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Abstract:   Smart cities have given a significant impetus to manage traffic and use transport networks in an intelligent way. For the 
above reason, intelligent transportation systems (ITSs) and location-based services (LBSs) have become an interesting research 
area over the last years. Due to the rapid increase of data volume within the transportation domain, cloud environment is of 
paramount importance for storing, accessing, handling, and processing such huge amounts of data. A large part of data within the 
transportation domain is produced in the form of Global Positioning System (GPS) data. Such a kind of data is usually infrequent 
and noisy and achieving the quality of real-time transport applications based on GPS is a difficult task. The map-matching process, 
which is responsible for the accurate alignment of observed GPS positions onto a road network, plays a pivotal role in many ITS 
applications. Regarding accuracy, the performance of a map-matching strategy is based on the shortest path between two con-
secutive observed GPS positions. On the other extreme, processing shortest path queries (SPQs) incurs high computational cost. 
Current map-matching techniques are approached with a fixed number of parameters, i.e., the number of candidate points (NCP) 
and error circle radius (ECR), which may lead to uncertainty when identifying road segments and either low-accurate results or a 
large number of SPQs. Moreover, due to the sampling error, GPS data with a high-sampling period (i.e., less than 10 s) typically 
contains extraneous datum, which also incurs an extra number of SPQs. Due to the high computation cost incurred by SPQs, 
current map-matching strategies are not suitable for real-time processing. In this paper, we propose real-time map-matching 
(called RT-MM), which is a fully adaptive map-matching strategy based on cloud to address the key challenge of SPQs in a 
map-matching process for real-time GPS trajectories. The evaluation of our approach against state-of-the-art approaches is per-
formed through simulations based on both synthetic and real-world datasets. 
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1  Introduction 
 

In recent years, many organizations are gradu-
ally migrating their applications to cloud environ-
ments to take advantage of computing and storage 
elasticity combined with the pay-as-you-go model. 
The advent and rapid growth of information and 
communication technologies (ICTs) has led to a new 
emerging concept called ‘urban computing’, wherein 
sensors, vehicles, devices, buildings, people, and 
roads are accessed as a compound to probe city dy-
namics (Zheng et al., 2014). The data presented in the 
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aforementioned components is usually obtained in the 
form of Global Positioning System (GPS) data. Due 
to the live nature of the above GPS-embedded com-
ponents, their data volume can have an exponential 
growth, ranging from a few dozens of terabytes to 
petabytes (i.e., Big Data) (Chandio et al., 2015a). To 
achieve a better quality of service (QoS), information 
in GPS data is often used in location-based services 
(LBSs) and intelligent transportation systems (ITSs), 
i.e., traffic flow analysis (Kühne et al., 2003), route 
planner (Gonzalez et al., 2007), geographical social 
network (Zheng et al., 2008), and hot route finder (Li 
et al., 2007). Because such applications need to pro-
cess a massive amount of data in an effective way, 
there is an imperative need for adopting cloud. For 
instance, recent cloud-based services within the 
transportation domain are agent-based urban trans-
portation systems (Li et al., 2011a), urban intelligence 
transportation (Wang and Wang, 2013), cloud-  
enabled intensive FCD computation (Li et al., 2011b), 
and traffic flow forecasting (Chen et al., 2013).  

In this paper, we address the problem of 
map-matching, which is playing a pivotal role in 
ascertaining the quality of many trajectory-based 
applications (e.g., driving directions, road guidance, 
moving object management, and traffic flow analysis). 
Basically, map-matching is a fundamental process of 
the above applications to align the observed GPS 
positions accurately onto a road network, which is in 
the form of a digital map (Lou et al., 2009). However, 
in terms of accuracy, Lou et al. (2009), Newson and 
Krumm (2009), Yuan et al. (2010), and Goh et al. 
(2012) suggested that the best performance of a map- 
matching process is determined by the transition 
probability which incorporates the shortest path be-
tween two consecutive GPS points observed. On the 
other extreme, the execution of the shortest path 
queries (SPQs) in the map-matching process requires 
a high computational cost which subsequently makes 
map-matching unaffordable for real-time processing 
(Lou et al., 2009).  

Moreover, the map-matching process becomes a 
critical step when processing infrequent and impre-
cise sampling GPS data. Particularly, GPS data may 
suffer from two typical errors: (1) measurement error 
and (2) sampling error (Fang and Zimmermann, 
2011). The measurement error is caused by the limi-
tations of GPS who generates noisy GPS data, while 

the sampling error arises from a high-sampling period 
that generates extraneous GPS data. To handle the 
measurement error, the state-of-the-art map-matching 
techniques use two map-matching parameters, (1) the 
number of candidate points (NCP) and (2) the error 
circle radius (ECR), to consider a number of road 
segments. Unfortunately, the state-of-the-art map- 
matching approaches (Lou et al., 2009; Newson and 
Krumm, 2009; Yuan et al., 2010; Goh et al., 2012) are 
designed with fixed parameters (i.e., NCP and ECR), 
which may lead to uncertainty and identifying either 
no road segments or a large number of road segments. 
In the case of no road segments, low accurate results 
may be produced, while in the case of a large number 
of SPQs, many SPQs may have to be processed. 

In terms of the sampling error, GPS data with a 
high-sampling period (i.e., less than 10 s) typically 
contains extraneous datum (e.g., a vehicle stops many 
times, moves slowly, is trapped in a traffic jam, waits 
for the green signal, and moves on a high-way link), 
which also incurs an extra number of SPQs. If such a 
kind of GPS data is eliminated, a trajectory may suffer 
from discontinuity. Therefore, a reasonable technique 
is required that can intelligently adjust the sampling 
rate to reduce unnecessary GPS data and provide 
accurate trajectories before applying the map- 
matching process. Nevertheless, some approaches can 
execute SPQs by pre-computing the shortest path 
distances and partition a large network graph into 
small regions, such that the required partition can fit 
the memory constraints (Kolahdouzan and Shahabi, 
2004; Hu et al., 2006; Wang et al., 2008; Liu et al., 
2012; Thomsen et al., 2012; Tiwari and Kaushik, 
2013). Since SPQs are executed in a sequential way, 
the state-of-the-art approaches experience high pre- 
computation and storage costs (Thomsen et al., 2012).  

