
Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1305

Towards adaptable and tunable cloud-based
map-matching strategy for GPS trajectories*#

Aftab Ahmed CHANDIO†‡1,2, Nikos TZIRITAS1, Fan ZHANG†1, Ling YIN1, Cheng-Zhong XU1,3

(1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)
(2Institute of Mathematics and Computer Science, University of Sindh, Jamshoro 70680, Pakistan)

(3Department of Electrical and Computer Engineering, Wayne State University, Detroit 48202, USA)
†E-mail: chandio.aftab@usindh.edu.pk; zhangfan@siat.ac.cn

Received Jan. 19, 2016; Revision accepted Apr. 11, 2016; Crosschecked Nov. 8, 2016

Abstract: Smart cities have given a significant impetus to manage traffic and use transport networks in an intelligent way. For the
above reason, intelligent transportation systems (ITSs) and location-based services (LBSs) have become an interesting research
area over the last years. Due to the rapid increase of data volume within the transportation domain, cloud environment is of
paramount importance for storing, accessing, handling, and processing such huge amounts of data. A large part of data within the
transportation domain is produced in the form of Global Positioning System (GPS) data. Such a kind of data is usually infrequent
and noisy and achieving the quality of real-time transport applications based on GPS is a difficult task. The map-matching process,
which is responsible for the accurate alignment of observed GPS positions onto a road network, plays a pivotal role in many ITS
applications. Regarding accuracy, the performance of a map-matching strategy is based on the shortest path between two con-
secutive observed GPS positions. On the other extreme, processing shortest path queries (SPQs) incurs high computational cost.
Current map-matching techniques are approached with a fixed number of parameters, i.e., the number of candidate points (NCP)
and error circle radius (ECR), which may lead to uncertainty when identifying road segments and either low-accurate results or a
large number of SPQs. Moreover, due to the sampling error, GPS data with a high-sampling period (i.e., less than 10 s) typically
contains extraneous datum, which also incurs an extra number of SPQs. Due to the high computation cost incurred by SPQs,
current map-matching strategies are not suitable for real-time processing. In this paper, we propose real-time map-matching
(called RT-MM), which is a fully adaptive map-matching strategy based on cloud to address the key challenge of SPQs in a
map-matching process for real-time GPS trajectories. The evaluation of our approach against state-of-the-art approaches is per-
formed through simulations based on both synthetic and real-world datasets.

Key words: Map-matching, GPS trajectories, Tuning-based, Cloud computing, Bulk synchronous parallel
http://dx.doi.org/10.1631/FITEE.1600027 CLC number: TP399; U495

1 Introduction

In recent years, many organizations are gradu-
ally migrating their applications to cloud environ-
ments to take advantage of computing and storage
elasticity combined with the pay-as-you-go model.
The advent and rapid growth of information and
communication technologies (ICTs) has led to a new
emerging concept called ‘urban computing’, wherein
sensors, vehicles, devices, buildings, people, and
roads are accessed as a compound to probe city dy-
namics (Zheng et al., 2014). The data presented in the

Frontiers of Information Technology & Electronic Engineering
www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Basic Research Program (973) of
China (No. 2015CB352400), the National Natural Science Foundation
of China (Nos. 61100220 and U1401258), and the US National Sci-
ence Foundation (No. CCF-1016966)
A preliminary version of this paper was presented at the 2nd Inter-
national Conference on Internet of Vehicles (IOV 2015), Chengdu,
China, Dec. 19, 2015

 ORCID: Aftab Ahmed CHANDIO, http://orcid.org/0000-0002-
5752-0520; Fan ZHANG, http://orcid.org/0000-0002-4974-3329
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1306

aforementioned components is usually obtained in the
form of Global Positioning System (GPS) data. Due
to the live nature of the above GPS-embedded com-
ponents, their data volume can have an exponential
growth, ranging from a few dozens of terabytes to
petabytes (i.e., Big Data) (Chandio et al., 2015a). To
achieve a better quality of service (QoS), information
in GPS data is often used in location-based services
(LBSs) and intelligent transportation systems (ITSs),
i.e., traffic flow analysis (Kühne et al., 2003), route
planner (Gonzalez et al., 2007), geographical social
network (Zheng et al., 2008), and hot route finder (Li
et al., 2007). Because such applications need to pro-
cess a massive amount of data in an effective way,
there is an imperative need for adopting cloud. For
instance, recent cloud-based services within the
transportation domain are agent-based urban trans-
portation systems (Li et al., 2011a), urban intelligence
transportation (Wang and Wang, 2013), cloud-
enabled intensive FCD computation (Li et al., 2011b),
and traffic flow forecasting (Chen et al., 2013).

In this paper, we address the problem of
map-matching, which is playing a pivotal role in
ascertaining the quality of many trajectory-based
applications (e.g., driving directions, road guidance,
moving object management, and traffic flow analysis).
Basically, map-matching is a fundamental process of
the above applications to align the observed GPS
positions accurately onto a road network, which is in
the form of a digital map (Lou et al., 2009). However,
in terms of accuracy, Lou et al. (2009), Newson and
Krumm (2009), Yuan et al. (2010), and Goh et al.
(2012) suggested that the best performance of a map-
matching process is determined by the transition
probability which incorporates the shortest path be-
tween two consecutive GPS points observed. On the
other extreme, the execution of the shortest path
queries (SPQs) in the map-matching process requires
a high computational cost which subsequently makes
map-matching unaffordable for real-time processing
(Lou et al., 2009).

Moreover, the map-matching process becomes a
critical step when processing infrequent and impre-
cise sampling GPS data. Particularly, GPS data may
suffer from two typical errors: (1) measurement error
and (2) sampling error (Fang and Zimmermann,
2011). The measurement error is caused by the limi-
tations of GPS who generates noisy GPS data, while

the sampling error arises from a high-sampling period
that generates extraneous GPS data. To handle the
measurement error, the state-of-the-art map-matching
techniques use two map-matching parameters, (1) the
number of candidate points (NCP) and (2) the error
circle radius (ECR), to consider a number of road
segments. Unfortunately, the state-of-the-art map-
matching approaches (Lou et al., 2009; Newson and
Krumm, 2009; Yuan et al., 2010; Goh et al., 2012) are
designed with fixed parameters (i.e., NCP and ECR),
which may lead to uncertainty and identifying either
no road segments or a large number of road segments.
In the case of no road segments, low accurate results
may be produced, while in the case of a large number
of SPQs, many SPQs may have to be processed.

In terms of the sampling error, GPS data with a
high-sampling period (i.e., less than 10 s) typically
contains extraneous datum (e.g., a vehicle stops many
times, moves slowly, is trapped in a traffic jam, waits
for the green signal, and moves on a high-way link),
which also incurs an extra number of SPQs. If such a
kind of GPS data is eliminated, a trajectory may suffer
from discontinuity. Therefore, a reasonable technique
is required that can intelligently adjust the sampling
rate to reduce unnecessary GPS data and provide
accurate trajectories before applying the map-
matching process. Nevertheless, some approaches can
execute SPQs by pre-computing the shortest path
distances and partition a large network graph into
small regions, such that the required partition can fit
the memory constraints (Kolahdouzan and Shahabi,
2004; Hu et al., 2006; Wang et al., 2008; Liu et al.,
2012; Thomsen et al., 2012; Tiwari and Kaushik,
2013). Since SPQs are executed in a sequential way,
the state-of-the-art approaches experience high pre-
computation and storage costs (Thomsen et al., 2012).

