018 29.3 20.0
Gramercy 0.029 26.4 19.8
Flatbush 0.100 23.6 30.5
Central Harlem 0.062 23.2 23.9
Lower Man. 0.019 23.2 22.0
Southeast Q. 0.043 22.1 27.6
Astoria 0.042 21.0 35.1
Crown Heights 0.066 20.8 34.7
Heights/Slope 0.061 20.5 27.1
Inwood 0.049 20.2 38.8
Bushwick 0.070 20.0 30.5
Southwest Q. 0.084 16.9 33.5
South Bronx 0.050 13.2 38.6
Fordham 0.083 13.0 46.1
Pelham 0.085 10.5 38.7

Correlation NA −0.569 0.601

The bottom row shows the correlation between our score and
the ratio. The table is sorted by the percentage of people
whose health is in ‘excellent’ condition in descending order

by DOHMH help us little on this as the whole city is
divided into 34 areas spatially, each containing sev-
eral zip code districts. However, there are about 170
zip code districts in NYC and the conditions of the
zip code districts within an area may vary dramati-
cally. The granularity of such division is too coarse
for accurate analysis about the relationship between
health and factors we are interested in. This is why
we again need precise home locations. The average
NYC zip code zone has an area of 3.6 km2 and can
be walked across in under 20 min. The zip code ar-
eas are as shown in Fig. 1. We can now associate
each person with the context derived from the 2010
census, the most recent census available. We focus
on three broad characteristics of a person’s neigh-
borhood: poverty, education, and race. Poverty is
measured in terms of the fraction of families and
individuals below the poverty line, the number of
abandoned housing units, and the prevalence of so-
cial security dependence. Education captures the
proportion of people over 25 years old with vari-
ous levels of education (from elementary school to
a doctorate). The race factor includes the propor-
tion of different races and ethnic groups. We first
use our method to accurately put each resident into
the right zip code district. With the census data
telling us the income and poverty level of each dis-
trict, we plot Fig. 10, which lists the correlations
between the factors of race, education, poverty, in-
come, and the sickness score. Consistent with Win-
kleby et al. (1992), education is the best predictor
for good health. Among our results, high-level ed-
ucation percentage of a district strongly negatively
correlates with the sickness score of that district.
On the other hand, the low-level education percent-
age strongly positively correlates with the sickness
score. We also model the correlation between heath
and factors including poverty, race, and income. It
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Fig. 10 Correlations between health and factors in-
cluding poverty level, education, race, and income
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is shown that the poverty level is negatively related
to health condition, which is supported by Winkleby
et al. (1992).

It is worth noting that in the earlier study in
Sadilek et al. (2012), little correlation was found be-
tween the health conditions and factors such as in-
come and education levels. We believe that the lack
of signals in that study was primarily due to the lack
of precision on home location estimation for Twitter
users as other aspects of the analyses are equivalent
between the two studies. Therefore, precise home
location is instrumental for such studies in urban
computing.

8 Conclusions and future work

In this paper, we propose a machine learning
based multi-feature method which can precisely lo-
cate people’s home locations. Compared with pre-
vious work, we do not require continuous GPS trace
data but instead use noisy and sparse Twitter data.
By evaluation on the ground truth obtained by hu-
man annotation, our method has achieved 76% and
71% applicable scope on the Twitter data that we
have collected from New York City and the Bay Area,
respectively. To the best of our knowledge, this is the
first time that urban life has been studied on such
open source data at a fine granularity.

Our method achieves a desirable balance be-
tween resolution and applicable scope, and for ge-
ographically and demographically diverse regions in
U.S. With such a balance, we are able to study hu-
man mobility patterns to an extent that was not
feasible before. We have shown interesting mobility
patterns extracted from Twitter data. Furthermore,
we use a health state model to estimate Twitter users’
health condition. We relate people’s health to their
home locations and compare our estimated sickness
scores with data from NYC DOHMH. Highly corre-
lated results have validated the effectiveness of both
our home location estimation method and our health
state inference model. More importantly, with the
precise location information and accurate estima-
tion of people’s health conditions, we have found
correlation between the average health state and
community demographics (such as income, poverty
level, education level, and race distribution) of dif-
ferent districts in the city. Our findings match well

with those of independent studies based on census
data. We also discover the true buzz in communities
where people live. Overall, we believe our precise
home location detection method provides a crucial
piece of context that enables helpful and pervasive
applications.

In the future, we will investigate other domains
of interest in urban computing given the knowledge
of home locations, such as economic activities, re-
source consumption, urban planing, and emergency
management. It will also be interesting to extend our
method for home location to general place recogni-
tion based on user movement behaviors.
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