Due to the aforementioned facts, the state-of- 
the-art approaches lead to both low accurate results 
and high running time. Therefore, such approaches 
are not suitable for real-time map-matching of GPS 
trajectories. Particularly, real-time traffic information 
plays a vital role in dynamic traffic control and 
management systems (Goh et al., 2012; He et al., 
2013; Chen et al., 2014). Consequently, it is of par-
amount importance for the map-matching of real-time 
GPS trajectories to optimize the problem of SPQs in 
an adaptive and efficient way. To deal with the above 
challenges, in this paper we present a real-time 
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map-matching (called RT-MM) approach, which is 
fully adaptive and based on cloud for real-time GPS 
trajectories. The proposed map-matching strategy is 
approached as follows: 

1. We present a systematic model of the map- 
matching strategy for real-time GPS trajectories. 

2. We introduce a tuning-based strategy that  
fine-tunes adaptively the interior and exterior param-
eters of a map-matching process. The interior pa-
rameters (NCP and ECR) are tuned based on the lo-
cality of road networks. Basically, tuning the interior 
parameters based on the locality of the road networks 
works similarly as our previous approach, LB-MM 
(Chandio et al., 2015b). Specifically, the LB-MM 
approach selects an apt number of values for interior 
parameters (NCP and ECRs), based on different clas-
ses of the locality of a road network for each GPS 
sampling point. Since LB-MM considers only interior 
parameters, we incorporate it in tuning exterior pa-
rameters. The exterior parameters are relevant to a 
sampling rate according to a sliding window adjusted 
intelligently based on the feedback information of the 
monitored parameters at runtime. The technique for 
adjusting the sampling rate of GPS data provides a 
highly accurate trajectory after eliminating extrane-
ous data without affecting the map-matching  
accuracy.  

3. To compute the shortest path distances and 
temporal/speed constraint, we propose an extension 
of the single source shortest path (SSSP) function 
(Seo et al., 2010) following the bulk synchronous 
parallel (BSP) paradigm (Malewicz et al., 2010) in 
the cloud environment. We implement the SSSP 
function following the BSP paradigm in the Hama 
environment which is deployed on top of Hadoop. 
Taking advantage of a cloud environment, the pro-
posed strategy drastically reduces the pre-  
computation time and storage cost. By the above 
strategies (i.e., tuning- and cloud-based), we propose 
a viable solution to the issues posed earlier regarding 
efficient handling of SPQs. 

The above approach is empirically evaluated 
using real-world and synthetic datasets. The results 
reveal that our proposed strategy reduces the overall 
running time of the map-matching process by reduc-
ing the number of SPQs and candidate points (CPs), 
while maintaining accuracy. 

2  Related work 
 
In this section, we first discuss the basic steps of 

a map-matching strategy and then address the prob-
lems of map-matching strategies found in state-of- 
the-art approaches. Particularly, all map-matching 
strategies follow three major steps: (1) initialization, 
(2) weight calculation, and (3) weight aggregation 
(Fig. 1). The initialization step of the map-matching 
strategy prepares a number of CPs projected on the 
candidate road segments within an ECR range. The 
second step concerns finding a path between two 
consecutive points in a trajectory by calculating 
weight scores regarding CPs. The last step concerns 
the aggregation of weight scores. 

 
 

 
 
 
 
 
 
 
 
Map-matching strategies can be classified 

mainly into: (1) incremental (Greenfeld, 2002; Wenk 
et al., 2006), (2) global (Brakatsoulas et al., 2005; 
Lou et al., 2009; Yuan et al., 2010), and (3) statistical 
(Hummel and Tischler, 2005; Pink and Hummel, 
2008; Newson and Krumm, 2009; Goh et al., 2012) 
methods. Incremental map-matching strategies en-
deavor to find a local match of geometries for each 
GPS sample and suppose the small portion of space of 
the road network close to the GPS sample. In this 
approach, the weight score is aggregated based on the 
previous result for each GPS sampling point. This 
approach performs well in terms of accuracy when the 
sampling frequency is very high, i.e., 2–5 sampling 
intervals between GPS points. Regarding global 
map-matching approaches, the algorithms match an 
entire trajectory onto a road network. The global 
map-matching algorithms produce better results in 
terms of accuracy when applying low-sampling-rate 
GPS data. On the other hand, incremental approaches 
are very fast but suffer from low accurate results, 
while global approach algorithms achieve better ac-
curacy at the expense of high computational cost. The 

Fig. 1  Basic steps in a map-matching process 
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approaches in the last category leverage on statistical 
methods, i.e., Bayesian classifiers, hidden Markov 
model (Pink and Hummel, 2008), Kalman filter, and 
cubic spline interpolation (Hummel and Tischler, 
2005), to match GPS points onto a road network. 
These approaches are particularly effective in han-
dling GPS measurement errors. 

Most current map-matching algorithms aim to 
achieve better QoS such as (1) high accuracy and (2) 
fast response time. Due to the tradeoff between high 
accuracy and fast response in map-matching strate-
gies, providing a better QoS is difficult. It is a com-
mon approach to reduce the sampling rate of GPS 
data to save the cost of energy consumption, com-
munication, and computation. For example, Fang and 
Zimmermann (2011) minimized the cost of energy by 
reducing the sampling rate of GPS data. Unfortu-
nately, low-sampling-rate GPS data increases uncer-
tainty and leads to less accurate results. On the other 
hand, because SPQs are time-consuming, handling 
SPQs in a sequential way makes the overall running 
time of many ITS applications unaffordable for re-
al-time processing. Thus, considering the tradeoff 
between accuracy and response time in the map- 
matching strategy becomes a big challenge. 

