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Abstract:
efficient time delay estimation between narrowband or sinusoidal signals. However, it does not explicitly consider

The mixed modulated Lagrange explicit time delay estimation (MMLETDE) algorithm provides an

the additive measurement noise at the input, which actually exists in practice. Aiming at this issue, an enhanced
MMLETDE algorithm is proposed for noisy inputs based on the unbiased impulse response estimation technique,
assuming that the noise power ratio is known a priori. Simulation results show that for narrowband signals or
sinusoids over a wide frequency range, the proposed algorithm with a small filter order performs well in moderate

and high noise scenarios.
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1 Introduction

Time delay estimation (TDE) between signals
received by spatially separated sensors is essential
in many applications, including synchronization in
communications, array signal processing, direction
finding, radar and sonar ranging, target localiza-
tion and tracking, and exploration geophysics (Chen
and Ho, 2013). Recently, TDE has attracted re-
newed attention in the context of wireless sensor net-
works (Jamalabdollahi and Zekavat, 2015), as well as
geolocation of mobile ad-hoc network nodes (Patwari
et al., 2005; Sadler and Kozick, 2006).

Several algorithms have been proposed to effec-
tively tackle the TDE problem over the years (Knapp
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and Carter, 1976; Carter, 1987; Benesty et al., 2004;
Li et al., 2012; Zhong et al., 2014; 2015). For ex-
plicit TDE, several algorithms have been proposed
to obtain a time delay estimate of fractional times
of the sampling interval, such as sub-sample time
delay estimation based on interpolation technolo-
gies (Benesty et al., 2004), high-resolution methods
(Li et al., 2012; Zhong et al., 2013), and frequency-
domain TDE (Piersol, 1981).

Among the TDE algorithms, the well-known ex-
plicit time delay estimator (ETDE) (So et al., 1994)
is especially attractive, since TDE is explicitly pa-
rameterized in the time delay filter coefficients in the
adaptive iterations. It has been shown that the TDE
obtained by ETDE is unbiased for broadband white
noise like signals (So et al., 1994). However, for nar-
rowband signals, ETDE is far from optimal (Dooley
and Nandi, 1999).

By combining the ETDE algorithm and the un-
biased impulse response estimation technique (So,



1068

2001), So (2002) further developed a least-mean-
square-type (LMS-type) TDE algorithm for the sce-
nario in which both the input and output signals are
corrupted by the additive Gaussian noise, with the
assumption that the noise power ratio at the output
and input is known a priori. This TDE algorithm is
demonstrated to outperform the conventional LMS-
type time delay estimator, e.g., for autoregressive
signals (So et al., 1994) as well as illustrative real
speech data (So, 2002). However, the TDE therein
is indirectly obtained with the time delay filter coef-
ficients estimated in advance through a grid search.
Hence, the estimation performance might degrade re-
markably due to an improper selection of the search
grid. Moreover, this algorithm might still not be
suitable for TDE of narrowband signals.

For narrowband and sinusoidal signals com-
monly used in radar, sonar, and digital commu-
nications, the so-called mixed modulated Lagrange
ETDE (MMLETDE) algorithm (Cheng and Tjhung,
2003) has been proposed, which could obtain an un-
biased TDE with as small a filter order as possible.
Hence, MMLETDE is endowed with characteristics
of easy implementation. It is demonstrated that
MMLETDE behaves well for narrowband signals or
sinusoids under a relatively high signal-to-noise ratio
(SNR) with the filter order as small as 1 or 2 (Cheng
and Tjhung, 2003).

In another related work (Chakraborty and So,
2007), an adaptive algorithm was developed for di-
rect estimation of the time delay between two noisy
replicas of a sinusoidal signal received at spatially
separated sensors. The key idea of the algorithm is
to use a specific sampling frequency that results in a
two-tap finite impulse response (FIR) filter model for
the delay process, which is identified by updating the
time delay directly. However, since the algorithm ex-
ploits the prior knowledge of the specific forms of the
system coeflicients and the corresponding precondi-
tion of the adaptive filter for sinusoids, it would be
difficult to apply this algorithm in the scenarios of
non-sinusoidal narrowband signals.