Due to the aforementioned facts, the state-of-
the-art approaches lead to both low accurate results
and high running time. Therefore, such approaches
are not suitable for real-time map-matching of GPS
trajectories. Particularly, real-time traffic information
plays a vital role in dynamic traffic control and
management systems (Goh et al., 2012; He et al.,
2013; Chen et al., 2014). Consequently, it is of par-
amount importance for the map-matching of real-time
GPS trajectories to optimize the problem of SPQs in
an adaptive and efficient way. To deal with the above
challenges, in this paper we present a real-time

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1307

map-matching (called RT-MM) approach, which is
fully adaptive and based on cloud for real-time GPS
trajectories. The proposed map-matching strategy is
approached as follows:

1. We present a systematic model of the map-
matching strategy for real-time GPS trajectories.

2. We introduce a tuning-based strategy that
fine-tunes adaptively the interior and exterior param-
eters of a map-matching process. The interior pa-
rameters (NCP and ECR) are tuned based on the lo-
cality of road networks. Basically, tuning the interior
parameters based on the locality of the road networks
works similarly as our previous approach, LB-MM
(Chandio et al., 2015b). Specifically, the LB-MM
approach selects an apt number of values for interior
parameters (NCP and ECRs), based on different clas-
ses of the locality of a road network for each GPS
sampling point. Since LB-MM considers only interior
parameters, we incorporate it in tuning exterior pa-
rameters. The exterior parameters are relevant to a
sampling rate according to a sliding window adjusted
intelligently based on the feedback information of the
monitored parameters at runtime. The technique for
adjusting the sampling rate of GPS data provides a
highly accurate trajectory after eliminating extrane-
ous data without affecting the map-matching
accuracy.

3. To compute the shortest path distances and
temporal/speed constraint, we propose an extension
of the single source shortest path (SSSP) function
(Seo et al., 2010) following the bulk synchronous
parallel (BSP) paradigm (Malewicz et al., 2010) in
the cloud environment. We implement the SSSP
function following the BSP paradigm in the Hama
environment which is deployed on top of Hadoop.
Taking advantage of a cloud environment, the pro-
posed strategy drastically reduces the pre-
computation time and storage cost. By the above
strategies (i.e., tuning- and cloud-based), we propose
a viable solution to the issues posed earlier regarding
efficient handling of SPQs.

The above approach is empirically evaluated
using real-world and synthetic datasets. The results
reveal that our proposed strategy reduces the overall
running time of the map-matching process by reduc-
ing the number of SPQs and candidate points (CPs),
while maintaining accuracy.

2 Related work

In this section, we first discuss the basic steps of

a map-matching strategy and then address the prob-
lems of map-matching strategies found in state-of-
the-art approaches. Particularly, all map-matching
strategies follow three major steps: (1) initialization,
(2) weight calculation, and (3) weight aggregation
(Fig. 1). The initialization step of the map-matching
strategy prepares a number of CPs projected on the
candidate road segments within an ECR range. The
second step concerns finding a path between two
consecutive points in a trajectory by calculating
weight scores regarding CPs. The last step concerns
the aggregation of weight scores.

Map-matching strategies can be classified

mainly into: (1) incremental (Greenfeld, 2002; Wenk
et al., 2006), (2) global (Brakatsoulas et al., 2005;
Lou et al., 2009; Yuan et al., 2010), and (3) statistical
(Hummel and Tischler, 2005; Pink and Hummel,
2008; Newson and Krumm, 2009; Goh et al., 2012)
methods. Incremental map-matching strategies en-
deavor to find a local match of geometries for each
GPS sample and suppose the small portion of space of
the road network close to the GPS sample. In this
approach, the weight score is aggregated based on the
previous result for each GPS sampling point. This
approach performs well in terms of accuracy when the
sampling frequency is very high, i.e., 2–5 sampling
intervals between GPS points. Regarding global
map-matching approaches, the algorithms match an
entire trajectory onto a road network. The global
map-matching algorithms produce better results in
terms of accuracy when applying low-sampling-rate
GPS data. On the other hand, incremental approaches
are very fast but suffer from low accurate results,
while global approach algorithms achieve better ac-
curacy at the expense of high computational cost. The

Fig. 1 Basic steps in a map-matching process

Weight aggregation
To aggregate weight score

Weight calculation
To calculate weight between candidate points

Initialization
To prepare candidate points

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1308

approaches in the last category leverage on statistical
methods, i.e., Bayesian classifiers, hidden Markov
model (Pink and Hummel, 2008), Kalman filter, and
cubic spline interpolation (Hummel and Tischler,
2005), to match GPS points onto a road network.
These approaches are particularly effective in han-
dling GPS measurement errors.

Most current map-matching algorithms aim to
achieve better QoS such as (1) high accuracy and (2)
fast response time. Due to the tradeoff between high
accuracy and fast response in map-matching strate-
gies, providing a better QoS is difficult. It is a com-
mon approach to reduce the sampling rate of GPS
data to save the cost of energy consumption, com-
munication, and computation. For example, Fang and
Zimmermann (2011) minimized the cost of energy by
reducing the sampling rate of GPS data. Unfortu-
nately, low-sampling-rate GPS data increases uncer-
tainty and leads to less accurate results. On the other
hand, because SPQs are time-consuming, handling
SPQs in a sequential way makes the overall running
time of many ITS applications unaffordable for re-
al-time processing. Thus, considering the tradeoff
between accuracy and response time in the map-
matching strategy becomes a big challenge.

2.1 Spatial and temporal matching

Our proposed map-matching strategy is inspired
by the spatial and temporal matching (ST-M) global
map-matching strategy (Lou et al., 2009) that aims to
provide high accuracy. Spatial (i.e., geometric struc-
ture) and temporal (i.e., speed) constraints are in-
corporated in ST-M to solve the problem of low-
sampling-rate GPS trajectories. In ST-M, first the
weight function based on spatial and temporal con-
straints is defined with respect to two consecutive
GPS points and their CPs. A candidate graph is cre-
ated in ST-M where each node in the graph is a set of
CPs and their edges represent a set of road segments
regarding the shortest path between two neighbouring
points associated with the spatial and temporal weight
scores. The algorithm then generates a true path based
on the largest summation of the weight functions.

Because the ST-M algorithm uses SPQs, through
experimental evaluation we found that the execution
time of the map-matching process increases dramat-
ically when increasing the number of GPS sampling
points per trajectory, violating QoS (Chandio et al.,

2014). For instance, Fig. 2a shows the number of total
SPQs when varying NCP and the number of GPS
points per trajectory. Fig. 2b shows the total number
of CPs found less than the fixed value of the CP pa-
rameter when varying ECR and the number of GPS
points per trajectory.

The time cost of ST-M is high because ST-M

executes a large number of SPQs. On the other ex-
treme, fixed NCP and ECR can produce less accurate
results when ECR does not provide the required NCP
(Quddus et al., 2007) (Fig. 2b). For example, Fig. 3
shows a snapshot of two fixed ECR (i.e., r1 is small
and r2 is large). As shown, for point pi, two CPs can be
considered if ECR is equal to r1 (small); otherwise,
four CPs are considered if ECR is equal to r2 (large).