2.1  Spatial and temporal matching 

Our proposed map-matching strategy is inspired 
by the spatial and temporal matching (ST-M) global 
map-matching strategy (Lou et al., 2009) that aims to 
provide high accuracy. Spatial (i.e., geometric struc-
ture) and temporal (i.e., speed) constraints are in-
corporated in ST-M to solve the problem of low- 
sampling-rate GPS trajectories. In ST-M, first the 
weight function based on spatial and temporal con-
straints is defined with respect to two consecutive 
GPS points and their CPs. A candidate graph is cre-
ated in ST-M where each node in the graph is a set of 
CPs and their edges represent a set of road segments 
regarding the shortest path between two neighbouring 
points associated with the spatial and temporal weight 
scores. The algorithm then generates a true path based 
on the largest summation of the weight functions.  

Because the ST-M algorithm uses SPQs, through 
experimental evaluation we found that the execution 
time of the map-matching process increases dramat-
ically when increasing the number of GPS sampling 
points per trajectory, violating QoS (Chandio et al., 

2014). For instance, Fig. 2a shows the number of total 
SPQs when varying NCP and the number of GPS 
points per trajectory. Fig. 2b shows the total number 
of CPs found less than the fixed value of the CP pa-
rameter when varying ECR and the number of GPS 
points per trajectory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time cost of ST-M is high because ST-M 

executes a large number of SPQs. On the other ex-
treme, fixed NCP and ECR can produce less accurate 
results when ECR does not provide the required NCP 
(Quddus et al., 2007) (Fig. 2b). For example, Fig. 3 
shows a snapshot of two fixed ECR (i.e., r1 is small 
and r2 is large). As shown, for point pi, two CPs can be 
considered if ECR is equal to r1 (small); otherwise, 
four CPs are considered if ECR is equal to r2 (large).  

Therefore, in this study, we introduce a novel 
approach of applying an adaptive strategy that ad-
dresses the aforementioned challenges. Our tuning- 
based strategy adaptively adjusts the sampling rate of 
GPS data and fine-tunes the map-matching parame-
ters (e.g., NCP and ECR). The proposed strategy is 

Fig. 2  Simulation results of spatial and temporal match-
ing for real-world trajectories with different numbers of 
GPS trajectory points: (a) the relationship between the 
total number of SPQs and the number of candidate points 
(ECR=100 m); (b) the relationship between the total 
number of CP and the error circle radius 
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conceptually similar to the tunable job scheduling 
strategy in Tang et al. (2013). Moreover, we enhance 
our map-matching strategy with the strategy of 
pre-computing the shortest path distances and road 
network partitioning for real-time GPS trajectories. 
Previous approaches deal with the execution of SPQs 
by pre-computing the shortest path distances and 
partitioning a large network graph to small regions 
such that the required partition could be fit in memory 
(Kolahdouzan and Shahabi, 2004; Hu et al., 2006; 
Wang et al., 2008; Liu et al., 2012; Thomsen et al., 
2012; Tiwari and Kaushik, 2013). However, the 
aforementioned techniques deal with the execution of 
SPQs in a sequential way, which comes at the expense 
of high pre-computation and storage costs (Thomsen 
et al., 2012). In contrast, we propose an extension of 
the SSSP function following the BSP parallel para-
digm in cloud environments that reduces pre-  
computation time and storage cost significantly. 

 
 

3  Definitions 
 
Definition 1 (GPS trajectory)    A vehicle’s trajectory 
T is measured in a sequence of GPS sample points, i.e., 
T: p1→p2→∙∙∙→pn, where 0<pi+1.t–pi.t<∆T, pi.t is the 
timestamp of pi (1≤i<n) and ∆T is the time spent 
between two consecutive GPS points. Besides, each 
GPS point pi∈T contains GPS position information, 
including latitude pi.lat and longitude pi.long. 
Definition 2 (Strategy event)    Map-matching ex-
amines trajectory T at pre-scheduled times O. Pre- 
scheduled time has a regular time interval and is also 
called event time and denoted by ∆O. 
Definition 3 (Meta-points)    Meta-points (denoted by 
M) represent the recent GPS sampling points that are 
ready for the map-matching process, i.e., M: p1→p2 

→∙∙∙→pn, where pi∈M, M⊂T, and 0<pi+1.t−pi.t<∆M 

(1≤i<n, 0≤∆T<∆M). The time spent between two 
consecutive GPS points of a meta-point list is denoted 
as ∆M. 
Definition 4 (Sliding window)    Sliding window 
represents the set of GPS points in M considered for 
map-matching. 
Definition 5 (Road graph)    A directed road network 
graph G(V, E) is called a road graph, where V denotes 
the set of points intersecting the road segments, called 
vertices, and E signifies a set of road segments, called 
edges. A directed edge e is associated with (1) the 
unique identification e.gid, (2) the average travel 
speed e.v, (3) the road length e.l, (4) the starting point 
e.start, (5) the ending point e.end, and (6) the inter-
mediate points comprising the road polyline. 
Definition 6 (Path)    A path P is a list of connected 
road segments between two vertices (Vi, Vj) in a road 
network G, i.e., P: e1→e2→∙∙∙→en, where, for 1≤k <n, 
e1.start=Vi, en.end=Vj, and ek.end=ek+1.start. 
 
 
4  Fully adaptive map-matching strategy 

 
In this section, we introduce our proposed tech-

nique called RT-MM (real-time-map-matching), 
which is a fully adaptive map-matching strategy for 
real-time GPS trajectories based on cloud. The pri-
mary goal of this study is to improve the map- 
matching strategy that can provide a better trade-off 
between accuracy and response time. This section 
discusses the architecture and major components of 
the proposed map-matching strategy. 

4.1  System architecture 

A complete systematic model of our proposed 
technique consists of two main steps: off-line and 
online efforts. The architecture of the system (Fig. 4) 
is explained as follows. 

