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Abstract: In this paper, we present a novel geometric method for efficiently and robustly computing intersections
between a ray and a triangular Bézier patch defined over a triangular domain, called the hybrid clipping (HC)
algorithm. If the ray pierces the patch only once, we locate the parametric value of the intersection to a smaller
triangular domain, which is determined by pairs of lines and quadratic curves, by using a multi-degree reduction
method. The triangular domain is iteratively clipped into a smaller one by combining a subdivision method, until
the domain size reaches a prespecified threshold. When the ray intersects the patch more than once, Descartes’
rule of signs and a split step are required to isolate the intersection points. The algorithm can be proven to clip
the triangular domain with a cubic convergence rate after an appropriate preprocessing procedure. The proposed
algorithm has many attractive properties, such as the absence of an initial guess and insensitivity to small changes
in coefficients of the original problem. Experiments have been conducted to illustrate the efficacy of our method in
solving ray-triangular Bézier patch intersection problems.
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1 Introduction

Ray tracing is a valuable tool for rendering
scenes with amazing realistic light effects in com-
puter graphics (Haines et al., 1989; Joy et al., 1989),
including soft shadows, caustics, reflection, trans-
parency, and motion blur. In a ray tracing based
algorithm, the ray-scene intersection test is a fun-
damental operation that is required frequently. The
efficiency of ray tracing relies heavily on the compu-
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tation of the intersection test. Objects in the scene
vary from simple triangles, polygons, and spheres
to complex surfaces such as parametric splines and
implicit surfaces. Among these, triangular Bézier
patches have been accepted as a primitive choice
by the modeling community because of their flexi-
bility in modeling objects with complicated topol-
ogy. However, the intersection test for a ray with
objects is a nontrivial technique even for the sim-
plest case. In this study, we focus on the prob-
lem of ray-triangular Bézier patch intersections and
present a more efficient algorithm for finding such
intersections.

The number of ray-patch intersection tests can
be vastly reduced by using the space partition
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method, i.e., bounding volume hierarchy. A bound-
ing volume can be easily placed around a patch.
Then a ray is first tested against the bounding vol-
ume. The patch with the bounding volume intersect-
ing with the ray is chosen as the candidate surface for
further tests. The simple geometric bounding prim-
itives include axis-aligned bounding boxes (Sweeney
and Bartels, 1986), bounding spheres (Haines et al.,
1989), oriented slab boxing (Yen et al., 1991), and
parallelepipeds (Barth and Stürzlinger, 1993). Meth-
ods for finding an intersection between a ray and the
candidate patches can be classified into four types:
subdivision, approximation, Newton’s method, and
geometric clipping method. The most direct ap-
proach is subdivision (Woodward, 1989); i.e., a sur-
face is split into smaller patches and the ones that
cannot intersect with the ray are discarded. A sur-
face is subdivided until a maximum depth is reached.
The concept of subdivision is simple, and the algo-
rithm is easy to implement. The subdivision method
is generally inefficient and requires high temporary
memory. Apart from the direct subdivision method,
we can compute the intersection between a ray and a
surface approximation, including its tessellation (i.e.,
a set of triangles or other primitives) or implicit ap-
proximations (Hanrahan, 1983). This compromise
simplifies the original intersection problem; however,
this method still suffers from the drawbacks of high
memory requirement and computational cost.

Alternatively, if we write a ray in a parametric
form, then the ray-triangular Bézier patch intersec-
tion problem can be analytically reduced to the prob-
lem of finding roots of a system of nonlinear equa-
tions. Many numerical methods in computational
mathematics are available for solving this problem.
For example, Newton’s method is commonly used
to find the intersection between a ray and a bicubic
Bézier surface (Markus and Oliver, 2005), a nonuni-
form rational B-spline (Martin et al., 2000), a trian-
gular Bézier surface (Stürzlinger, 1998), and so on.
Newton’s method is not unconditionally stable. In
addition, a good initial guess, which is sufficiently
close to the solution, is required to guarantee the
convergence. The convergence speed of Newton’s
method can be improved by combining it with inter-
val analysis (Moore and Jones, 1977), i.e., perform-
ing Newton search in intervals in which convergence
is guaranteed. However, this approach requires an
extremely large number of surface splits and guar-

anteed convergence tests to obtain an appropriate
interval (Toth, 1985).

In contrast to the methods mentioned above, ge-
ometric clipping methods are numerically more sta-
ble and require less memory. As a matter of fact,
an initial guess for the parameters of intersections
is unnecessary and the intersections are guaranteed
to be found within a reasonable time as long as
they exist. The original geometric clipping method
arises from the problem of finding the intersection be-
tween a ray and a trimmed rational surface (Nishita
et al., 1990). It iteratively narrows down the para-
metric domain of the surface by using the convex
hull property until a prespecified accuracy thresh-
old is reached. Afterward, this concept is general-
ized to find roots of polynomials (Bartoň and Jüt-
tler, 2007a; Liu et al., 2009), curve/curve intersec-
tions (Sederberg and Nishita, 1990; Schulz, 2009;
Lou and Liu, 2012), ray-triangular Bézier patch in-
tersections (Roth et al., 2000), and zeros of bivariate
polynomial systems (Bartoň and Jüttler, 2007b; Jüt-
tler and Moore, 2011), where Descartes’ rule of signs
and the subdivision strategy (Garloff and Smith,
2001; Rouillier and Zimmermann, 2004) are used
to isolate roots. As all the methods mentioned in
this paragraph gradually narrow the range of roots
or the parametric interval of intersections by using
the geometric properties of Bézier curves/surfaces,
we collectively refer to them as geometric clipping
methods.