Therefore, in this study, we introduce a novel
approach of applying an adaptive strategy that ad-
dresses the aforementioned challenges. Our tuning-
based strategy adaptively adjusts the sampling rate of
GPS data and fine-tunes the map-matching parame-
ters (e.g., NCP and ECR). The proposed strategy is

Fig. 2 Simulation results of spatial and temporal match-
ing for real-world trajectories with different numbers of
GPS trajectory points: (a) the relationship between the
total number of SPQs and the number of candidate points
(ECR=100 m); (b) the relationship between the total
number of CP and the error circle radius

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1309

conceptually similar to the tunable job scheduling
strategy in Tang et al. (2013). Moreover, we enhance
our map-matching strategy with the strategy of
pre-computing the shortest path distances and road
network partitioning for real-time GPS trajectories.
Previous approaches deal with the execution of SPQs
by pre-computing the shortest path distances and
partitioning a large network graph to small regions
such that the required partition could be fit in memory
(Kolahdouzan and Shahabi, 2004; Hu et al., 2006;
Wang et al., 2008; Liu et al., 2012; Thomsen et al.,
2012; Tiwari and Kaushik, 2013). However, the
aforementioned techniques deal with the execution of
SPQs in a sequential way, which comes at the expense
of high pre-computation and storage costs (Thomsen
et al., 2012). In contrast, we propose an extension of
the SSSP function following the BSP parallel para-
digm in cloud environments that reduces pre-
computation time and storage cost significantly.

3 Definitions

Definition 1 (GPS trajectory) A vehicle’s trajectory
T is measured in a sequence of GPS sample points, i.e.,
T: p1→p2→∙∙∙→pn, where 0<pi+1.t–pi.t<∆T, pi.t is the
timestamp of pi (1≤i<n) and ∆T is the time spent
between two consecutive GPS points. Besides, each
GPS point pi∈T contains GPS position information,
including latitude pi.lat and longitude pi.long.
Definition 2 (Strategy event) Map-matching ex-
amines trajectory T at pre-scheduled times O. Pre-
scheduled time has a regular time interval and is also
called event time and denoted by ∆O.
Definition 3 (Meta-points) Meta-points (denoted by
M) represent the recent GPS sampling points that are
ready for the map-matching process, i.e., M: p1→p2

→∙∙∙→pn, where pi∈M, M⊂T, and 0<pi+1.t−pi.t<∆M

(1≤i<n, 0≤∆T<∆M). The time spent between two
consecutive GPS points of a meta-point list is denoted
as ∆M.
Definition 4 (Sliding window) Sliding window
represents the set of GPS points in M considered for
map-matching.
Definition 5 (Road graph) A directed road network
graph G(V, E) is called a road graph, where V denotes
the set of points intersecting the road segments, called
vertices, and E signifies a set of road segments, called
edges. A directed edge e is associated with (1) the
unique identification e.gid, (2) the average travel
speed e.v, (3) the road length e.l, (4) the starting point
e.start, (5) the ending point e.end, and (6) the inter-
mediate points comprising the road polyline.
Definition 6 (Path) A path P is a list of connected
road segments between two vertices (Vi, Vj) in a road
network G, i.e., P: e1→e2→∙∙∙→en, where, for 1≤k <n,
e1.start=Vi, en.end=Vj, and ek.end=ek+1.start.

4 Fully adaptive map-matching strategy

In this section, we introduce our proposed tech-

nique called RT-MM (real-time-map-matching),
which is a fully adaptive map-matching strategy for
real-time GPS trajectories based on cloud. The pri-
mary goal of this study is to improve the map-
matching strategy that can provide a better trade-off
between accuracy and response time. This section
discusses the architecture and major components of
the proposed map-matching strategy.

4.1 System architecture

A complete systematic model of our proposed
technique consists of two main steps: off-line and
online efforts. The architecture of the system (Fig. 4)
is explained as follows.

Off-line efforts are composed of partitioning the
road network graph and pre-computing the shortest
path distance and temporal/speed constraints. The
road network graph is split into small sub-graphs,
with each sub-graph keeping its boundary values such
as the maximum and minimum longitude and latitude
(Wang et al., 2008). Our partition approach guaran-
tees that each sub-graph contains approximately an
equal number of nodes for the purpose of load bal-
ancing. The reason for splitting a road network graph

Fig. 3 The interior setting for considering candidate
points (CPs) for a sampoing point

r1

r2

pi cic2

cic1

cic3

cic4

eie2

eie1

eie3

eie4

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1310

into small partitions is due to memory constraints.
However, splitting a road network into partitions may
degrade the accuracy. To maintain accuracy, we ex-
pand the boundary of each partition by adding a cer-
tain value to the latitude and longitude coordinates of
the border line. In that way, a process of the shortest
path distance between two consecutive GPS points
can be processed within the same partition. Regarding
the offline efforts, the shortest path distance and
temporal/speed constraints are computed by follow-
ing the parallel computing paradigm, i.e., BSP
(Malewicz et al., 2010), in a cloud environment to
reduce the pre-processing time. We provide an ex-
tension of the SSSP function following the BSP par-
adigm. The aforementioned implementation takes
place in Hama (Seo et al., 2010) on top of the Hadoop
environment. Besides computing the shortest path
distance, the proposed SSSP function computes the
number of edges and the speed constraints of all edges
contained in the shortest path. We briefly discuss the
modified SSSP function employing the BSP parallel
paradigm in Section 4.2.

In terms of online efforts, our proposed
map-matching strategy monitors periodically the GPS
sampling data in real time to adaptively fine-tune the
interior and exterior parameters of the map-matching
process. The interior parameters (i.e., NCP and ECR)
are tuned based on the locality of the corresponding
road network. The exterior parameters are relevant to
the sampling rate and the number of GPS points

contained in the sliding window, and are tuned based
on the feedback information of monitored parameters
at runtime. In this phase, the map-matching strategy
checks the queue periodically and accepts real-time
GPS trajectory T for map-matching on the digital map.
Nevertheless, the online phase can work inde-
pendently using SPQs without the aforementioned
off-line efforts. A complete map-matching process for
real-time GPS trajectories is further discussed in
Section 4.3.

4.2 Modified SSSP algorithm following the BSP
parallel paradigm in cloud environments

In this section, we discuss our modified SSSP
algorithm that follows the BSP parallel paradigm to
generate all (source, destination) shortest path pairs
together with the temporal/speed constraint of all the
nodes in the graph. The SSSP function computes the
shortest path distances between a single source node
and all-pairs in the graph. Fig. 5 shows an example of
the SSSP process for a network graph consisting of
six nodes and seven edges. Each edge is weighted
with a value (Fig. 5a). The SSSP results of each node
in the graph are presented in Fig. 5b. Basically, SSSP
is a classical function which has been well solved
based on the Dijkstra algorithm (Dijkstra, 1959).

Because the calculation of the shortest path dis-

tances contains graph computations demanding large
data processing, we use a parallel paradigm to reduce
the pre-computation time. The implementation of the
SSSP function in a parallel paradigm makes the SSSP
function more efficient against other shortest path
techniques following sequential processing. The
SSSP function has recently been studied into two

Fig. 5 An example of SSSP computation: (a) a network
graph; (b) SSSP results of all nodes in the graph

1

a
b

c

d
e

f

5

3

1 4

6

6

a

b
-

c
3

d
9

e
5

f
4

b c
a

d e f

10

3
-
6
2
1
7

9
6
-
8
7
4

5
2
8
-
1
7

4
1
7
1
-
6

10
7
4
7
6
-

(a)

(b)
DestinationSource

Fig. 4 An overview of the proposed system

Route
finder

Driving
direction

Traffic
management

Location based services (LBSs)

Fully adaptive map-matching strategy

Monitoring

Database

G1(V,E)
G2(V,E)

...
Gn(V,E)

Road
partitioning

Parallel
computations

Pre-processing

Tuning

Candidate
preparation

Spatial analysis

Temporal analysis

Matching score

Map-matching

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1311

well-known parallel paradigms (Kajdanowicz et al.,
2014), i.e., MapReduce (MR) (Dean and Ghemawat,
2008) and BSP (Malewicz, et al., 2010). Due to the
graph and the iterative processing nature of the
problem, MR is deemed not suitable for the shortest
path computations (Kajdanowicz et al., 2014).