Off-line efforts are composed of partitioning the 
road network graph and pre-computing the shortest 
path distance and temporal/speed constraints. The 
road network graph is split into small sub-graphs, 
with each sub-graph keeping its boundary values such 
as the maximum and minimum longitude and latitude 
(Wang et al., 2008). Our partition approach guaran-
tees that each sub-graph contains approximately an 
equal number of nodes for the purpose of load bal-
ancing. The reason for splitting a road network graph 

Fig. 3  The interior setting for considering candidate 
points (CPs) for a sampoing point 
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into small partitions is due to memory constraints. 
However, splitting a road network into partitions may 
degrade the accuracy. To maintain accuracy, we ex-
pand the boundary of each partition by adding a cer-
tain value to the latitude and longitude coordinates of 
the border line. In that way, a process of the shortest 
path distance between two consecutive GPS points 
can be processed within the same partition. Regarding 
the offline efforts, the shortest path distance and 
temporal/speed constraints are computed by follow-
ing the parallel computing paradigm, i.e., BSP 
(Malewicz et al., 2010), in a cloud environment to 
reduce the pre-processing time. We provide an ex-
tension of the SSSP function following the BSP par-
adigm. The aforementioned implementation takes 
place in Hama (Seo et al., 2010) on top of the Hadoop 
environment. Besides computing the shortest path 
distance, the proposed SSSP function computes the 
number of edges and the speed constraints of all edges 
contained in the shortest path. We briefly discuss the 
modified SSSP function employing the BSP parallel 
paradigm in Section 4.2. 

In terms of online efforts, our proposed 
map-matching strategy monitors periodically the GPS 
sampling data in real time to adaptively fine-tune the 
interior and exterior parameters of the map-matching 
process. The interior parameters (i.e., NCP and ECR) 
are tuned based on the locality of the corresponding 
road network. The exterior parameters are relevant to 
the sampling rate and the number of GPS points 

contained in the sliding window, and are tuned based 
on the feedback information of monitored parameters 
at runtime. In this phase, the map-matching strategy 
checks the queue periodically and accepts real-time 
GPS trajectory T for map-matching on the digital map. 
Nevertheless, the online phase can work inde-
pendently using SPQs without the aforementioned 
off-line efforts. A complete map-matching process for 
real-time GPS trajectories is further discussed in 
Section 4.3. 

4.2  Modified SSSP algorithm following the BSP 
parallel paradigm in cloud environments 

In this section, we discuss our modified SSSP 
algorithm that follows the BSP parallel paradigm to 
generate all (source, destination) shortest path pairs 
together with the temporal/speed constraint of all the 
nodes in the graph. The SSSP function computes the 
shortest path distances between a single source node 
and all-pairs in the graph. Fig. 5 shows an example of 
the SSSP process for a network graph consisting of 
six nodes and seven edges. Each edge is weighted 
with a value (Fig. 5a). The SSSP results of each node 
in the graph are presented in Fig. 5b. Basically, SSSP 
is a classical function which has been well solved 
based on the Dijkstra algorithm (Dijkstra, 1959). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because the calculation of the shortest path dis-

tances contains graph computations demanding large 
data processing, we use a parallel paradigm to reduce 
the pre-computation time. The implementation of the 
SSSP function in a parallel paradigm makes the SSSP 
function more efficient against other shortest path 
techniques following sequential processing. The 
SSSP function has recently been studied into two 

Fig. 5  An example of SSSP computation: (a) a network 
graph; (b) SSSP results of all nodes in the graph 
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well-known parallel paradigms (Kajdanowicz et al., 
2014), i.e., MapReduce (MR) (Dean and Ghemawat, 
2008) and BSP (Malewicz, et al., 2010). Due to the 
graph and the iterative processing nature of the 
problem, MR is deemed not suitable for the shortest 
path computations (Kajdanowicz et al., 2014).  

Malewicz et al. (2010) in Google Inc. introduced 
an alternative model, called Pregel, which is based on 
the BSP parallel paradigm. Pregel has been imple-
mented in Hama (Seo et al., 2010) and we chose this 
tool to perform the shortest path computations. The 
BSP algorithm will generate a series of supersteps, 
and each superstep executes a user-defined function 
in parallel asynchronously (Yin et al., 2003; 
Kajdanowicz et al., 2014) (Fig. 6). At the end of each 
superstep, the BSP algorithm uses a synchronization 
barrier to synchronize computations in the system. 
The synchronization barrier is responsible for the 
state wherein each superstep waits for the remaining 
supersteps running in parallel. By default, the SSSP 
function accepts an input of the network graph and a 
single source node. As discussed previously, the 
proposed SSSP function computes the shortest paths, 
the number of edges, and the total speed of all edges 
contained in the shortest path. The output of the 
function is used to calculate spatial and temporal 
weight scores of two consecutive GPS sample points 
for the final map-matching process.  

Algorithm 1 shows the modified SSSP function 
following the BSP parallel paradigm. It takes a road 
network graph as the input. The format of the input of 
Algorithm 1 is modified as follows: 
 
Format: 
Node\tEdge1:Length,Speed\tEdge2:Length,Speed\... 

\tEdgen:Length,Speed 
Examples: 
84\t192:89.4,180  
85\t82:7.3,260\t81:8.3,90\t176:162.3,90 
86\t48:107.1,90\t164:120.2,260\t306:203.4,260 
87\t105:24.6,260 
(Default format is used only for computing the shortest distance, 
explained into the Hama SSSP page, http://wiki.apache.org/ 
hama/SSSP) 
 
Each example represents a node and its adjacent 
edges. Each adjacent edge is represented by three 
variables: edge identification, edge length, and speed. 