In this study, we propose a geometric clipping
method to solve the ray-triangular Bézier patch in-
tersection problem. Note that among the aforemen-
tioned geometric clipping methods, only the so-called
Bézier clipping method in Roth et al. (2000) is tai-
lored for solving the ray-triangular Bézier patch in-
tersection problem, which cuts out the parametric
region without intersections by using the convex hull
of a triangular Bézier surface. Rather than relying
solely on the convex hull, our method combines con-
vex hulls and low-degree approximations of triangu-
lar Bézier surfaces to narrow the parametric region.
Hence, our method can be viewed as a generaliza-
tion of the Bézier clipping method in Roth et al.
(2000). Our method inherits all the merits of the
Bézier clipping method and is numerically more effi-
cient. Theoretical analysis shows that our algorithm
has a cubic convergence rate for a single root. For
the sake of convenience, ‘ray-triangular Bézier patch
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intersection’ is hereafter referred to as ‘ray-patch in-
tersection’ (RPI) when ambiguity is not an issue.

2 Computing ray-triangular Bézier
patch intersection by the hybrid clip-
ping algorithm

2.1 Triangular Bézier surface and the ‘ray-
patch intersection’ problem

Let �T1T2T3 be a nondegenerate triangle in
R

2 with vertices T1,T2, and T3, which are ordered
counterclockwise. Then any point P in R

2 can be
uniquely expressed as follows:

P = uT1 + vT2 + wT3,

where

(u,v,w) =
(

Area(PT2T3)

Area(T1T2T3)
,

Area(T1PT3)

Area(T1T2T3)
,

Area(T1T2P)

Area(T1T2T3)

)

are the barycentric coordinates of P with respect to
�T1T2T3. Area(·) represents the oriented area of
the triangle in this term and u+ v + w = 1.

A degree n triangular Bézier surface on a trian-
gle T is defined as follows:

R(u, v, w) =
∑
|i|=n

RiB
n
i (u, v, w), 0 ≤ u, v, w ≤ 1,

(1)
where i = (i, j, k), |i| = i+ j + k = n, Bn

i (u, v, w) =
n!

i!j!k!
uivjwk with (u, v, w) the barycentric coordi-

nates with respect to T , and Ri ∈ R
3 are the control

points.
Given that w = 1 − u − v, surface (1) can also

be written as follows:

R(u, v) =

n∑
j=0

n−j∑
i=0

RijB
n
ij(u, v), 0 ≤ u, v ≤ 1, (2)

where Rij = (xij , yij , zij) (j = 0, 1, ..., n, i =

0, 1, ..., n−j) are the control points and 0 ≤ u+v ≤ 1.
A ray can be represented by

R̂(t) = r0 + trd, t > 0, ‖rd‖ = 1,

where r0 is the origin of the ray and rd is the nor-
malized direction.

For a surface R(u, v) and a ray R̂(t), seeking
values u, v, and t such that

R(u, v) = R̂(t)

is called an RPI problem.

2.2 Reduction of the ‘ray-patch intersection’
problem

In the Bézier clipping method (Roth et al.,
2000), the RPI problem is first converted into a sim-
pler form. Analogously, we first reduce the RPI prob-
lem to the problem of solving a system of equations
with two unknowns.

The ray R̂(t) can be represented as the intersec-
tion of two orthogonal planes as follows (Roth et al.,
2000): {

aαx+ bαy + cαz + dα = 0,

aβx+ bβy + cβz + dβ = 0,
(3)

where a2k + b2k + c2k = 1 (k ∈ {α, β}) and (aα, bα, cα) ·
(aβ , bβ, cβ) = 0.

Given that RPIs lie on both the ray and the
patch, intersections should also satisfy the following
equations, which are obtained by substituting Eq. (2)
into Eq. (3):

fk(u, v) =

n∑
j=0

n−j∑
i=0

fk
ijB

n
ij(u, v) = 0, (4)

where k ∈
{
α, β

}
, 0 ≤ u+ v ≤ 1, 0 ≤ u, v ≤ 1, and

fk
ij = akxij + bkyij + ckzij + dk (5)

with xij , yij , and zij the coordinates of the control
points of surface (2). Hence, the RPI problem is
converted into solving the system of equations with
respect to variables u and v as follows:

{
fα(u, v) = 0,

fβ(u, v) = 0,
(6)

where fα(u, v) and fβ(u, v) are defined by Eq. (4).
This conversion reduces the number of computing
operations.

2.3 Hybrid clipping algorithm

In this subsection, we introduce a geometric
clipping method to solve the reduced RPI problem.
That is, to find the roots of a system of two bivariate
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polynomial (Eq. (6)) over a triangular parametric do-
main (hereinafter, referred to as tri-box) D. Bézier
clipping is a typical geometric algorithm for solv-
ing the reduced RPI problem. However, the Bézier
clipping method potentially generates wrong inter-
sections, due to the essential step of the method, i.e.,
projection. In contrast, our algorithm avoids the
projection step and ensures the correct results.