Malewicz et al. (2010) in Google Inc. introduced
an alternative model, called Pregel, which is based on
the BSP parallel paradigm. Pregel has been imple-
mented in Hama (Seo et al., 2010) and we chose this
tool to perform the shortest path computations. The
BSP algorithm will generate a series of supersteps,
and each superstep executes a user-defined function
in parallel asynchronously (Yin et al., 2003;
Kajdanowicz et al., 2014) (Fig. 6). At the end of each
superstep, the BSP algorithm uses a synchronization
barrier to synchronize computations in the system.
The synchronization barrier is responsible for the
state wherein each superstep waits for the remaining
supersteps running in parallel. By default, the SSSP
function accepts an input of the network graph and a
single source node. As discussed previously, the
proposed SSSP function computes the shortest paths,
the number of edges, and the total speed of all edges
contained in the shortest path. The output of the
function is used to calculate spatial and temporal
weight scores of two consecutive GPS sample points
for the final map-matching process.

Algorithm 1 shows the modified SSSP function
following the BSP parallel paradigm. It takes a road
network graph as the input. The format of the input of
Algorithm 1 is modified as follows:

Format:
Node\tEdge1:Length,Speed\tEdge2:Length,Speed\...

\tEdgen:Length,Speed
Examples:
84\t192:89.4,180
85\t82:7.3,260\t81:8.3,90\t176:162.3,90
86\t48:107.1,90\t164:120.2,260\t306:203.4,260
87\t105:24.6,260
(Default format is used only for computing the shortest distance,
explained into the Hama SSSP page, http://wiki.apache.org/
hama/SSSP)

Each example represents a node and its adjacent
edges. Each adjacent edge is represented by three
variables: edge identification, edge length, and speed.

At the start of the proposed SSSP function, the
variable of the actual value (at each vertex except the
source) that corresponds to the minimum distance is

Algorithm 1 Modified SSSP algorithm in BSP
Input: a road network graph G(V, E) and source node
Output: the shortest paths // The output record provides the
// shortest distance, a number of edges, and total speed of
// roads in each shortest path

1: function COMPUTE(vertex v, message
 m<distance, edgeCount, speedCouns>)

2: if isStartVertex(v) then
3: minDistanceDefault=0
4: else
5: minDistanceInDefault=∞
6: endif
7: foreach message m do
8: if m.distance<minDistanceInDefault then
9: minDistanceInDefault=m.distance

10: edgeCountInDefault=m.edgeCount
11: speedCountInDefault=m.speedCount
12: endif
13: endfor
14: if v.distance>minDistanceInDefault then
15: v.minDistance=minDistanceInDefault
16: v.edgeCount=edgeCountInDefault+1
17: v.speedCount=speedCountInDefault
18: foreach e in the neighbor of v
19: m.distance=e.distance+minDistanceInDefault
20: m.edgeCount=m.edgeCount+1
21: m.speedCount=e.speed+speedCountInDefault
22: sendMessage(e.id, m)
23: endfor
24: endif
25: voteToHalt()
26: end function

initialized with infinity (lines 2–6). Basically, in the
modified SSSP, each vertex reads a message from its
adjacent edges, which contains three parts: distance,
total number of edges, and total speed of the edges
between the source and current vertices. If the dis-
tance in a message at a given vertex is smaller than the
actual value associated with the current vertex, then
the function updates the above three parameters as-
sociated with the current vertex (lines 1–13). Finally,

Fig. 6 A snapshot of bulk synchronous parallel (BSP)
processing

Superstep S1

Superstep S2

Superstep S3

Superstep Sn

Sy
nc

hr
on

iz
at

io
n

ba
rri

er

Superstep S1

Superstep S2

Superstep S3

Superstep Sn

Local computation Process communication

Pr
oc

es
so

rs

... ...

Local computation

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1312

the current vertex sends a message with the updated
values to all its adjacent edges (lines 14–24) and be-
comes an inactive vertex by calling voteToHalt() (line
25). When a vertex receives a message, it becomes
active. The process terminates when there are no
active vertices to be considered.

4.3 Map-matching strategy for real-time GPS
trajectories

The proposed map-matching strategy is based on
window- and tuning-based techniques. In the
window-based approach, recent GPS sampling points
of the vehicle are chosen for the map-matching pro-
cess. Regarding the tuning-based approach, the inte-
rior and exterior parameters of map-matching are
fine-tuned. The steps used in our proposed
map-matching strategy are depicted in Fig. 4: (1)
monitoring, (2) tuning, (3) candidate preparation, (4)
spatial analysis, (5) temporal analysis, and (6) score
matching.

In the monitoring phase, our map-matching
strategy periodically monitors the flow of real-time
GPS workloads and the parameters of the sliding
window in each strategy event E. Based on the mon-
itored parameters, we determine the current driving
state of a vehicle to help the next phase fine-tune the
sampling rate of GPS data. Our intuition is that if a
vehicle is driven on a high way or a long road segment,
then the sampling rate can be reduced by filtering the
noisy and extraneous data. Otherwise, a high sam-
pling rate of GPS data is needed to ensure the accu-
racy of the map-matching if a vehicle is traveling
inside the city. To estimate the current driving state of
the vehicle, we choose the average speed of the ve-
hicle extracted from the previous sliding window
(Fang and Zimmermann, 2011), which is defined as
follows:

1

1
1

(. .)

.
 ,

i

k
uu

i
p t p t

e l
S

W
=

−
′ ′−

′
=
∆
∑ (1)

where 1 2. . .u u u ke l e l e l→ → ′→′ ′

 is the total length of
the matched shortest path and

1(. .)ip t p tW ′ ′−∆ is the total

time spent on path P in the previous sliding window
Wi−1. If the vehicle is traveling with an average speed

1iS − of 40 km/h or above, then the vehicle is thought
to be on high way; otherwise, we consider that the
vehicle is moving inside the city. We set this threshold

in our experiment because, in the road network, the
road segments inside the city permit a 40 km/h
maximum driving speed.

The tuning phase is responsible for amending the
sampling rate ∆T of GPS sampling data based on
monitored parameter 1iS − . A new sampling rate ∆M
of the GPS sampling data is obtained by

 ,EM

W
∆

∆ = (2)

where W represents the number of GPS sampling
points in the sliding window. The exterior parameters
considered in this study are ∆E and W. Both param-
eters are tunable with pre-defined values such that
∆E=10 and W=12 imply that the vehicle is in
high-way driving state, while ∆E=5 and W=10 imply
that the vehicle is in inside-city driving state. In this
way, the sampling rate of GPS data can be adjusted
reasonably.