At the start of the proposed SSSP function, the 
variable of the actual value (at each vertex except the 
source) that corresponds to the minimum distance is 

 
 
 
 
 
 
 
 
 
 
Algorithm 1  Modified SSSP algorithm in BSP 
Input: a road network graph G(V, E) and source node 
Output: the shortest paths  // The output record provides the 
// shortest distance, a number of edges, and total speed of  
// roads in each shortest path 

1: function COMPUTE(vertex v, message 
 m<distance, edgeCount, speedCouns>) 

2: if isStartVertex(v) then 
3:     minDistanceDefault=0  
4: else 
5:     minDistanceInDefault=∞ 
6: endif 
7: foreach message m do 
8:     if m.distance<minDistanceInDefault then 
9:         minDistanceInDefault=m.distance  

10:         edgeCountInDefault=m.edgeCount  
11:         speedCountInDefault=m.speedCount  
12:     endif 
13: endfor 
14: if v.distance>minDistanceInDefault then 
15:     v.minDistance=minDistanceInDefault  
16:     v.edgeCount=edgeCountInDefault+1 
17:     v.speedCount=speedCountInDefault 
18:     foreach e in the neighbor of v 
19:         m.distance=e.distance+minDistanceInDefault 
20:         m.edgeCount=m.edgeCount+1 
21:         m.speedCount=e.speed+speedCountInDefault 
22:         sendMessage(e.id, m) 
23:     endfor 
24: endif 
25: voteToHalt() 
26: end function 

 
initialized with infinity (lines 2–6). Basically, in the 
modified SSSP, each vertex reads a message from its 
adjacent edges, which contains three parts: distance, 
total number of edges, and total speed of the edges 
between the source and current vertices. If the dis-
tance in a message at a given vertex is smaller than the 
actual value associated with the current vertex, then 
the function updates the above three parameters as-
sociated with the current vertex (lines 1–13). Finally, 

Fig. 6  A snapshot of bulk synchronous parallel (BSP) 
processing 
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the current vertex sends a message with the updated 
values to all its adjacent edges (lines 14–24) and be-
comes an inactive vertex by calling voteToHalt() (line 
25). When a vertex receives a message, it becomes 
active. The process terminates when there are no 
active vertices to be considered. 

4.3  Map-matching strategy for real-time GPS 
trajectories 

The proposed map-matching strategy is based on 
window- and tuning-based techniques. In the  
window-based approach, recent GPS sampling points 
of the vehicle are chosen for the map-matching pro-
cess. Regarding the tuning-based approach, the inte-
rior and exterior parameters of map-matching are 
fine-tuned. The steps used in our proposed 
map-matching strategy are depicted in Fig. 4: (1) 
monitoring, (2) tuning, (3) candidate preparation, (4) 
spatial analysis, (5) temporal analysis, and (6) score 
matching. 

In the monitoring phase, our map-matching 
strategy periodically monitors the flow of real-time 
GPS workloads and the parameters of the sliding 
window in each strategy event E. Based on the mon-
itored parameters, we determine the current driving 
state of a vehicle to help the next phase fine-tune the 
sampling rate of GPS data. Our intuition is that if a 
vehicle is driven on a high way or a long road segment, 
then the sampling rate can be reduced by filtering the 
noisy and extraneous data. Otherwise, a high sam-
pling rate of GPS data is needed to ensure the accu-
racy of the map-matching if a vehicle is traveling 
inside the city. To estimate the current driving state of 
the vehicle, we choose the average speed of the ve-
hicle extracted from the previous sliding window 
(Fang and Zimmermann, 2011), which is defined as 
follows: 
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where 1 2. . .u u u ke l e l e l→ → ′→′ ′

  is the total length of 
the matched shortest path and 

1( . . )ip t p tW ′ ′−∆  is the total 

time spent on path P in the previous sliding window 
Wi−1. If the vehicle is traveling with an average speed 

1iS −  of 40 km/h or above, then the vehicle is thought 
to be on high way; otherwise, we consider that the 
vehicle is moving inside the city. We set this threshold 

in our experiment because, in the road network, the 
road segments inside the city permit a 40 km/h 
maximum driving speed. 

The tuning phase is responsible for amending the 
sampling rate ∆T of GPS sampling data based on 
monitored parameter 1iS − . A new sampling rate ∆M 
of the GPS sampling data is obtained by 

 
 ,EM

W
∆

∆ =                            (2) 

 
where W represents the number of GPS sampling 
points in the sliding window. The exterior parameters 
considered in this study are ∆E and W. Both param-
eters are tunable with pre-defined values such that 
∆E=10 and W=12 imply that the vehicle is in 
high-way driving state, while ∆E=5 and W=10 imply 
that the vehicle is in inside-city driving state. In this 
way, the sampling rate of GPS data can be adjusted 
reasonably.  

To maintain the quality of our map-matching 
strategy, we incorporate the weight score of the pre-
vious mapped GPS sampling point as the source of 
the path in the current sliding window. A schematic 
model is shown in Fig. 7, which shows three sliding 
windows. As observed, the second and third sliding 
windows follow the most recent results (i.e., last 
mapped GPS point) of the previous sliding window to 
maintain trajectory continuity. 

 
 
 
 
 
 
 
 

 
 

Besides the exterior settings, the tuning phase is 
also responsible for tuning the interior parameters, i.e., 
NCP and ECR, for the determination of the most likely 
road segments. The tuning strategy decides the inte-
rior settings based on the locality of the road network. 
We characterized the locality of the road network into 
a grid format. The number of grids varies according to 
the memory capacity of the underlying system (e.g., 

Fig. 7  An example of the proposed window-based 
map-matching scheme for real-time trajectory (W=5), 
where p1, p2, …, p5 denote the GPS sampling points and 
c1, c2, …, c5 denote the corresponding correct candidate 
points 
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we use 200×200 grids in our experiment). For the 
characterization of the locality of the road network, 
we create the relationship in Table 1 for considering 
NCP and ECR settings. 