In this work, motivated by the unbiased impulse
response estimation approach (So, 2001; 2002), we
develop an enhanced MMLETDE algorithm for the
TDE of narrowband signals corrupted by additive
white Gaussian noise and under the precondition
that the power ratio of the noise at the output and in-
put is known a priori. Similar to other computation-
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ally efficient LMS-type TDE processors, e.g., those
proposed by So et al. (1994) and Cheng and Tjhung
(2003), the proposed time delay estimate is explicitly
parameterized in the coefficients of the time delay es-
timate filter, and is directly obtained through adap-
tation. In contrast to the cited algorithms (So et al.,
1994; Cheng and Tjhung, 2003), the time delay esti-
mate is unbiased for both narrowband and sinusoidal
signals with moderate or high noise power profiles.
Since the noise effect at the input is explicitly consid-
ered in the derivation of the proposed algorithm, the
proposed algorithm would promisingly outperform
the existing MMLETDE (Cheng and Tjhung, 2003)
in moderate- and low-SNR scenarios, as is validated
through the simulation results presented. Moreover,
the proposed algorithm retains likewise most char-
acteristics of MMLETDE, such as good performance
for narrowband and sinusoidal signals with small
filter orders. Furthermore, involving limited extra
computations, the proposed algorithm is still easy to
implement.

2 Problem formulation

We consider the complex-valued discrete-time
signals received at two spatially separated sensors:

(1)

{x[n] = s[n] + ¢;[n],
y[n] = s[n — D] + go[n],

where s[n] = A[n]exp(jwon) is the narrowband sig-
nal with a known center frequency wg, D is the nor-
malized time delay by the sampling interval Ty, and
¢:[n] and g,[n] are uncorrelated zero-mean, station-
ary, complex-valued white Gaussian noises with vari-
ances 02 and o2, respectively. Furthermore, both
gi[n] and g,|n] are assumed to be independent of
s[n]. Here, the ratio v = 02/c? is assumed to be
known a priori. The main purpose of this work is to
estimate the sub-sample time delay D explicitly and
iteratively with the narrowband noisy observation
x[n] and its noisy delayed replica y[n].

Consider the normalized time delay D to be a
positive real number, which can be split into an in-
teger part and a fractional part of the time delay.
Thus, the noise-free delayed signal s[n— D] in Eq. (1)
may be approximated by a truncated fractional time
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Fig. 1 Adaptive time delay estimator considering
noise at both input and output

delay filter (Cheng and Tjhung, 2003)

K>

Z sinc(k — D)s[n — k],  (2)

k=—K1

sln— D] ~

where sinc(v) 2 sin(m)/(m), K; = Ky = K/2
for an even integer K, K1 = (K —-1)/2, K2 =
(K +1)/2 for an odd integer K, and K + 1 is the
length of the truncated time delay filter (K > 1).

As illustrated in Fig. 1, the estimation of the
non-integer delay D may be formulated as the fol-
lowing minimization problem:

D =argmin {7 (D) 2 E{lelnl*}},  (3)

where E{-} is the mathematical expectation opera-
tor, | - | denotes the absolute value, and e[n] is the
estimation error in the nth iteration, i.e.,

K>

e[n] = yln] = Y dnlnfafn - k]. (4)

k=—K;

To obtain the MMLETDE algorithm (Cheng and
Tjhung, 2003), the weight coefficient {wy[n]} of the
time delay estimate filter in Eq. (4) is given by

y[n] = *Vsinc(v), —K; <k <Koy o (5)

where v 2 k — Din], and D[n] is the time delay
estimate in the nth iteration.
With the gradient decent of the instantaneous

squared error J; (n) = le[n]|?, the iterative procedure
of MMLETDE to obtain D[n| may be formulated as
(Cheng and Tjhung, 2003)

D[n+1] = D[n] — 2u

where p is the step size, and R{-} and the super-
script “*’ denote the real part and complex conju-
gate of a complex value, respectively. The function
g(v) a g(k — DIn)) is the first-order derivative of the
coefficient of the time delay estimate filter given in
Eq. (5), i.e.,

g(v) = & [f(v) — jwosine(v)] , (7)

where f(v) is referred to as the coefficient adaptation
factor (Cheng and Tjhung, 2003),

_ Osinc(v) _ cos(mv) —sinc(v)
f) = = —el )

We now explicitly consider the noise effect at
the input, and briefly address possible performance
deterioration of MMLETDE in low-SNR scenarios.
Substituting Eq. (1) into the Ji1(D) in Eq. (3), and
with some mathematical manipulations, we have

2

K>
JuD)=E | > (wp —ix[n]) sln — k]
k=—K,
+0;8(D), (9)

where we have used the assumption that ¢;[n] and
do[n] are uncorrelated to each other, both indepen-
dent of s[n], and £(D) is given by

K>

5(D)57+E{ 3

k=—K;

Iwk[n]IZ)} - (10)

Notice that, since £(D) is a function of the trun-
cated fractional TDE filter {wg[n]}, it is accordingly
a function of the TDE D[n] as well, as indicated
by Eq. (5). Obviously, with noisy input signal, i.e.,
when o2 # 0, minimizing J;(D) with respect to
Wk [n] would result in a biased estimate of D. Fur-
thermore, the bias of time delay estimate would in-
crease with the increase of the noise power. Thus,
the MMLETDE algorithm would deteriorate by us-
ing the noise-corrupted input signal z[n|, especially
in scenarios of moderate or high noise power, as is
validated in the forthcoming simulations.