To maintain the quality of our map-matching
strategy, we incorporate the weight score of the pre-
vious mapped GPS sampling point as the source of
the path in the current sliding window. A schematic
model is shown in Fig. 7, which shows three sliding
windows. As observed, the second and third sliding
windows follow the most recent results (i.e., last
mapped GPS point) of the previous sliding window to
maintain trajectory continuity.

Besides the exterior settings, the tuning phase is
also responsible for tuning the interior parameters, i.e.,
NCP and ECR, for the determination of the most likely
road segments. The tuning strategy decides the inte-
rior settings based on the locality of the road network.
We characterized the locality of the road network into
a grid format. The number of grids varies according to
the memory capacity of the underlying system (e.g.,

Fig. 7 An example of the proposed window-based
map-matching scheme for real-time trajectory (W=5),
where p1, p2, …, p5 denote the GPS sampling points and
c1, c2, …, c5 denote the corresponding correct candidate
points

p1 p2 p3 p4 p5

c1 c2 c3 c4 c5

p1 p2 p3 p4 p5

c1 c2 c3 c4 c5

c5 p1 p2 p3 p4 p5

c1 c2 c3 c4 c5

c5

W1 W2 W3

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1313

we use 200×200 grids in our experiment). For the
characterization of the locality of the road network,
we create the relationship in Table 1 for considering
NCP and ECR settings.

Based on the tuning phase, the candidate prepa-

ration phase retrieves a possible number of candidate
road segments for each GPS sampling point p in
sliding window M. The CPs c on candidate road
segment e are generated by geometry projection
within ECR r with respect to the Euclidean distance
between the GPS sampling points. A set of the closest
CPs c to the GPS sampling point are chosen such that
c= argmin∀ci∈edist(ci, p) and dist(ci, p) is the distance
between candidate point ci and GPS sampling point p.
In consequence, the map-matching process considers
a number of the most likely CPs matching to the re-
spective GPS sampling point. Fig. 3 illustrates the
strategy of interior settings.

The next step concerns spatio-temporal analysis,
which evaluates the retrieved candidate points to
generate the candidate graph G′(V′, E′). In this study,
the GPS measurement error is assumed to follow a
normal distribution N(μ, σ2) of the distance GPS point
and candidate point dist(,)j j

i ix c p= (j
ic is the jth

candidate point of the ith GPS sampling point). Like
Lou et al. (2009), for GPS measurement, a zero-mean
normal distribution with 20 m standard deviation is
used, which is described by

 2

2

()1() exp .
22π

j
j i

i
xN c µ
σσ

−
= (3)

The spatial-temporal analysis function in our

proposed map-matching strategy is adopted from Lou
et al. (2009), which is denoted as

1 s 1 t 1() (, 2) () ,t s t s t s
i i i i i iF c c F c c F c c i n− − −→ = → × → ≤ ≤

 (4)

where Fs is a spatial analysis function calculated by

s 1 1((),(2 ,))t s s t s
i i i i iF c c N c V c c i n− −→ = × → ≤ ≤ (5)

and V is a likelihood method in transmission proba-
bility, which defines a true path from pi–1→pi and
follows the shortest path from ci–1→ci, calculated by

1

(1,) (,)

 , 2 .i i

i t i s

dV i n
w

− →

− →

= ≤ ≤

The temporal analysis function Ft is defined by

(1,) (,)1
t 1

2 2
(1,) (,)1 1

.
,

(.)
()

k
u i t i st s u

i i k k
u i t i su u

e v V
F c c

e v V

− →=
−

− →= =

′ ⋅
→ =

′ ×

∑
∑ ∑

 (6)

where 1 2. . .ke v e v e v′ ′ ′→ → ⋅⋅ ⋅→ is the speed constraint
of the road segments belonging to the shortest path.
The temporal analysis phase creates a score for each
candidate point by considering the average speed of
the road segments between two neighboring candi-
date points. For details of spatial and temporal anal-
ysis, we refer readers to Lou et al. (2009). Our pro-
posed strategy incorporated with the spatial and
temporal analysis function is enhanced by replacing
SPQs and the speed constraint pre-computed in BSP
parallel paradigm (Fig. 4).

In the matching score phase, the candidate graph
G′(V′, E′) is evaluated. Each node V′ in G′ is a set of
candidate points associated with the observation
probability ()j

iN c , while E′ in G′ is a set of road
segments in the shortest path between two neighbor-
ing points which are associated with the spatial

s 1()t s
i iF c c− → and temporal t 1()t s

i iF c c− → scores. Fi-
nally, a sequence of real candidate points is selected
from a candidate graph G′(V′, E′), considering the
largest summation of the scores.

To configure the adaptive map-matching strat-
egy for real-time GPS trajectories, we first give some
notations before describing the fully adaptive map-
matching strategy. TE and TW are the tunable sampling
rate and the number of GPS points in sliding window

Table 1 Parameters based on locality information*
Class GPS point density ECR (m) Number of CPs

Class-I ∑e≥21 60 3
Class-II 16≤∑e˂21 80 4
Class-III 12≤∑e˂16 100 5
Class-IV 9≤∑e<12 120 6
Class-V ∑e˂9 150 7
* Chandio et al. (2015b)

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1314

W, respectively. ΔE and ΔW are used for tuning TE and
TW at each time interval event, respectively. Pm states
the monitored parameters in real time. Si and Sd refer
to the events triggering the increment and decrement
of the tunable parameters, respectively. CheckTime
denotes the time instance at which the runtime pa-
rameters are checked and the adaptive strategy is
tuned.

Algorithm 2 describes our adaptive map-
matching strategy for real-time GPS trajectories. At
each time interval, the strategy collects the parameter
values Pm of the previous sliding window (line 3).
Then the parameter values are compared with the
predefined thresholds to decide whether a strategy
tuning event should be triggered (lines 4–13). In
consequence, the tunable parameters are adjusted at
each time interval (line 14). A set of candidate points
within an ECR for each GPS sampling point is gen-
erated based on new tuning parameters by invoking
the populateCandidates() function (lines 15–17). Al-
gorithm 3 shows the pseudocode for preparing the
candidate points based on the locality of a road net-
work. It initially finds the grid for each GPS point and
then returns the best NCP and ECR. Getting back to
Algorithm 2, generateGraph() and findSequence()
follow the same way as described in Lou et al. (2009)
(lines 20–21). generateGraph() generates a candidate
graph (in the matching phase) for the GPS points in
each sliding window, while findSequence() calculates
the weight scores to identify a sequence of real CPs
by considering the largest summation of the weight
scores assigned to CPs.

5 Experimental evaluation

In this section, we give a discussion about the

experimental setup as well as the results obtained
from the comparison between our proposed approach
and state-of-the-art techniques.

5.1 Computation environments

To carry out the experiments, we employed two
computation environments. For the pre-processing
step based on the BSP parallel paradigm, the Hadoop
(version 1.1.2) cloud environment was created. Three
physical machines were dedicated, with tone for
master node and the rest for worker nodes. Each of the

node was composed of eight 2.20 GHz Intel® Xeon®
CPUs and 32 GB RAM. For BSP parallel processing,
we employed Hama (version 0.6.2) on the top of
Hadoop. Next, one of the three physical machines was
dedicated to provide real-time map-matching pro-
cessing. For a fair comparison, we implemented all of
the studied map-matching strategies in Java (version
1.7) programming language. We stored all of the da-
tasets in the PostgreSQL (version 9.1) database to-
gether with the PostGIS (version 2.0) spatial tool and
pgRouting tool for executing SPQs.