 

 

 
 
 
 

 
Based on the tuning phase, the candidate prepa-

ration phase retrieves a possible number of candidate 
road segments for each GPS sampling point p in 
sliding window M. The CPs c on candidate road 
segment e are generated by geometry projection 
within ECR r with respect to the Euclidean distance 
between the GPS sampling points. A set of the closest 
CPs c to the GPS sampling point are chosen such that 
c= argmin∀ci∈edist(ci, p) and dist(ci, p) is the distance 
between candidate point ci and GPS sampling point p. 
In consequence, the map-matching process considers 
a number of the most likely CPs matching to the re-
spective GPS sampling point. Fig. 3 illustrates the 
strategy of interior settings. 

The next step concerns spatio-temporal analysis, 
which evaluates the retrieved candidate points to 
generate the candidate graph G′(V′, E′). In this study, 
the GPS measurement error is assumed to follow a 
normal distribution N(μ, σ2) of the distance GPS point 
and candidate point dist( , )j j

i ix c p=  ( j
ic  is the jth 

candidate point of the ith GPS sampling point). Like 
Lou et al. (2009), for GPS measurement, a zero-mean 
normal distribution with 20 m standard deviation is 
used, which is described by 
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The spatial-temporal analysis function in our 

proposed map-matching strategy is adopted from Lou 
et al. (2009), which is denoted as 

1 s 1 t 1( ) ( , 2) ( ) ,t s t s t s
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  (4) 
 
where Fs is a spatial analysis function calculated by 
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and V is a likelihood method in transmission proba-
bility, which defines a true path from pi–1→pi and 
follows the shortest path from ci–1→ci, calculated by 
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The temporal analysis function Ft is defined by 
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where 1 2. . .ke v e v e v′ ′ ′→ → ⋅⋅ ⋅→ is the speed constraint 
of the road segments belonging to the shortest path. 
The temporal analysis phase creates a score for each 
candidate point by considering the average speed of 
the road segments between two neighboring candi-
date points. For details of spatial and temporal anal-
ysis, we refer readers to Lou et al. (2009). Our pro-
posed strategy incorporated with the spatial and 
temporal analysis function is enhanced by replacing 
SPQs and the speed constraint pre-computed in BSP 
parallel paradigm (Fig. 4). 

In the matching score phase, the candidate graph 
G′(V′, E′) is evaluated. Each node V′ in G′ is a set of 
candidate points associated with the observation 
probability ( )j

iN c , while E′ in G′ is a set of road 
segments in the shortest path between two neighbor-
ing points which are associated with the spatial 

s 1( )t s
i iF c c− →  and temporal t 1( )t s

i iF c c− →  scores. Fi-
nally, a sequence of real candidate points is selected 
from a candidate graph G′(V′, E′), considering the 
largest summation of the scores. 

To configure the adaptive map-matching strat-
egy for real-time GPS trajectories, we first give some 
notations before describing the fully adaptive map- 
matching strategy. TE and TW are the tunable sampling 
rate and the number of GPS points in sliding window 

Table 1  Parameters based on locality information* 
Class GPS point density ECR (m) Number of CPs 

Class-I ∑e≥21   60 3 
Class-II 16≤∑e˂21   80 4 
Class-III 12≤∑e˂16 100 5 
Class-IV   9≤∑e<12 120 6 
Class-V ∑e˂9 150 7 
* Chandio et al. (2015b) 
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W, respectively. ΔE and ΔW are used for tuning TE and 
TW at each time interval event, respectively. Pm states 
the monitored parameters in real time. Si and Sd refer 
to the events triggering the increment and decrement 
of the tunable parameters, respectively. CheckTime 
denotes the time instance at which the runtime pa-
rameters are checked and the adaptive strategy is 
tuned. 

Algorithm 2 describes our adaptive map- 
matching strategy for real-time GPS trajectories. At 
each time interval, the strategy collects the parameter 
values Pm of the previous sliding window (line 3). 
Then the parameter values are compared with the 
predefined thresholds to decide whether a strategy 
tuning event should be triggered (lines 4–13). In 
consequence, the tunable parameters are adjusted at 
each time interval (line 14). A set of candidate points 
within an ECR for each GPS sampling point is gen-
erated based on new tuning parameters by invoking 
the populateCandidates() function (lines 15–17). Al-
gorithm 3 shows the pseudocode for preparing the 
candidate points based on the locality of a road net-
work. It initially finds the grid for each GPS point and 
then returns the best NCP and ECR. Getting back to 
Algorithm 2, generateGraph() and findSequence() 
follow the same way as described in Lou et al. (2009) 
(lines 20–21). generateGraph() generates a candidate 
graph (in the matching phase) for the GPS points in 
each sliding window, while findSequence() calculates 
the weight scores to identify a sequence of real CPs 
by considering the largest summation of the weight 
scores assigned to CPs. 
 
 
5  Experimental evaluation 

 
In this section, we give a discussion about the 

experimental setup as well as the results obtained 
from the comparison between our proposed approach 
and state-of-the-art techniques.  

5.1  Computation environments 

To carry out the experiments, we employed two 
computation environments. For the pre-processing 
step based on the BSP parallel paradigm, the Hadoop 
(version 1.1.2) cloud environment was created. Three 
physical machines were dedicated, with tone for 
master node and the rest for worker nodes. Each of the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
node was composed of eight 2.20 GHz Intel® Xeon® 
CPUs and 32 GB RAM. For BSP parallel processing, 
we employed Hama (version 0.6.2) on the top of 
Hadoop. Next, one of the three physical machines was 
dedicated to provide real-time map-matching pro-
cessing. For a fair comparison, we implemented all of 
the studied map-matching strategies in Java (version 
1.7) programming language. We stored all of the da-
tasets in the PostgreSQL (version 9.1) database to-
gether with the PostGIS (version 2.0) spatial tool and 
pgRouting tool for executing SPQs. 

