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Abstract:    Sparse representation is a mathematical model for data representation that has proved to be a powerful tool for solving 
problems in various fields such as pattern recognition, machine learning, and computer vision. As one of the building blocks of the 
sparse representation method, dictionary learning plays an important role in the minimization of the reconstruction error between 
the original signal and its sparse representation in the space of the learned dictionary. Although using training samples directly as 
dictionary bases can achieve good performance, the main drawback of this method is that it may result in a very large and inef-
ficient dictionary due to noisy training instances. To obtain a smaller and more representative dictionary, in this paper, we propose 
an approach called Laplacian sparse dictionary (LSD) learning. Our method is based on manifold learning and double sparsity. We 
incorporate the Laplacian weighted graph in the sparse representation model and impose the l1-norm sparsity on the dictionary. An 
LSD is a sparse overcomplete dictionary that can preserve the intrinsic structure of the data and learn a smaller dictionary for each 
class. The learned LSD can be easily integrated into a classification framework based on sparse representation. We compare the 
proposed method with other methods using three benchmark-controlled face image databases, Extended Yale B, ORL, and AR, 
and one uncontrolled person image dataset, i-LIDS-MA. Results show the advantages of the proposed LSD algorithm over 
state-of-the-art sparse representation based classification methods. 
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1  Introduction 
 

Sparse representation has shown huge capabili-
ties in handling problems such as computer vision, 
image processing, and visual tracking (Huang  
et al., 2014; Lu and Li, 2014; Peleg and Elad,  
2014; Zhu et al., 2014; Zhang et al., 2015). The core  
idea of sparse representation is to exploit a linear  
combination of some samples to represent the test 

sample and then to calculate the representation solu-
tion that will be applied to reconstruct the desired 
results. In recent years in the image processing area, 
some models based on sparse representation have 
been proposed (Wright et al., 2009; Yang et al., 2010, 
2012; Wang et al., 2015). In these models, an input 
testing image is coded as a sparse linear combination 
of sample images or dictionary via l1-norm minimi-
zation. Because sample images or dictionaries are 
determinants in sparse representation, how to learn an 
optimal dictionary from training data becomes an 
important question worthy of further investigation 
(Shao et al., 2014). Some sparse representation 
models that use the original image as the dictionary 
have shown promising results (Wright et al., 2009; 
Qiao et al., 2010), but there is a drawback with  
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these models. For example, original images have 
redundant, noisy and trivial information that can be 
negative to recognition. If the training samples are 
huge, the computation of sparse representation is 
time-consuming. Some attempts have been made to 
learn a compressed dictionary from training images 
and then use this learned dictionary for image analy-
sis (Aharon et al., 2006; Rubinstein et al., 2010a; 
Yang et al., 2010; 2014; Gao et al., 2014). 

In this paper, we focus on building a robust dic-
tionary for sparse representation. We propose a new 
dictionary learning approach called Laplacian sparse 
dictionary (LSD), which is based on manifold em-
bedding and double sparsity dictionary learning. Af-
ter mapping a Laplacian weighted graph to the orig-
inal sparse representations and imposing the l1-norm 
sparsity on the dictionary, a more compact and robust 
sparse dictionary is learned from the original images. 
This dictionary is then used to represent the input 
probe image. Since a Laplacian weighted graph can 
preserve the neighborhood structure of the data and a 
sparse dictionary shows much more stable perfor-
mance, the learned LSD will be more representative 
for sparse representation and will achieve excellent 
reconstruction results. 
 
 

2  Related work 
 

Wright et al. (2009) proposed a typical sparse 
representation model that uses training samples as a 
dictionary in a technique called sparse representation- 
based classification (SRC). SRC assumes that the test 
sample can be represented by samples from the same 
class and will be classified as a member of the class, 
which leads to the minimum reconstruction error. 

Denote Xi=[xi,1, xi,2, , , ]  i

i

m n
i nx   as the training 

samples of the ith class and each column of X as a 
sample vector. For a test sample yúm from the ith 
class, y can be sufficiently represented by the linear 
combination of the samples from Xi, i.e., 

, ,1
,in

i j i j i ij
s


 y x X s  where si=[si,1, si,2, , T

, ] i

i

n
i ns   

are the sparse coefficients. 
The SRC algorithm (Wright et al., 2009) is 

summarized as follows:  
1. Initialize D with each column unit normalized. 
2. Compute the sparse coefficients s using the 

least absolute shrinkage and selection operator (lasso) 