Algorithm 2 Fully adaptive map-matching strategy
for real-time GPS trajectories
Input: a road network graph G(V, E) and a trajectory
Output: a matched sequence of CPs for a given

trajectory
1: do
2: if CurrentTime−LastWinTime>CheckTime then

3: Pm=collectMonitoredParas() // collect parameters
4: e=eventNeed(Pm) // feedback for tuning
5: if e=Si then
7: TE=TE+∆E // increment for tuning
8: TW=TW+∆W // increment for tuning
9: endif

10: if e=Sd then
11: TE=TE−∆E // decrement for tuning
12: TW=TW−∆W // decrement for tuning
13: endif
14: ∆M=tuneSR(TE, TW) // re-tune a sampling ratio
15: foreach i in M do
16: Ci.[].add=populateCandidates(i) // locality-based
17: endfor
18: LastWinTime=CurrentTime
19: CheckTime=∆E //reset time interval
20: G′=generateGraph(C) // generate a candidate graph
21: findSequence(G′) // find matched candidate points
22: endif
23: while TRUE

Algorithm 3 populateCandidates()
Input: a GPS point
Output: candidate points (CPs)
1: gc=findGridCells(p.long, p.lat) // find grid cells
2: ge=findMaxEdges(gc) // find a number of roads in gc
3: cp=bestCandidateNumber(ge) // find a number for CPs
4: rp=bestRadiusNumber(ge) // find a number for ECR
5: foreach i in gc do
6: gids[]=getGids(i) // collect all roads in the grid cells
7: endfor
8: return c[]=getCandidatePoints(gids, cp, rp) // get CPs

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1315

5.2 Datasets

1. Road network: We used a real-world road
network graph of Shenzhen city, China. The real-
world road network graph contains a total of 86 335
vertices and 133 397 road segments.

2. Real-world GPS-embedded vehicle trajectory:
For testing the map-matching strategies, we used a
real-world trajectory dataset of GPS-embedded taxi-
cab traveling around Shenzhen city on Oct. 10, 2013.
A total of 5128 GPS points were collected within 24 h.
We also chose a set of trips obtained in the dataset,
which are varied according to different numbers of
GPS sampling points and the sampling rate.

3. Synthetic trajectory dataset: We used a syn-
thetic trajectory dataset generated randomly by our
own simulator. The simulator first creates a shortest
path between two random vertices in the road network.
Then, a set of edges returned by the shortest path is
considered as a ground truth. The sampling points are
generated on the respective edges according to the
sampling rate. To encapsulate the GPS sampling error,
each GPS sampling point follows a zero-mean 20 m
standard deviation normal distribution. The method
for creating the synthetic trajectory dataset was veri-
fied and used in Lou et al. (2009) to evaluate the
ST-Matching algorithm. A similar way is reasonably
considered in this study to evaluate our proposed
strategies against the ST-Matching algorithm.

6 Experimental results and discussions

To evaluate the performance of the proposed

strategies, we used two metrics: running/computation
time and accuracy. The running time is the overall
execution time of the map-matching process, and the
accuracy represents the percentage of the correct
matching GPS points (CMP). Specifically, CMP is
calculated according to Eq. (7) (Yuan et al., 2010):

Number of correctly matched pointsCMP 100%.Total number of points to be matched= ×

(7)

We evaluate the performance of the proposed

fully adaptive map-matching strategy against the
ST-M algorithm and the proposed strategy with static
parameters (NCP=5 and ECR=100 m). We call the

proposed map-matching strategy with static parame-
ters RT-M-I and the fully adaptive map-matching
strategy RT-M-II. Moreover, we analyze the proposed
strategy by using the total numbers of SPQs and CPs
required.

6.1 Comparisons between RT-MM and ST-M

First, we analyze the proposed RT-MM strategy
against ST-M regarding running time and accuracy.
Fig. 8a shows the average running times of five ex-
periments when varying the number of GPS points
per trajectory.

The results shown in Fig 8a reveal that our

proposed strategies took much less computation time
as compared to the ST-M algorithm. Another remark
is that the adaptive strategy, RT-M-II, outperforms
RT-M-I when the trajectories consist of more than 50
GPS sampling points. Fig. 8b shows the comparison
of the average CMP of synthetic trajectories when
varying the sampling rate from 2 to 6 min per trajec-
tory. Our proposed strategies produced almost the
same results as those of ST-M. The reason that the
accuracy of RT-MM is lower than that of ST-M is that,
the road network is partitioned into small regions and
the trajectory is traveling on more partitions of the
road network. If a trajectory crosses more than one

Fig. 8 The running time with different numbers of GPS
points per trajectories (a) and the accuracy with different
sampling intervals for the synthetic dataset (b)

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1316

partition, the accuracy of our proposed map-matching
strategy will be degraded slightly. Such an intuition is
shown in Fig. 8b; i.e., the trajectory with a sampling
rate of 4.0 min crosses on a total of five partitions of
the road network, and the accuracy is degraded.

6.2 Analyzing RT-MM when varying the static
parameters

We examined the execution time of our proposed
map-matching strategy (RT-M-I) when varying the
static parameters (NCP and ECR). Fig. 9a shows the
execution time of RT-M-I for different NCP (from 2 to
5) when varying the number of GPS points per tra-
jectory. Specifically, we fixed ECR to 100 m. We can
observe that trajectories with a smaller NCP take less
running time for mapping against the ones with a
larger NCP. Moreover, we evaluated the proposed
strategy in terms of running time when varying ECR.
Particularly, we used a full-day real-world trajectory
(described in Section 5.2) for map-matching when
varying ECR from 100 m to 300 m as well as NCP
from 3 to 10. Fig. 9b shows the overall running time
of the proposed strategy when processing the full-day
real-world trajectory. Fig. 9b reveals that higher ECR
and NCP increase the running time. Next, we analyzed
the impact of the size of sliding windows with respect
to the static parameters values. Fig. 9c shows the
average running time of each sliding window when
matching the full-day real-world trajectory. We can
find that the running time is significantly affected
when varying NCP and ECR.

6.2.1 Impact of adaptive parameters based on locality
of the road network

In this section, we evaluated the proposed adap-
tive strategy in terms of CMP and the distributions of
GPS sampling points. Fig. 10a shows the average
CMP for synthetic trajectories when varying the
sampling rate from 2.0 to 6.0 min per trajectory. The
proposed adaptive strategy produced almost the same
results as compared to the ST-M algorithm.

Fig. 10b shows the distributions of GPS sam-
pling points and reveals that Class-I, II, and III are
dominant against the remaining classes. By tuning
exterior parameters, the proposed strategy selected
reasonably29% GPS sampling points of the full-day
real-world trajectory. The rest of them were excluded
as extraneous GPS sampling points. Table 2 shows

the percentage of total GPS sampling points.
On the other hand, Fig. 10c clearly shows that

the proposed strategy reduces the numbers of SPQs
and CPs required. Specifically, by employing our
strategy, the total numbers of SPQs and CPs are 27%
and 15% less than those of ST-M, respectively. The
reason of the reduced number of SPQs is that the
proposed strategy with interior tuning selects differ-
ent classes of the locality of the road network when
matching each GPS point, which unquestionably
provides a faster processing.

Fig. 9 Running time when varying the number of GPS
points of trajectories (a) and the number of candidate
points (NCP) of a full-day trajectory (b), and the average
running time of different numbers of candidate points of
full-day trajectories with respect to different circle radii
and numbers of candidate points

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1317

On the other hand, we examined the distributions
of GPS sampling points in each class when processing
the full-day real-world trajectory (Table 3).