The basic idea of our algorithm is as follows.
Note that the roots of system (6) are precisely the
intersections of the two curves defined by equations
in system (6) within a tri-box. Then both the curves
in system (6) are individually bounded in a strip
formed by a pair of curves obtained by a degree re-
duction method (Zhang and Wang, 2005; Lu and
Wang, 2006). We refer to the strip as a fat curve.
Hence, the intersections of the two original curves are
bounded in fat curves. By calculating the intersec-
tions between fat curves and using the subdivision
method, we obtain sub-tri-boxes with the intersec-
tions of the original curves within them. The afore-
mentioned procedure is repeatedly applied until the
diameter of the sub-tri-box becomes smaller than a
prespecified threshold ε. The pseudocode of this pro-
cedure is shown in Algorithm 1. As fat curves with
different degrees are used in Algorithm 1, the algo-
rithm is called the hybrid clipping (HC) algorithm.
For the remainder of this subsection, we provide a de-
tailed description of each step in the HC algorithm.

Algorithm 1 HC(fα, fβ,D, ε)
1: if diam(D) ≥ ε then
2: f̂ ← preprocessing(fα, fβ ,D)
3: L ← compute the fat line of f̂ = 0

4: Q ← compute the fat curve of fβ = 0

5: D′ ← clipping(L,Q,D)
6: if diam(D′) �= 0 and check-sign(fα, fβ ,D′)=0

then
7: if umin + vmin + wmin ≤ 0.5diam(D) then
8: split(D′) (D′ is split into four tri-boxes) and

apply the HC algorithm to each tri-box
9: else

10: return HC(fα, fβ ,D′, ε)
11: end if
12: end if
13: else
14: return D
15: end if

2.3.1 Preprocessing

This step aims to improve the rate of conver-
gence of our algorithm and we will give the proof in
Lemma 1. The underlying principle involves convert-
ing the original system (6) into an equivalent system
with the Hessian matrix of one equation vanishing at
the center of tri-box D. The equivalent system is ob-
tained by replacing the first equation of system (6) by
f̂(u, v) = �(u, v)fα(u, v)+(1−�(u, v))fβ(u, v), where
�(u, v) = �0+�1u+�2v. The coefficients �0, �1, �2 ∈ R

are determined by allowing the Hessian ∇2f̂ to van-
ish at the incenter (uc, vc) of the corresponding tri-
box. In particular, the coefficients are obtained by
solving the linear system as follows:

A(uc, vc)

⎛
⎝ �0

�1
�2

⎞
⎠+

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2fβ

∂u2

∂2fβ

∂u∂v

∂2fβ

∂v2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 0

0

0

⎞
⎠ , (7)

where

A(uc, vc) =

⎛
⎝ Δuu uΔuu + 2Δu vΔuu

Δuv uΔuv +Δv vΔuv +Δu

Δvv uΔvv vΔvv + 2Δv

⎞
⎠

(8)
and

Δx=
∂(fα − fβ)

∂x
, Δxy=

∂2(fα − fβ)

∂x∂y
, x, y ∈ {u, v}.

If matrix A(uc, vc) is of full rank, then coefficients
�0, �1, �2 can be determined uniquely, and the degree
of f̂ is n+1. Otherwise, we simply set f̂ = fα. Then
the equivalent system, i.e.,{

f̂(u, v) = 0,

fβ(u, v) = 0,
(9)

rather than the original one (Eq. (6)), is used.

2.3.2 Fat curve computation

To simplify the description, we first introduce
three types of norm for bivariate polynomials f(u, v)
that are associated with tri-box D in the form of
Eq. (4):

1. Normalized L2 norm:

‖f(u, v)‖D2 =
1

Area(D)

(∫
D
‖f(u, v)‖2dudv

)1/2

.

(10)
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2. L∞ norm:

‖f(u, v)‖D∞ = max
(u,v)∈D

‖f(u, v)‖. (11)

3. Bernstein-Bézier (BB) norm:

‖f(u, v)‖DBB,∞ = max
0≤i+j≤n

|fij |, (12)

where fij (0 ≤ i + j ≤ n) are the Bernstein-Bézier
coefficients of f(u, v).

Let fk,D be the best approximation of degree
k (k < n) to f in the L2-norm over tri-box D,
which can be obtained using the degree reduction
method (Lu and Wang, 2006). On the other hand,
the degree of fk,D can be elevated to the same de-
gree as f using the degree elevation algorithm. De-
note the Bernstein-Bézier coefficients of fk,D with
the degree elevated to n by f̄ij and define δf,D =

‖f − fk,D‖DBB,∞ = max
i,j

|fij − f̄ij |. By following

the convex hull property of the triangular Bézier
surface, curve f = 0 can be bounded by curves
f1 = fk,D + δf,D = 0 and f2 = fk,D − δf,D = 0

over tri-box D. Hence, curves f1 = 0 and f2 = 0

form the degree k fat curve of f , denoted by L =

(f1 = 0, f2 = 0) . An example of the curve de-
fined by f(u, v) =

∑n
j=0

∑n−j
i=0 fijB

n
ij(u, v) = 0 and

its corresponding quadratic fat curve are shown in
Fig. 1a. Note that any polynomial f(u, v) in the form
of Eq. (4), i.e., f(u, v) =

∑n
j=0

∑n−j
i=0 fijB

n
ij(u, v)

with D = {(u, v)|0 ≤ u + v ≤ 1}, fij ∈ R,
can be considered as a triangular Bézier surface
f(u, v) =

∑n
j=0

∑n−j
i=0 fijBn

ij(u, v) on a triangular do-
main with control points fij = (i/n, j/n, fij) ∈ R

3

and 0 ≤ i + j ≤ n. Hence, f = 0 can be consid-
ered as the intersection curve of surface f and plane
z = 0. Fig. 1b shows the 3D illustrations of f, f1, and
f2. Algorithm 2 summarizes the steps for computing
the degree k fat curve of a given polynomial f in the
form of Eq. (4).