3 Proposed algorithm

To improve the TDE accuracy of narrowband
signals in low-SNR scenarios, we consider the elimi-
nation of the negative effect of the input noise. Mo-
tivated by the unbiased impulse response estimate
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method in So (2001), we consider the weighted cost
function by normalizing Eq. (9) with £(D), i.e.,

(11)

K> 2
Eq| > (wi[n] —dgln])sln— k]| ¢ +o0;
k=—K,
2 J(D) + o2
(12)

with an obvious definition of J(D).
mizing J (D) in Eq. (12) is equivalent to minimiz-
ing the weighted cost function J (D). Since J(D)
is independent of the weight coefficient {wy[n]} of
the time delay estimate filter, an unbiased estimate
can be obtained by minimizing J(D) even with a
noise-corrupted input z[n]. Note that minimizing
the weighted mean-squared error J (D) is equivalent
to minimizing J; (D) subject to a constant-norm con-
straint, namely, C (1 + E{ 522le (Sinc(y)>2}) =
1, where C is a positive constant (Regalia, 1994).
We now formulate the TDE algorithm of LMS-
type (Widrow and Steams, 1985). By incorporating
the instantaneous counterparts of each term in the
weighted cost function in Eq. (11), we have the cor-

Thus, mini-

responding instantaneous weighted cost function

Jm 2 J (D) =5, (13)
where £(n) 2 v + 25:271(1 [ [n]|* corresponds to
the TDE D[n]. Taking the partial derivative of

Eq. (13) with respect to D[n], we can obtain the
gradient of 7 (n):

N 8‘6[11”2 A(TL) _ Bé(n) |€['I’L]|2

&Z(n _ 9D ) 9D (14)
dDIn] E2(n)
with
8|e[n]|2_2 e*ln 3 k— D[n xk—n}
oDl %{[tggﬂ [n])z| J oo
(15)
9 (n) uE .
- = -2 k — Din))wi[n 16
3Dl %{kgzidg( [n]) k[]} (16)
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Thus, the TDE iteration may be readily obtained as

D[n + 1] = Dln] — i—=—, (17)

where fi 2 ug(n) is the step size. By substituting
Egs. (14)—(16) into Eq. (17), we obtain the iterative
TDE:

D[n+1] = D[n] — 2u

k=—K,
en] (&, -
- g (k_; | wkmg@-mnn)]}. 18)

In contrast to the MMLETDE (Cheng and
Tjhung, 2003) update formula reiterated in Eq. (6),
there is an extra additive bias-removal term in the
proposed TDE iteration in Eq. (18), which is related
to the input noise and used to alleviate the noise
effect.

In order for the proposed TDE processor given
in Eq. (18) to achieve optimal performance, suffi-
cient iterations are needed along with a proper ini-
tial guess, as addressed in So et al. (1994) and Cheng
and Tjhung (2003).
steady-state performance of the proposed algorithm
is primarily influenced by the step size u, as in other
LMS-type TDE algorithms (So et al., 1994; 1995;
Cheng and Tjhung, 2003). Note that MMLETDE
requires only a small order of the time delay esti-

Moreover, the transient and

mate filter without noticeable estimation bias over
a wide frequency range (Cheng and Tjhung, 2003).
As is validated through computer simulations in Sec-
tion 4, the proposed algorithm retains the property
of a small filter length, with enhanced performance
in low-SNR scenarios.

Further, notice that the noise power ratio v is
assumed to be known a priori. Otherwise, it has
to be estimated in advance with the noise power
estimates of 0? and ¢2. This premise is popular
for TDE enhancement; e.g., the knowledge (or es-
timate) of the signal and noise spectra is required
by the classical generalized cross-correlator (GCC)
(Patwari et al., 2005; Sadler and Kozick, 2006). The
factor (02 + 02)/0? is adaptively tracked to mini-
mize the mean-squared error (So et al., 1995; So and
Ching, 2001). The TDE performance is enhanced be-

tween noisy signals with the prior knowledge of noise
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powers (So, 2002). Nevertheless, this precondition is
slack for the proposed algorithm, as suggested by the
illustrative simulation results presented hereafter.