Table 3 clearly discloses that the classes based
on the locality of the road network are adaptively
selected by the proposed strategy for each GPS sam-
pling point of the trajectory. The distributions of GPS
sampling points in Class-I and II are dominant against
the remaining classes. Because Class-I and II have
small NCP and ECR, the proposed adaptive strategy
significantly reduced the number of SPQs and con-
sequently the running time. Next, we analyzed the
impact of the size of the sliding window on the

proposed adaptive strategy. Fig. 11a shows the aver-
age running time of each sliding window size. Most of
the sliding windows took less than 500 ms. Moreover,
we statistically analyzed the impact of the size of
sliding windows regarding the Box-and-Whiskers
plot (Fig 11b). The first and third quartiles in the plot
are between 0.4 and 0.8 s.

6.2.2 A comparison of static and adaptive parameters

Furthermore, we evaluated the performance of
the adaptive strategy RT-M-II against the strategy
RT-M-I with NCP equal to 5 and ECR equal to 100 m.
Both strategies were compared in terms of three met-
rics: (1) the total number of CPs, (2) the total number
of SPQs, and (3) the total number of CPs found less
than the fixed value of the CP parameter. The results
are shown in Table 4, which indicates that RT-M-II
outperformed RT-M-I. Specifically, the adaptive
strategy significantly reduced the number of SPQs

Table 2 The percentage of GPS sampling points
GPS sampling points Number Percentage

GPS sampling points used 1513 29%
GPS sampling points excluded 3801 71%
Total 5314 100%

Table 3 Distributions of GPS sample data in each class for
matching a full-day real-world trajectory

Class
Number of GPS sampling points

Percentage
Inside-city High-way Total

Class-I 223 414 637 42.10%
Class-II 255 315 570 37.67%
Class-III 99 113 212 14.01%
Class-IV 24 23 47 3.11%
Class-V 15 32 47 3.11%

Total 616 897 1513 100.00%

Fig. 11 Average running time for different sizes of the
sliding window (a) and running time of each sliding win-
dow in the Box-and-Whiskers plot (b)

Fig. 10 Comparison evaluation of locality of the road
network: (a) CMP with respect to different GPS sampling
rates; (b) distribution of GPS sampling points in each
class; (c) number of CPs and SPQs required

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1318

and CPs required. This is because the adaptive strat-
egy considers different parameter classes for mapping
each GPS sampling point of the full-day real-world
trajectory. Particularly, assigning an appropriate class
for mapping each GPS point can significantly reduce
the total number of CPs and SPQs required.

7 Conclusions

It is evident that location-based services (LBSs)

become more and more data hungry. In this paper, we
proposed a fully adaptive map-matching strategy for
real-time GPS trajectories based on the cloud envi-
ronment. The proposed strategy adaptively fine-tunes
the interior and exterior parameters of the map-
matching process. The interior parameters, i.e., the
number of candidate points (NCP) and the error circle
radius (ECR), are tuned based on the locality of a road
network, while the exterior parameters depend on the
sampling rate which is intelligently adjusted based on
the feedback information of the monitored parameters
at runtime. Furthermore, unlike traditional ap-
proaches, the shortest path distance and the speed
constraint of road segments are pre-computed by
following the bulk synchronous parallel (BSP) para-
digm. In that way, the pre-computation time is re-
duced drastically. We analyzed the performance of
our strategies in terms of (1) running time, (2) accu-
racy, (3) total number of SPQs, and (4) total number
of candidate points (CPs) when applying real-world
GPS data and synthetic data. Results revealed that, by
assigning an appropriate class of the locality of a road
network for mapping each GPS sampling point, the
total number of CPs and SPQs can be significantly
reduced, thus considerably decreasing the execution
time. In our future work, we intend to extend our

map-matching strategy to leverage on machine-
learning techniques to adjust the interior and exterior
parameters.

References
Brakatsoulas, S., Pfoser, D., Salas, R., et al., 2005. On

map-matching vehicle tracking data. Proc. 31st Int. Conf.
on Very Large Data Bases, p.853-864.

Chandio, A.A., Zhang, F., Memon, T.D., 2014. Study on LBS
for characterization and analysis of big data benchmarks.
Mehran Univ. Res. J. Eng. Technol., 33(4):432-440.

Chandio, A.A., Tziritas, N., Xu, C.Z., 2015a. Big-data pro-
cessing techniques and their challenges in transport do-
main. ZTE Commun., 13(1):50-59.

Chandio, A.A., Tziritas, N., Zhang, F., et al., 2015b. An ap-
proach for map-matching strategy of gps-trajectories
based on the locality of road networks. 2nd Int. Conf. on
Internet of Vehicles, p.234-246.
http://dx.doi.org/10.1007/978-3-319-27293-1_21

Chen, B.Y., Yuan, H., Li, Q., et al., 2014. Map-matching al-
gorithm for large-scale low-frequency floating car data.
Int. J. Geograph. Inform. Sci., 28(1):22-38.
http://dx.doi.org/10.1080/13658816.2013.816427

Chen, C., Liu, Z., Lin, W.H., et al., 2013. Distributed modeling
in a MapReduce framework for data-driven traffic flow
forecasting. IEEE Trans. Intell. Transp. Syst., 14(1):
22-33. http://dx.doi.org/10.1109/TITS.2012.2205144

Dean, J., Ghemawat, S., 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51(1):
107-113. http://dx.doi.org/10.1145/1327452.1327492

Dijkstra, E.W., 1959. A note on two problems in connexion
with graphs. Numer. Math., 1(1):269-271.
http://dx.doi.org/10.1007/BF01386390

Fang, S.K., Zimmermann, R., 2011. EnAcq: energy-efficient
GPS trajectory data acquisition based on improved map
matching. Proc. 19th ACM SIGSPATIAL Int. Conf. on
Advances in Geographic Information Systems, p.221-
230. http://dx.doi.org/10.1145/2093973.2094004

Goh, C.Y., Dauwels, J., Mitrovic, N., et al., 2012. Online
map-matching based on hidden Markov model for real-
time traffic sensing applications. 15th Int. IEEE Conf. on
Intelligent Transportation Systems, p.776-781.
http://dx.doi.org/10.1109/ITSC.2012.6338627

Gonzalez, H., Han, J., Li, X., et al., 2007. Adaptive fastest path
computation on a road network: a traffic mining approach.
33rd Int. Conf. on Very Large Data Bases, p.794-805.

Greenfeld, J.S., 2002. Matching GPS observations to locations
on a digital map. Proc. 81st Annual Meeting of the
Transportation Research Board, p.1-13.

He, Z.C., She, X.W., Zhuang, L.J., et al., 2013. On-line
map-matching framework for floating car data with low
sampling rate in urban road networks. IET Intell. Transp.
Syst., 7(4):404-414.
http://dx.doi.org/10.1049/iet-its.2011.0226

Hu, H., Lee, D.L., Lee, V., 2006. Distance indexing on road
networks. Proc. 32nd Int. Conf. on Very Large Data Bases,
p.894-905.