In particular, we compute the linear and
quadratic fat curves of f̂ and fβ in the HC algorithm.

Algorithm 2 Fat curves(f,D, k) (computing degree
k fat curves)
1: fk,D ← generate a degree k surface of f by degree

reduction
δf,D ← compute ‖f − fk,D‖DBB,∞
f1 ← fk,D + δf,D (upper bound)
f2 ← fk,D − δf,D (lower bound)

2: return L = (f1 = 0, f2 = 0)
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Fig. 1 Curve f(u,v) =
∑∑∑n

j=0

∑∑∑n−j
i=0 fijB

n
ij(u, v) = 0

bounded by two conic curves f1 = 0 and f2 = 0 over
the purple domain D (a) and the functions in 3D view
(b) (surface f(u, v) (the middle one) is bounded by
two degree 2 surfaces (the top and bottom meshes
defined by f1 and f2, respectively)). References to
color refer to the online version of this figure

More precisely, we denote

δl,D = ‖f̂ − lD‖DBB,∞, (13)

δq,D = ‖fβ − qD‖DBB,∞, (14)

where lD and qD are the best linear approximation
to f̂ and the best quadratic approximation to fβ

in the L2-norm over tri-box D, respectively. Then
we have the linear fat curve L = (l1 = 0, l2 = 0)

and the quadratic fat curve Q = (q1 = 0, q2 = 0),
where l1 = lD + δl,D, l2 = lD − δl,D, q1 = qD + δq,D,
and q2 = qD − δq,D. Hence, f̂ = 0 and fβ = 0 are
bounded in L and Q, respectively; i.e., the roots of
Eq. (6) are bounded in L and Q.

2.3.3 Clipping

This step involves cutting away the region of
the parametric domain with no intersection based
on the computation of fat curves and the sub-
division method for a Bézier surface. For a
Bézier surface defined over tri-box D, assume that
the parameter u (resp. v and w) can be nar-
rowed down to a smaller range [umin, umax] (resp.
[vmin, vmax] and [wmin, wmax]), where umin/umax
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(resp. vmin/vmax and wmin/wmax) are the possible
minimum/maximum values of u (resp. v and w) ob-
tained by a certain method. Then the parameter of
an intersection point (u0, v0) can be restricted to a
smaller polygonal region by cutting away the region
outside [umin, umax], [vmin, vmax], and [wmin, wmax],
as shown in Fig. 2a. Note that the obtained re-
gion is generally not triangular because the three pa-
rameters u, v, w depend on each other, and thus the
corresponding clipped surface does not maintain a
Bézier form. Hence, we settle for cutting out regions
u < umin, v < vmin, and w < wmin to maintain the
triangular shape of the remainder region as was done
in Roth et al. (2000) (Fig. 2b). Thus, the correspond-
ing trimmed surface maintains a Bézier form by sub-
dividing the original surface at u = umin, v = vmin,
and w = wmin. We denote the candidate triangular-
shaped domain (i.e., a tri-box) by D′. To obtain
D′, we need to compute the following four types of
critical points:

1. The intersection points between fat curves L
and Q;

2. The vertices of tri-box D, which lie in the
quadrilateral region formed by fat curves L and Q;

3. The intersection points between fat curve L
(resp. Q ) and the boundary of tri-box D, which lie
in the strip area formed by Q (resp. L);

4. The values u∗, v∗, and w∗, which define lines
u = u∗, v = v∗, and w = w∗ tangent to fat curve Q.

Then umin, vmin, andwmin are the minimum val-
ues of the corresponding parameters of the aforemen-
tioned four types of points, and the clipped tri-box
D′ can be obtained. Combining with the subdivision
method, potential multiple intersections can be iso-
lated, and the parameter of each intersection point
(u0, v0) can be recursively narrowed down until the
size of the triangular region reaches a prespecified
threshold.

2.3.4 Check-sign step

This step, given in line 6 of Algorithm 1, aims
to discard the tri-box in which the parameters of
the intersection points are impossible to be included.
According to Descartes’ rule of signs, for a bivariate
function represented in a Bézier form, if all the Bézier
coefficients have the same sign, then no intersection
will be formed with plane z = 0. In particular, fα =

0 and fβ = 0 will have no intersection if all the
coefficients of fα (or fβ) have the same sign. Hence,

v=1

wmin

wmax vmax

vmin

umaxumin u=1w=1

(a)

v=1

u=1w=1

wmin

vmin

umin
(b)

Fig. 2 Candidate domain (filled in gray): (a) candi-
date polygonal parameter domain by clipping away
the region outside [umin, umax], [vmin, vmax], and
[wmin, wmax]; (b) candidate triangular parameter do-
main obtained by cutting out regions u < umin, v <

vmin, and w < wmin

check-sign(fα, fβ,D′) returns zero if and only if both
the coefficients of fα and fβ have different signs.