Algorithm 2  Fully adaptive map-matching strategy 
for real-time GPS trajectories 
Input: a road network graph G(V, E) and a trajectory 
Output: a matched sequence of CPs for a given  

trajectory 
1: do 
2:     if CurrentTime−LastWinTime>CheckTime then 

3:         Pm=collectMonitoredParas()  // collect parameters  
4:         e=eventNeed(Pm)  // feedback for tuning 
5:         if e=Si then 
7:             TE=TE+∆E  // increment for tuning 
8:             TW=TW+∆W  // increment for tuning 
9:         endif 

10:         if e=Sd then 
11:             TE=TE−∆E  // decrement for tuning 
12:             TW=TW−∆W  // decrement for tuning 
13:         endif 
14:         ∆M=tuneSR(TE, TW)  // re-tune a sampling ratio 
15:         foreach i in M do 
16:             Ci.[].add=populateCandidates(i)  // locality-based 
17:         endfor 
18:         LastWinTime=CurrentTime 
19:         CheckTime=∆E  //reset time interval 
20:         G′=generateGraph(C)  // generate a candidate graph 
21:         findSequence(G′)  // find matched candidate points 
22:     endif 
23: while TRUE 
 
Algorithm 3  populateCandidates() 
Input: a GPS point 
Output: candidate points (CPs) 
1: gc=findGridCells(p.long, p.lat)  // find grid cells 
2: ge=findMaxEdges(gc)  // find a number of roads in gc 
3: cp=bestCandidateNumber(ge)  // find a number for CPs  
4: rp=bestRadiusNumber(ge)  // find a number for ECR  
5: foreach i in gc do  
6:     gids[]=getGids(i)  // collect all roads in the grid cells 
7: endfor 
8: return c[]=getCandidatePoints(gids, cp, rp) // get CPs 
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5.2  Datasets 

1. Road network: We used a real-world road 
network graph of Shenzhen city, China. The real- 
world road network graph contains a total of 86 335 
vertices and 133 397 road segments. 

2. Real-world GPS-embedded vehicle trajectory: 
For testing the map-matching strategies, we used a 
real-world trajectory dataset of GPS-embedded taxi-
cab traveling around Shenzhen city on Oct. 10, 2013. 
A total of 5128 GPS points were collected within 24 h. 
We also chose a set of trips obtained in the dataset, 
which are varied according to different numbers of 
GPS sampling points and the sampling rate. 

3. Synthetic trajectory dataset: We used a syn-
thetic trajectory dataset generated randomly by our 
own simulator. The simulator first creates a shortest 
path between two random vertices in the road network. 
Then, a set of edges returned by the shortest path is 
considered as a ground truth. The sampling points are 
generated on the respective edges according to the 
sampling rate. To encapsulate the GPS sampling error, 
each GPS sampling point follows a zero-mean 20 m 
standard deviation normal distribution. The method 
for creating the synthetic trajectory dataset was veri-
fied and used in Lou et al. (2009) to evaluate the 
ST-Matching algorithm. A similar way is reasonably 
considered in this study to evaluate our proposed 
strategies against the ST-Matching algorithm. 

 
 

6  Experimental results and discussions 
 
To evaluate the performance of the proposed 

strategies, we used two metrics: running/computation 
time and accuracy. The running time is the overall 
execution time of the map-matching process, and the 
accuracy represents the percentage of the correct 
matching GPS points (CMP). Specifically, CMP is 
calculated according to Eq. (7) (Yuan et al., 2010): 

 
Number of correctly matched pointsCMP 100%.Total number of points to be matched= ×  

(7) 
 
We evaluate the performance of the proposed 

fully adaptive map-matching strategy against the 
ST-M algorithm and the proposed strategy with static 
parameters (NCP=5 and ECR=100 m). We call the 

proposed map-matching strategy with static parame-
ters RT-M-I and the fully adaptive map-matching 
strategy RT-M-II. Moreover, we analyze the proposed 
strategy by using the total numbers of SPQs and CPs 
required. 

6.1  Comparisons between RT-MM and ST-M 

First, we analyze the proposed RT-MM strategy 
against ST-M regarding running time and accuracy. 
Fig. 8a shows the average running times of five ex-
periments when varying the number of GPS points 
per trajectory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results shown in Fig 8a reveal that our 

proposed strategies took much less computation time 
as compared to the ST-M algorithm. Another remark 
is that the adaptive strategy, RT-M-II, outperforms 
RT-M-I when the trajectories consist of more than 50 
GPS sampling points. Fig. 8b shows the comparison 
of the average CMP of synthetic trajectories when 
varying the sampling rate from 2 to 6 min per trajec-
tory. Our proposed strategies produced almost the 
same results as those of ST-M. The reason that the 
accuracy of RT-MM is lower than that of ST-M is that, 
the road network is partitioned into small regions and 
the trajectory is traveling on more partitions of the 
road network. If a trajectory crosses more than one 

Fig. 8  The running time with different numbers of GPS 
points per trajectories (a) and the accuracy with different 
sampling intervals for the synthetic dataset (b) 
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partition, the accuracy of our proposed map-matching 
strategy will be degraded slightly. Such an intuition is 
shown in Fig. 8b; i.e., the trajectory with a sampling 
rate of 4.0 min crosses on a total of five partitions of 
the road network, and the accuracy is degraded. 

6.2  Analyzing RT-MM when varying the static 
parameters 

We examined the execution time of our proposed 
map-matching strategy (RT-M-I) when varying the 
static parameters (NCP and ECR). Fig. 9a shows the 
execution time of RT-M-I for different NCP (from 2 to 
5) when varying the number of GPS points per tra-
jectory. Specifically, we fixed ECR to 100 m. We can 
observe that trajectories with a smaller NCP take less 
running time for mapping against the ones with a 
larger NCP. Moreover, we evaluated the proposed 
strategy in terms of running time when varying ECR. 
Particularly, we used a full-day real-world trajectory 
(described in Section 5.2) for map-matching when 
varying ECR from 100 m to 300 m as well as NCP 
from 3 to 10. Fig. 9b shows the overall running time 
of the proposed strategy when processing the full-day 
real-world trajectory. Fig. 9b reveals that higher ECR 
and NCP increase the running time. Next, we analyzed 
the impact of the size of sliding windows with respect 
to the static parameters values. Fig. 9c shows the 
average running time of each sliding window when 
matching the full-day real-world trajectory. We can 
find that the running time is significantly affected 
when varying NCP and ECR. 