4 Simulation results

In this section, we evaluate the performance of
the proposed enhanced MMLETDE algorithm, as
well as those of MMLETDE (Cheng and Tjhung,
2003) and ETDE (So et al., 1994) for comparison.
We consider the eight-tone narrowband and sinu-
soidal signals, respectively. In the following exper-
iments, the actual time delay is set to be 0.35T%,
and the initial guess of the time delay estimates of
all three algorithms are set to be zero. We em-
ploy the empirical mean-squared delay error (MSDE)
MSDE[n] = Zle(f)l [n] — D)?/L to measure the ac-
curacy of delay estimate as in So (2002), where D;[n]
is the time delay estimate in the [th Monte-Carlo
trial, and L = 400 is the total number of Monte-
Carlo trials. The SNRs at z[n] and y[n] are set to be
the same for simplicity.

In the first experiment, we evaluate the per-
formance of the proposed algorithm with different
parameters, namely step size p and time delay filter
length K, for the narrowband and sinusoidal signals,
respectively. The center frequencies of the narrow-
band and sinusoidal signals are set to be 0.77, and
the bandwidth of the narrowband signals is 0.17.
As illustrated in Figs. 2 and 3, both the initial con-
vergence rate and the steady-state performance of
the proposed algorithm are largely dominated by
the step size.
ment can be obtained with a reduced step size at
the cost of initial convergence rate slowdown, as is
consistent with the existing results for the LMS-type
TDE processors. Further results on the steady-state
performance of the algorithms are given.

Steady-state performance improve-

We also justify the TDE performance degrada-
tion due to imperfect prerequisite of the noise power
ratio v with a relatively small deviation (A = 0.15);
i.e., we incorporate (1 + A)y in the time delay es-
timation iteration Eq. (18). Negligible performance
degradation can be observed in Figs. 2 and 3 due to
the imprecise noise power ratio.

In the second experiment, we compare the per-
formance of the proposed algorithm with that of
MMLETDE and ETDE. To make a fair comparison,
we set the step sizes of the three algorithms to be
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1x10~*and 1 x 1077 for the two input signals above,
respectively, such that the initial convergence rates
of the algorithms are similar. It is obvious in Fig. 4
that, in the low-SNR scenario, the TDEs obtained by
ETDE and MMLETDE are biased with a relatively
large length of the truncated time delay filter, while
the proposed algorithm could attain rather accurate
TDE with a smaller filter length. The steady-state
MSDEs, which are calculated through 15 000 itera-
tions after convergence, are shown in Fig. 5 for low
and moderate SNR scenarios. It is observed that al-
though the steady-state performance of MMLETDE
approaches that of the proposed algorithm in the
relatively high SNR range, the steady-state perfor-
mance of the proposed algorithm is obviously supe-
rior to that of its counterparts of the same small filter
order.

In the third experiment, we compare the per-
formance of the algorithms for the sinusoidal signal
with different center frequencies in a relatively low
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SNR. The step sizes of the three algorithms are set to
be 2 x 104, such that the initial convergence rates of
the algorithms are similar. The steady-state MSDESs
of the three algorithms for different center frequen-
cies are shown in Fig. 6. It is evident that, under the
large input noise, the proposed algorithm markedly
outperforms its counterparts over 0.37 < wg < 0.9,
which is a relatively wide frequency range.

In the final experiment, we compare the perfor-
mance of MMLETDE and the proposed algorithms
for SNR = —5 dB and 5 dB, respectively, with dif-
ferent numbers of time delay filter taps, which are
all relatively small. The MSDE of each independent
simulation is obtained by averaging 15 000 iterations
after convergence. The results for narrowband and
sinusoidal signals are shown in Figs. 7 and 8, respec-
tively. It is observed that the proposed algorithm
achieves improved accuracy for a wide range of K
values, compared to its counterpart. Further, the
performance of the MMLETDE algorithm levels off
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and gets closer to that of the proposed algorithm for
the larger SNR with the increase of K.
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5 Conclusions

An enhanced mixed modulated Lagrange ex-
plicit time delay estimator (MMLETDE) algorithm
is proposed for noisy input. Simulation results show
that, when the input is corrupted by noise, espe-
cially under low SNR scenarios, the proposed algo-
rithm can directly obtain an unbiased explicit TDE
for narrowband and sinusoidal signals with a smaller
steady-state estimation error than those of ETDE
and MMLETDE in the premise of almost the same
initial convergence rate. For sinusoids, the proposed
algorithm with a small filter order obviously obtains
TDE over a wide frequency range with improved ac-
curacy.
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