2.3.5 One-to-four split

The one-to-four split operation in line 8 of Al-
gorithm 1 is used to guarantee that the convergence
rate of our algorithm will not be lower than that of
the subdivision method. In particular, if the diame-
ter of tri-box D′ is larger than half of the size of D,
i.e., umin + vmin +wmin ≤ 0.5diam(D), then we split
tri-box D′ into four sub-tri-boxes by connecting the
midpoints of edges. The surfaces are simultaneously
subdivided into four patches. Then the HC method
is applied to each sub-tri-box.

Note that preprocessing is an optional opera-
tion. Hereinafter, we refer to the algorithm with
preprocessing as the HC algorithm by default. The
algorithm without preprocessing will be explicitly in-
dicated as ‘HC without preprocessing’. In particular,
if we set both fat curves in the HC algorithm with-
out preprocessing as linear curves, then we obtain a
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special case of the HC algorithm, called the linear
clipping algorithm.

3 Convergence rate

In this section, we theoretically prove that Algo-
rithm 1 provides cubic convergence for a single root.
In particular, we make the following assumptions:

(A1) Eq. (6) has exactly only one root r =

(u0, v0).
(A2) The determinant of matrix A defined

in Eq. (8) has a nonzero value at root r, i.e.,
detA(u0, v0) �= 0. That is, f̂ can be uniquely
determined.

(A3) f̂ = 0 and fβ = 0 transversely inter-
sect each other at r. More precisely, gradients
∇f̂ and ∇fβ are linearly independent at root r.
Lemma 1 For any polynomial f̂ obtained by the
preprocessing step of Algorithm 1, a constant Cl,
which depends solely on f̂ , exists, such that for any
tri-box D ⊆ D0, the bound δl,D defined in Eq. (13)
satisfies

δl,D ≤ Cl(diam(D))3. (15)

Proof For any triangular domain D, we consider
the following three types of norms: ‖.‖D2 , ‖.‖D∞, and
‖.‖DBB,∞, which are defined in Eqs. (10)–(12), respec-
tively. Given that all norms are equivalent in a finite-
dimensional vector space, there exist two constants
C1 and C2 such that

‖f‖DBB,∞ ≤ C1‖f‖D2 and ‖f‖D2 ≤ C2‖f‖D∞, (16)

where constants C1 and C2 are independent of each
other in domain D. Denote the second-order Taylor
polynomial for f̂ at point p by Tpf̂ , where p is the
incenter of tri-box D. Given that all entries of the
Hessian matrix of f̂ are zeros, Tpf̂ is virtually a linear
function. Meanwhile, considering that lD is the best
linear approximation to f̂ under the norm ‖.‖D2 (as
defined in Eq. (13)), we obtain

δl,D = ‖f̂ − lD‖DBB,∞
≤ C1‖f̂ − lD‖D2
≤ C1‖f̂ − Tpf̂‖D2
≤ C1C2‖f̂ − Tpf̂‖D∞

≤ 1

6
C1C2C3(diam(D))3,

where

C3 = max
(u,v)∈D0

(∣∣∣∣∣
∂3f̂

∂u3
(u, v)

∣∣∣∣∣+
∣∣∣∣∣
∂3f̂

∂v3
(u, v)

∣∣∣∣∣
+3

∣∣∣∣∣
∂3f̂

∂u2∂v
(u, v)

∣∣∣∣∣+ 3

∣∣∣∣∣
∂3f̂

∂u∂v2
(u, v)

∣∣∣∣∣
)
.

Hence, Cl can be set to
1

6
C1C2C3.

Lemma 2 For any polynomial fβ, a constant Cq,
which depends solely on fβ, exists, such that for any
tri-box D ⊆ D0, the bound δq,D defined in Eq. (14)
satisfies

δq,D ≤ Cq(diam(D))3. (17)

Proof By following the same process in the proof
of Lemma 1, we obtain

δq,D = ‖fβ − qD‖DBB,∞
≤ C1‖fβ − qD‖D2
≤ C1‖fβ − Tpf

β‖D2
≤ C1C2‖fβ − Tpf

β‖D∞

≤ 1

6
C1C2C4(diam(D))3,

where qD is the best quadratic approximation to fβ

(as defined in Eq. (14)), Tpf
β is the second-order

Taylor polynomial for fβ at center p of tri-box D,
and

C4 = max
(u,v)∈D0

(∣∣∣∣∂
3fβ

∂u3
(u, v)

∣∣∣∣+
∣∣∣∣∂

3fβ

∂v3
(u, v)

∣∣∣∣
+3

∣∣∣∣ ∂
3fβ

∂u2∂v
(u, v)

∣∣∣∣+ 3

∣∣∣∣ ∂
3fβ

∂u∂v2
(u, v)

∣∣∣∣
)
.