6.2.1  Impact of adaptive parameters based on locality 
of the road network 

In this section, we evaluated the proposed adap-
tive strategy in terms of CMP and the distributions of 
GPS sampling points. Fig. 10a shows the average 
CMP for synthetic trajectories when varying the 
sampling rate from 2.0 to 6.0 min per trajectory. The 
proposed adaptive strategy produced almost the same 
results as compared to the ST-M algorithm. 

Fig. 10b shows the distributions of GPS sam-
pling points and reveals that Class-I, II, and III are 
dominant against the remaining classes. By tuning 
exterior parameters, the proposed strategy selected 
reasonably29% GPS sampling points of the full-day 
real-world trajectory. The rest of them were excluded 
as extraneous GPS sampling points. Table 2 shows 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the percentage of total GPS sampling points. 
On the other hand, Fig. 10c clearly shows that 

the proposed strategy reduces the numbers of SPQs 
and CPs required. Specifically, by employing our 
strategy, the total numbers of SPQs and CPs are 27% 
and 15% less than those of ST-M, respectively. The 
reason of the reduced number of SPQs is that the 
proposed strategy with interior tuning selects differ-
ent classes of the locality of the road network when 
matching each GPS point, which unquestionably 
provides a faster processing. 

Fig. 9  Running time when varying the number of GPS 
points of trajectories (a) and the number of candidate 
points (NCP) of a full-day trajectory (b), and the average 
running time of different numbers of candidate points of 
full-day trajectories with respect to different circle radii 
and numbers of candidate points 
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On the other hand, we examined the distributions 
of GPS sampling points in each class when processing 
the full-day real-world trajectory (Table 3). 

Table 3 clearly discloses that the classes based 
on the locality of the road network are adaptively 
selected by the proposed strategy for each GPS sam-
pling point of the trajectory. The distributions of GPS 
sampling points in Class-I and II are dominant against 
the remaining classes. Because Class-I and II have 
small NCP and ECR, the proposed adaptive strategy 
significantly reduced the number of SPQs and con-
sequently the running time. Next, we analyzed the 
impact of the size of the sliding window on the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
proposed adaptive strategy. Fig. 11a shows the aver-
age running time of each sliding window size. Most of 
the sliding windows took less than 500 ms. Moreover, 
we statistically analyzed the impact of the size of 
sliding windows regarding the Box-and-Whiskers 
plot (Fig 11b). The first and third quartiles in the plot 
are between 0.4 and 0.8 s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2.2  A comparison of static and adaptive parameters 

Furthermore, we evaluated the performance of 
the adaptive strategy RT-M-II against the strategy 
RT-M-I with NCP equal to 5 and ECR equal to 100 m. 
Both strategies were compared in terms of three met-
rics: (1) the total number of CPs, (2) the total number 
of SPQs, and (3) the total number of CPs found less 
than the fixed value of the CP parameter. The results 
are shown in Table 4, which indicates that RT-M-II 
outperformed RT-M-I. Specifically, the adaptive 
strategy significantly reduced the number of SPQs  

Table 2  The percentage of GPS sampling points 
GPS sampling points Number Percentage 

GPS sampling points used 1513   29% 
GPS sampling points excluded 3801   71% 
Total 5314 100% 
 
 

Table 3  Distributions of GPS sample data in each class for 
matching a full-day real-world trajectory 

Class 
Number of GPS sampling points 

Percentage 
Inside-city High-way Total 

Class-I 223 414   637   42.10% 
Class-II 255 315   570   37.67% 
Class-III   99 113   212   14.01% 
Class-IV   24   23     47     3.11% 
Class-V   15   32     47     3.11% 

Total 616 897 1513 100.00% 
 

Fig. 11  Average running time for different sizes of the 
sliding window (a) and running time of each sliding win-
dow in the Box-and-Whiskers plot (b) 

Fig. 10  Comparison evaluation of locality of the road 
network: (a) CMP with respect to different GPS sampling 
rates; (b) distribution of GPS sampling points in each 
class; (c) number of CPs and SPQs required 
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and CPs required. This is because the adaptive strat-
egy considers different parameter classes for mapping 
each GPS sampling point of the full-day real-world 
trajectory. Particularly, assigning an appropriate class 
for mapping each GPS point can significantly reduce 
the total number of CPs and SPQs required. 

 
 

7  Conclusions 
 
It is evident that location-based services (LBSs) 

become more and more data hungry. In this paper, we 
proposed a fully adaptive map-matching strategy for 
real-time GPS trajectories based on the cloud envi-
ronment. The proposed strategy adaptively fine-tunes 
the interior and exterior parameters of the map- 
matching process. The interior parameters, i.e., the 
number of candidate points (NCP) and the error circle 
radius (ECR), are tuned based on the locality of a road 
network, while the exterior parameters depend on the 
sampling rate which is intelligently adjusted based on 
the feedback information of the monitored parameters 
at runtime. Furthermore, unlike traditional ap-
proaches, the shortest path distance and the speed 
constraint of road segments are pre-computed by 
following the bulk synchronous parallel (BSP) para-
digm. In that way, the pre-computation time is re-
duced drastically. We analyzed the performance of 
our strategies in terms of (1) running time, (2) accu-
racy, (3) total number of SPQs, and (4) total number 
of candidate points (CPs) when applying real-world 
GPS data and synthetic data. Results revealed that, by 
assigning an appropriate class of the locality of a road 
network for mapping each GPS sampling point, the 
total number of CPs and SPQs can be significantly 
reduced, thus considerably decreasing the execution 
time. In our future work, we intend to extend our 

map-matching strategy to leverage on machine- 
learning techniques to adjust the interior and exterior 
parameters.  
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