(Tibshirani, 1996) given by  
 

1 1
ˆ arg min   s.t.  .

s
s  s y Xs                (1) 

 
3. Compute the residual error 

 

  1 2
ˆ( ) ( ) , i ir y y X s   (2) 

 
where δi: ú

nún is the characteristic function that 
selects the coefficients associated with the ith class. 
For sún, δi(s)ún is a new vector whose only 
non-zero entries are those in s that are associated with 
class i. The given test sample y can be approximated 

as 1
ˆ ˆ( )i iy X s  by using only the coefficients asso-

ciated with the ith class. 
4. Output label (y)arg min ri(y). 
In this model, no actual dictionary training is 

performed because the entire training samples are 
used directly as the dictionary. If the training set is 
small, this approach is computationally very efficient 
because there is no overhead for the learning of the 
dictionary. Using the minimum residual error to 
classify an unseen test sample is easily interpretable 
because the class of the subdictionary leading to the 
minimum residual error can be inspected and as-
signed as the class label of the test sample. However, 
this method has a drawback. Due to noisy training 
instances, using the training samples as the dictionary 
may result in a very large and possibly inefficient 
dictionary (Gangeh et al., 2013), especially in appli-
cations with large training sets. 

One way to deal with this drawback is to use a 
more compact and robust set of bases as the diction-
ary to represent the input query image. Yang et al. 
(2010) proposed an approach which learns a smaller 
subdictionary from each class of training samples and 
then combines subdictionaries into one dictionary. In 
Yang’s Metaface approach, each subdictionary Di is 
learned using the training sample Xi in class i using 

the formulation given as
2

, F 1
min  

i i i i i iD A X D S S , 

where Si is the matrix of sparse coefficients repre-
senting Xi. Computed subdictionaries are eventually 
composed into one dictionary D=[D1, D2, , Dc], 
where c is the number of classes. This algorithm has a 
smaller dictionary and higher accuracy than the 
original SRC. 
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3  Laplacian sparse dictionary learning 
 

The goal of our method is to construct a compact 
and representative dictionary for sparse representa-
tion. We take Yang’s model as a starting point to in-
troduce a novel dictionary learning method, which is 
based on two theories: manifold learning and double 
sparsity. First, we deem that high-dimensional images 
can be sparsely represented or coded by representa-
tive samples on a lower dimensional subspace or 
sub-manifold. These representative samples consti-
tute the dictionary that we want to build. A good dic-
tionary has to discover the geometric structure of the 
image data manifold and preserve its intrinsic struc-
ture as faithfully as possible. Second, a sparse dic-
tionary has a compact representation, low complexity 
and can reduce overfitting. 

3.1  Manifold learning 

In recent years, a number of studies have shown 
that high-dimensional images may reside on a lower 
dimensional subspace or sub-manifold (Roweis and 
Saul, 2000; Tenenbaum et al., 2000). Many manifold 
learning and subspace learning methods have been 
proposed (Turk and Pentland, 1991; Belhumeur et al., 
1997; He and Niyogi, 2003; He et al., 2005; El-
hamifar and Vidal, 2013) and successfully used (Lu X 
et al., 2013; Lu Y et al., 2015; Wang et al., 2015). An 
efficient subspace learning algorithm should be able 
to discover the manifold structure of the image space. 
In many real-world problems, the local manifold 
structure is more important than the global Euclidean 
structure. A Laplacian Eigenmap (Belkin and Niyogi, 
2001) arises by solving a variational problem that 
optimally preserves the neighborhood structure of the 
dataset and has discriminating power although it is 
unsupervised. It is likely that a nearest neighbor 
search in the low-dimensional space will yield similar 
results to one in the high-dimensional space. Since 
real-world images distribute on low-dimensional 
manifolds embedded in the high-dimensional ambient 
space, it is natural to discretely approximate the 
manifold by using a graph. The vertices of the graph 
correspond to the data samples and the edge weight of 
the graph represents the affinity between the data 
points. Constructing a Laplacian weighted graph is a 
key process to keep the local manifold structure and 
includes two main steps: 

1. Constructing the adjacency graph: let G de-
note a graph with n nodes. Put an edge between nodes 
i and j if xi and xj are ‘close’. There are two variations: 
(1) ε-neighborhoods (εú). Nodes i and j are con-

nected by an edge if ||xixj||
2ε where the norm is the 

usual Euclidean norm in ún. (2) k-nearest neighbors 

(kù). Nodes i and j are connected by an edge if i is 
among k-nearest neighbors of j or j is among k-nearest 
neighbors of i. 