Therefore, Cq can be chosen as
1

6
C1C2C4.

Lemma 3 For any sequence of tri-boxes {Di}∞i=1

generated by recursively applying Algorithm 1, we
obtain ⎧⎪⎪⎨

⎪⎪⎩

lim
i→∞

∇lDi(r) = ∇f̂(r),

lim
i→∞

∇qDi(r) = ∇fβ(r),

lim
i→∞

∇2qDi(r) = ∇2fβ(r).
(18)

Proof Let us introduce a new type of norm over
domain Di as presented in Lou and Liu (2012):

‖f‖Di∗ = ‖f‖Di∞ + hi‖∇f‖Di∞ + h2
i ‖∇2f‖Di∞ , (19)

where hi is the diameter of Di. Given that all norms
are equivalent in a finite-dimensional vector space,
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and a constant M that is independent of the domain
Di and satisfies ‖r‖Di∗ ≤ M‖r‖Di

2 exists, we obtain

‖fβ − qDi‖Di∗ =‖fβ − qDi‖Di∞ + hi‖∇fβ −∇qDi‖Di∞
+ h2

i ‖∇2fβ −∇2qDi‖Di∞
≤M‖fβ − qDi‖Di

2

≤M‖fβ − Tpf
β‖Di

2

≤MC2‖fβ − Tpf
β‖Di∞

≤1

6
MC2C4h

3
i , (20)

where Tpf
β, C2, and C4 are defined in the proof

of Lemma 2. The expressions following the equality
sign and the last inequality sign of Eq. (20) infer that
constants M1 and M2, which depend solely on fβ,
exist and satisfy

{
‖∇fβ −∇qDi‖Di∞ ≤ M1h

2
i ,

‖∇2fβ −∇2qDi‖Di∞ ≤ M2hi.
(21)

For any sequence of tri-boxes {Di}∞i=1 generated by
recursively applying Algorithm 1, the sequence of
diameters tends to approach zero, i.e., diam(Di)→ 0
when i → ∞. Hence, we obtain

{
lim
i→∞

∇qDi(r) = ∇fβ(r),

lim
i→∞

∇2qDi(r) = ∇2fβ(r).

The first equality in Eq. (18) can be obtained in the
same way.
Theorem 1 If Eq. (6) has a single root (u0, v0)

within a given triangular domain D, then the clip-
ping step in Algorithm 1 will generate a sequence of
tri-boxes {Di}∞i=1 that converges to the root (u0, v0),
and the diameters of the successive tri-boxes will
satisfy

diam(Di+1) ≤ C(diam(Di))
3 (22)

with constant C.
Proof Denote the curved quadrilateral region
formed by the fat line L and the fat curve Q gen-
erated at the ith level of recursion by Si. Given that
each tri-box Di+1 is obtained from Di in the previous
recursive level through a clipping operation, we nat-
urally acquire Si+1 ⊆ Di+1 and Di+1 ⊆ Di. By con-
trast, a rectangular region Bi+1 and an isosceles right
triangular region Ti+1 that tightly bound the curved
quadrilateral region Si+1 always exist, as shown in
Fig. 3. Given that Di+1 ⊆ Ti+1 and diam(Ti+1) ≤
2diam(Bi+1), we obtain diam(Di+1) ≤ 2diam(Bi+1).

Fig. 3 Quadrilateral region Si+1 formed by fat lines
and quadratic fat curves, rectangular bounding box
Bi+1, and triangular bounding box T i+1

Then we prove that diam(Bi+1) ≤ L(diam(Di))
3,

where L is a constant.
Assume that F is a bivariate function restricted

to an arc defined by an implicitly planar curve
G=constant. By following the mean value theorem
described in Jüttler and Moore (2011), we have that
the derivative of F to the arc-length parameter is

∇F · (∇G)T

‖∇G‖ , (23)

where (∇G)T denotes the transposition of∇G. Then
the distance between any two points P and Q on
curve G = constant is less than |F (P) − F (Q)|/C
if the absolute value of Eq. (23) is greater than a
positive constant C. Given that ∇f̂(r) and ∇fβ(r)
are linearly independent, as previously assumed, nei-
ther ∇f̂(r) nor ∇fβ(r) is zero in a sufficiently small
neighborhood of root r. By following Lemma 3, we
determine that neither lDi nor qDi is zero in a suffi-
ciently small neighborhood of root r. In particular,
for any (u, v) ∈ N ,

∃L1 > 0 s.t.
∣∣∣∣∇lDi(u, v) ·

(∇qDi(u, v))
T

‖(∇qDi(u, v))
T‖

∣∣∣∣ > L1

and

∃L2 > 0 s.t.
∣∣∣∣∇qDi(u, v) ·

(∇lDi(u, v))
T

‖(∇lDi(u, v))
T‖

∣∣∣∣ > L2,

where both L1 and L2 are constants, N is an ap-
propriate neighborhood of Bi, lDi is the best linear
approximation (as defined in Eq. (13)) to f̂ , and qDi
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is the best quadratic approximation (as defined in
Eq. (14)) to fβ over tri-box Di.

Note that Bi+1 is the bounding box of the
quadrilateral region formed by a pair of lines lDi =

±δl,Di and a pair of conics qDi = ±δq,Di (Fig. 3). By
applying the mean value theorem to the bivariate
functions lDi and qDi , as well as to their restriction
curves qDi = 0 and lDi = 0 respectively, we deter-
mine that the distance between the point in Bi+1 and
the intersection of qDi = 0 and lDi = 0 is no more

than
δl,Di

L1
+

δq,Di

L2
. In other words, the diameter of

Bi+1 is smaller than 2
√
2

(
δl,Di

L1
+

δq,Di

L2

)
, i.e.,

diam(Di+1) ≤ 2diam(Bi+1) ≤ 4
√
2

(
δl,Di

L1
+

δq,Di

L2

)
.

By following Lemmas 1 and 2, we conclude
that diam(Di+1) ≤ C(diam(Di))

3, where C =

4
√
2(Cl/L1 + Cq/L2).