Table 4 Performance comparisons between the adaptive
strategy RT-M-II against the static strategy RT-M-I for
full-day real-world trajectory map-matching

GPS point
type

NCP NSPQ NCLF
I II I II I II

In-city 3145 1942 22 414 12 255 385 224
High-way 3350 2704 19 237 11 726 295 346
Total 6495 4646 41 651 23 981 680 570
Ratio 1.398 1.737 1.193
NCP: number of CPs; NSPQ: number of SPQs; NCLF: number of CPs less
than the fixed value of the CP parameter. I: RT-M-I strategy; II:
RT-M-II strategy

Chandio et al. / Front Inform Technol Electron Eng 2016 17(12):1305-1319 1319

Hummel, B., Tischler, K., 2005. Robust, GPS-only map
matching: exploiting vehicle position history, driving re-
striction information and road network topology in a sta-
tistical framework. GIS Research UK Conf., p.68-77.

Kajdanowicz, T., Kazienko, P., Indyk, W., 2014. Parallel pro-
cessing of large graphs. Fut. Gener. Comput. Syst., 32:
324-337. http://dx.doi.org/10.1016/j.future.2013.08.007

Kolahdouzan, M., Shahabi, C., 2004. Voronoi-based K nearest
neighbor search for spatial network databases. Proc. 30th
Int. Conf. on Very Large Data Bases, p.840-851.

Kühne, R., Schäfer, R., Mikat, J., et al., 2003. New approaches
for traffic management in metropolitan areas. Proc. IFAC
CTS Symp.

Li, Q., Zhang, T., Yu, Y., 2011a. Using cloud computing to
process intensive floating car data for urban traffic sur-
veillance. Int. J. Geograph. Inform. Sci., 25(8):1303-
1322. http://dx.doi.org/10.1080/13658816.2011.577746

Li, X., Han, J., Lee, J.G., et al., 2007. Traffic density-based
discovery of hot routes in road networks. Int. Symp. on
Spatial and Temporal Databases, p.441-459.
http://dx.doi.org/10.1007/978-3-540-73540-3_25

Li, Z.J., Chen, C., Wang, K., 2011b. Cloud computing for
agent-based urban transportation systems. IEEE Intell.
Syst., 26(1):73-79.
http://dx.doi.org/10.1109/MIS.2011.10

Liu, K., Li, Y., He, F., et al., 2012. Effective map-matching on
the most simplified road network. Proc. 20th Int. Conf. on
Advances in Geographic Information Systems, p.609-612.
http://dx.doi.org/10.1145/2424321.2424429

Lou, Y., Zhang, C., Zheng, Y., et al., 2009. Map-matching for
low-sampling-rate GPS trajectories. Proc. 17th ACM
SIGSPATIAL Int. Conf. on Advances in Geographic In-
formation Systems, p.352-361.
http://dx.doi.org/10.1145/1653771.1653820

Malewicz, G., Austern, M.H., Bik, A.J., et al., 2010. Pregel: a
system for large-scale graph processing. Proc. ACM
SIGMOD Int. Conf. on Management of Data, p.135-146.
http://dx.doi.org/10.1145/1807167.1807184

Newson, P., Krumm, J., 2009. Hidden Markov map matching
through noise and sparseness. Proc. 17th ACM SIGSPA-
TIAL Int. Conf. on Advances in Geographic Information
Systems, p.336-343.
http://dx.doi.org/10.1145/1653771.1653818

Pink, O., Hummel, B., 2008. A statistical approach to map
matching using road network geometry, topology and
vehicular motion constraints. Proc. 11th Int. IEEE Conf.
on Intelligent Transprotation Systems, p.862-867.
http://dx.doi.org/10.1109/ITSC.2008.4732697

Quddus, M.A., Ochieng, W.Y., Noland, R.B., 2007. Current
map-matching algorithms for transport applications:
state-of-the art and future research directions. Transp. Res.
Part C, 15(5):312-328.
http://dx.doi.org/10.1016/j.trc.2007.05.002

Seo, S., Yoon, E.J., Kim, J., et al., 2010. HAMA: an efficient
matrix computation with the MapReduce framework.

IEEE 2nd Int. Conf. on Cloud Computing Technology
and Science, p.721-726.
http://dx.doi.org/10.1109/CloudCom.2010.17

Tang, W., Ren, D., Lan, Z., et al., 2013. Toward balanced and
sustainable job scheduling for production supercomputers.
Parall. Comput., 39(12):753-768.
http://dx.doi.org/10.1016/j.parco.2013.08.007

Thomsen, J.R., Yiu, M.L., Jensen, C.S., 2012. Effective cach-
ing of shortest paths for location-based services. Proc.
ACM SIGMOD Int. Conf. on Management of Data,
p.313-324. http://dx.doi.org/10.1145/2213836.2213872

Tiwari, S., Kaushik, S., 2013. Scalable method for k optimal
meeting points (k-omp) computation in the road network
databases. Int. Workshop on Databases in Networked
Information Systems, p.277-292.
http://dx.doi.org/10.1007/978-3-642-37134-9_21

Wang, J.Z., Wang, Z.J., 2013. Architecture design of urban
intelligent transportation using cloud computing. Adv.
Mater. Res., 605-607:2549-2552.
http://dx.doi.org/10.4028/www.scientific.net/AMR.605-6
07.2549

Wang, S., 2010. A cyberGIS framework for the synthesis of
cyberinfrastructure, GIS, and spatial analysis. Ann. Assoc.
Am. Geograph., 100(3):535-557.
http://dx.doi.org/10.1080/00045601003791243

Wang, S., Liu, Y., 2009. TeraGrid GIScience gateway: bridg-
ing cyberinfrastructure and GIScience. Int. J. Geograph.
Inform. Sci., 23(5):631-656.
http://dx.doi.org/10.1080/13658810902754977

Wang, Z.Y., Du, Y., Wang, G., et al., 2008. A quick map-
matching algorithm by using grid-based selecting. Int.
Workshop on Education Technology and Training and
Geoscience and Remote Sensing, p.306-311.
http://dx.doi.org/10.1109/ETTandGRS.2008.217

Wenk, C., Salas, R., Pfoser, D., 2006. Addressing the need for
map-matching speed: localizing global curve-matching
algorithms. 18th Int. Conf. on Scientific and Statistical
Database Management, p.379-388.
http://dx.doi.org/10.1109/SSDBM.2006.11

Yin, G.G., Xu, C.Z., Wang, L.Y., 2003. Optimal remapping in
dynamic bulk synchronous computations via a stochastic
control approach. IEEE Trans. Parall. Distr. Syst., 14(1):
51-62. http://dx.doi.org/10.1109/TPDS.2003.1167370

Yuan, J., Zheng, Y., Zhang, C., et al., 2010. An interactive-
voting based map matching algorithm. 11th Int. Conf. on
Mobile Data Management, p.43-52.
http://dx.doi.org/10.1109/MDM.2010.14

Zheng, Y., Wang, L., Zhang, R., et al., 2008. GeoLife: man-
aging and understanding your past life over maps. 9th Int.
Conf. on Mobile Data Management, p.211-212.
http://dx.doi.org/10.1109/MDM.2008.20

Zheng, Y., Capra, L., Wolfson, O., et al., 2014. Urban compu-
ting: concepts, methodologies, and applications. ACM
Trans. Intell. Syst. Technol., 5(3):38.
http://dx.doi.org/10.1145/2629592

	Abstract: Smart cities have given a significant impetus to manage traffic and use transport networks in an intelligent way. For the above reason, intelligent transportation systems (ITSs) and location-based services (LBSs) have become an interesting...
	Key words: Map-matching, GPS trajectories, Tuning-based, Cloud computing, Bulk synchronous parallel
	1 Introduction
	2 Related work