4 Numerical experiments

As mentioned in the introduction, there are
mainly four types of methods to solve the RPI
problem, i.e., subdivision, approximation, Newton’s
method, and geometric clipping method. Subdivi-
sion and approximation methods suffer from high
memory requirement and computational cost. New-
ton’s method is not unconditionally stable, where an
initial guess sufficiently close to the solution is needed
to guarantee the convergence. By contrast, geomet-
ric clipping methods are stable and efficient, in the
sense that they run in a reasonable amount of time
and have a relatively low requirement on memory
usage. Among the geometric clipping methods, only
the so-called Bézier clipping method in Roth et al.
(2000) was proposed to address the RPI problem.
Hence, in this section, we compare our HC method
with the Bézier clipping method. Besides, we report
the results generated by the linear clipping method
and the HC without preprocessing method, both of
which are variants of the HC method. According to
the analysis in Section 2.2, the original RPI prob-
lem can be converted into a problem of solving a
bivariate system of two equations. Hence, we test all
the algorithms directly on the converted problem.
The computation time and the number of recursions
for each method to reach the same accuracy are re-
ported. All the algorithms have been implemented

in MATLAB and run on a PC with a 3.1 GHz Intel
i5 processor and 4 GB memory.

In the first example, the converted problem in-
volves finding the root of a system with a single root.
Example 1

{
f(u, v) = u3 − v = 0,

g(u, v) = u3 + v − 1/4 = 0,
(24)

where D0 = {(u, v)|0 ≤ u, v ≤ 1, 0 ≤ u+ v ≤ 1}.
Fig. 4a illustrates surfaces f = f(u, v) and

g = g(u, v), wherein the black line denotes the in-
tersection curve in three dimensions. Fig. 4b shows
the curves f = 0 and g = 0 and their intersections.
The statistics of the number of recursions for differ-
ent methods to reach various prespecified thresholds
ε are summarized in Table 1. HC and HC without
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Fig. 4 Example 1: (a) surfaces f and g ; (b) curves
f = 0 and g = 0; (c) computation time vs. accuracy
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preprocessing methods generally require fewer
recursion levels than the linear clipping method and
the Bézier clipping method to reach the same thresh-
old. Fig. 4c presents the computation time reached
at each level of accuracy. We can observe that the
HC algorithm requires fewer recursions but longer
running time than the HC without preprocessing al-
gorithm and linear clipping method to achieve the
same accuracy. Table 2 shows the diameters of the
tri-boxes obtained at each level of recursion of the
HC and HC without preprocessing algorithms. We
can see that the former converges faster than the lat-
ter. This phenomenon can be explained by the fact
that preprocessing is time-consuming but helpful in
improving the convergence rate.

Table 1 Statistics of the number of recursions for
different methods to reach the same prespecified ac-
curacy in Example 1

Method
Number of recursions

lg ε=−2 −4 −6 −8 −10 −12 −14

Bézier clipping 9 15 22 29 35 42 49
Linear clipping 4 5 6 6 7 7 7
HC without pre. 4 5 5 5 6 6 6
HC 3 4 5 5 5 6 6

HC: hybrid clipping; HC without pre.: hybrid clipping with-
out preprocessing

Table 2 Diameters of the tri-boxes at each level of
recursion of the HC and HC without preprocessing
algorithms in Example 1

Level
diam(Di)

HC without preprocessing HC

1 0.51 0.45
2 0.17 0.13
3 1.52×10−2 2.65×10−3

4 1.10×10−4 3.40×10−6

5 5.75×10−9 1.48×10−12

6 1.24×10−16 8.32×10−17

HC: hybrid clipping

In the second example, we test the behavior of
our algorithm by a system with three single roots.
Example 2
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(u, v) =10(u− 1/2)(u− 1/4)(u− 1/8)

+ 1/4− v = 0,

g(u, v) =− 10(u− 1/2)(u− 1/4)(u− 1/8)

+ 1/4− v = 0,

(25)

where D0 = {(u, v)|0 ≤ u, v ≤ 1, 0 ≤ u+ v ≤ 1}.

Fig. 5a shows curves f = 0 and g = 0 along
with their intersections. Table 3 reports the statis-
tics of the number of recursions for different methods
to reach various prespecified thresholds ε. The same
result as that in Example 1 is observed; i.e., the
HC and HC without preprocessing algorithms re-
quire fewer recursion levels than the linear clipping
method and the Bézier clipping method to reach the
same threshold. Table 4 lists the diameters of the
tri-boxes at each level of recursion of the HC and HC
without preprocessing algorithms at root (1/8, 1/4).
We can observe that the former converges faster than
the latter. Fig. 5b presents the computation time vs.
accuracy of Example 2.
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Fig. 5 Example 2: (a) curves f = 0 and g = 0;
(b) computation time vs. accuracy (the box in the
upper left corner is a zoom in view of the results of
linear clipping, HC without preprocessing, and HC
methods)

In the third example, we test the behavior of
our algorithm by a system with two roots or a double
root.
Example 3{

f(u, v, k) = u2 + v2 − 1/4(1 + 1/10k) = 0,

g(u, v) = uv − 1/8 = 0,
(26)

where k is a non-negative integer and D0 =
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{(u, v)|0 ≤ u, v ≤ 1, 0 ≤ u+ v ≤ 1}.
This system has two real roots for all constant

k and a double root when k = ∞; i.e., the root of
the system changes from a pair of different roots to
a double root when k increases from 0 to infinity.
Thus, the larger the k, the closer the roots are to
double. Fig. 6 plots the curves defined by systems
with k = 0, 2, 5.

Table 5 reports the statistics of the number
of recursions for different methods to reach vari-
ous prespecified thresholds ε for the systems with
k = 0, 2, 5. The HC method requires fewer recur-
sion levels to achieve a prespecified accuracy than
the other methods. When k increases, the two roots
of the system become close to a double root, and

Table 3 Statistics of the number of recursions for
different methods to reach the same prespecified ac-
curacy in Example 2

Method
Number of recursions

lg ε=−2 −4 −6 −8 −10 −12 −14

Bézier clipping 9 15 22 29 35 42 49
Linear clipping 6 7 8 8 9 9 9
HC without pre. 5 6 7 7 8 8 8
HC 5 5 6 6 6 7 7

HC: hybrid clipping; HC without pre.: hybrid clipping with-
out preprocessing

Table 4 Diameters of the tri-boxes at each level of
recursion of the HC and HC without preprocessing
algorithms in Example 2

Level
diam(Di)

HC without preprocessing HC

1 0.70 0.70
2 0.35 0.35
3 0.13 0.11
4 4.3×10−2 1.47×10−2

5 4.21×10−3 7.86×10−5

6 3.35×10−5 2.05×10−11

HC: hybrid clipping

thus the advantages of the HC method become more
obvious. Table 6 provides the diameters of the tri-
boxes at each level of recursion of the HC and HC
without preprocessing methods. Again, the former
method provides faster convergence than the latter
in almost all the cases, particularly when k is large;
i.e., the system approximately has a double root.
Fig. 7 plots the computation time versus the number
of recursive levels for the cases of k = 0, 2, 5. The
HC method becomes more efficient than the other
three methods when k increases.

5 Conclusions

In this paper, we proposed a new technique
called hybrid clipping (HC) to solve the RPI prob-
lem. We converted the RPI problem into an equiv-
alent problem that solves a system of two bivariate
equations. The system was solved in a geometric
manner, i.e., by combining geometric properties such
as the convex hull property of a triangular Bézier sur-
face and Descartes’ rule of signs as well as using ge-
ometric operations such as surface degree reduction
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0.4

0.6

0.8

1.0

u

v

k=0
k=2
uv=1/8
k=5

Fig. 6 Curves of the systems with k = 0, 2, and 5 in
Example 3

Table 5 Statistics of the number of recursions for different methods to reach the same prespecified accuracy
in Example 3

Method
Number of recursions (k = 0) Number of recursions (k = 2) Number of recursions (k = 5)

lg ε = −2 −4 −6 −8 −10 −12 −14 −2 −4 −6 −8 −10 −12 −14 −2 −4 −6 −8 −10 −12 −14

Bézier clipping 9 15 22 29 35 42 48 9 15 22 29 35 42 49 9 14 21 28 34 41 48
Linear clipping 5 6 7 7 8 8 8 6 8 9 9 10 10 10 7 10 12 12 13 13 16
HC without pre. 5 6 6 7 7 7 7 5 7 7 8 8 9 9 6 9 10 11 12 12 13
HC 4 5 6 6 6 6 6 4 5 6 6 6 6 6 5 6 6 6 7 7 7

HC: hybrid clipping; HC without pre.: hybrid clipping without preprocessing
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Table 6 Diameters of the tri-boxes at each level of recursion of the HC and HC without preprocessing
algorithms in Example 3

Level
diam(Di) (k=0) diam(Di) (k=2) diam(Di) (k=5)

HC without pre. HC HC without pre. HC HC without pre. HC

1 0.70 0.70 0.70 0.70 0.70 0.70
2 0.31 0.35 0.20 0.20 0.20 0.20
3 0.11 0.12 8.95×10−2 7.88×10−2 8.16×10−2 7.04×10−2

4 1.57×10−2 4.21×10−3 2.48×10−2 4.17×10−3 3.07×10−2 9.12×10−3

5 2.76×10−4 1.79×10−7 6.68×10−3 6.54×10−7 1.14×10−2 1.32×10−4

6 8.50×10−8 1.11×10−16 3.43×10−4 5.55×10−17 4.33×10−3 3.92×10−10

7 8.12×10−15 8.95×10−7 1.90×10−3 5.55×10−17

8 6.06×10−12 5.14×10−4

9 6.08×10−5

HC: hybrid clipping; HC without pre.: hybrid clipping without preprocessing
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Fig. 7 Computation time vs. accuracy of different
methods with k = 0 (a), k = 2 (b), and k = 5 (c) in
Example 3

and subdivision. We proved that the HC method has
a cubic convergence rate for a single root.

Numerical experiments showed that the HC
without preprocessing method is efficient for the
single-root case; hence, the time-consuming prepro-
cessing step becomes unnecessary. Meanwhile, for
systems with a double root or with two different roots
that are close to each other, the HC method has a
significant advantage over the other methods because
it requires fewer recursion levels and shorter running
time than the other methods to achieve a prespecified
accuracy. However, we currently have no advanced
idea on the number and multiplicity of the roots of
systems. Hence, one of our future works is to provide
an appropriate indicator to turn on/off the prepro-
cessing step and produce the best trade-off between
preprocessing time and total computation time.
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