2. Choosing the weights: there are two variations 
for weighting the edges. W is a sparse symmetric nn 
matrix with Wij having the weight of the edge joining 
vertices i and j, and 0 if there is no such edge. 

A possible way of defining W is as follows: 
 

   22exp ,   , 

 0,                             o  therwise,

i j i j
ij

t
W

     


x x x x
 (3) 

or 

 

 2

if  ( ) or (

exp ,

0,  o    t  h  e  r w e ,

),

is

j i

j

j

i

ij iN N

t

W 

  
  



x x

x x x x       (4) 

 

where N(xi) denotes the k-nearest neighbors of xi, 
tú. 

One common assumption about the affinity 
between data points is the smoothness assumption, 
which says if two samples are close to each other in 
the input space, their corresponding outputs are close 
to each other (Chapelle et al., 2006). According to the 
smoothness assumption, if data points xi and xj are 
close to each other, then their coefficients si and sj 
should be close as well. Consistency with the geometry 
of the data which follows from the smoothness 
assumption motivates a regularizer term of the form: 

 

T T

,

1
( ) tr( ( ) ) tr( ),

2 i j ij
i j

W    s s S W S SLSDD  (5) 

 

where ,j i jW  is the degree of xi, DDdiag(dd1, dd2, 

, ddn), and L=DD−W is the Laplacian matrix.  
To preserve locality information for the subdic-

tionary, in our method, we incorporate the Laplacian 
regularizer (5) into the dictionary learning process. 
Since the Laplacian regularizer can preserve the local 
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structure, it serves as a data fidelity term in data rep-
resentation. Our formulation is given as follows:  
 

2 T

F 1,
min tr( ),    i

i
D S

X DS s SLS        (6) 

 
where γ is a positive scalar number.  

3.2  Double sparsity 

Building a dictionary for sparse signal repre-
sentation involves balancing between complexity and 
adaptability. Rubinstein et al. (2010b) proposed a 
sparse dictionary model that satisfies these two con-
siderations and has a simple and effective structure. 
This algorithm is based on the hypothesis that dic-
tionary atoms themselves may have some underlying 
sparse structure over a more fundamental dictionary. 
Each atom of the proposed sparse dictionary has itself 
a sparse representation over some pre-specified base 
dictionary. Sparse dictionaries are efficient for large 
dictionaries and high-dimensional signals, show 
much more stable performance, and lead to higher 
compression rates. Motivated by Rubinstein’s work, 
we introduced double sparsity into our work. Since 
natural images have high local redundancy, a sparse 
dictionary is useful because variations like expression, 
pose, session difference, and illumination usually lead 
to sparse changes in natural images (Yang M et al., 
2013). Some recent studies have shown that a learn-
ing dictionary, instead of off-the-shelf bases, leads to 
state-of-the-art performance in many applications 
(Yang et al., 2010; Shao et al., 2014). Employing 
sparse representations on an overcomplete dictionary 
with redundant information, the dictionary learning 
method has outperformed a pre-specified dictionary 
based on transformation functions. So, in our study, 
unlike in Rubinstein’s model which learns a sparse 
dictionary from a fixed base dictionary, we learn 
sparse coefficients and a sparse dictionary simulta-
neously. We focus on a new overcomplete dictionary 
learning method in which the l1-norm sparsity is 
imposed not only on the coefficients but also on the 
dictionary atom. The sparse dictionary can be built by 
solving an alternative optimization problem. 

3.3  Proposed method 

In this section, we present a method for building 
an LSD which takes into account the local manifold 

structure of the image data space and has a sparse 
structure. 

3.3.1  Objective function 

We want to build a dictionary that has a sparse 
structure and can better characterize the image’s local 
information. To learn such a sparse dictionary from 
the original training database, we combine a Lapla-
cian regularizer with Yang’s model and impose the 
l1-norm sparse constraint on the dictionary. Let us 

denote X[x1, x2, , ] n
m nx   as the training sam-

ples of the ith class and each column of X as a vector. 
The goal of our method is to learn an LSD D[d1, d2, 

, ] p
m pd   from X, where pn. It is required that 

each LSD vector dj (j=1, 2, , p) should be a unit 

column vector. S[s1, s2, , ] n
p ns   is the coeffi-

cient matrix where each column is a sparse repre-
sentation for a data matrix. By incorporating the La-
placian regularizer into the original sparse coding and 
imposing the l1-norm sparsity on the dictionary, our 
objective function can be written as  

 

2

, 1 1F,

T T

arg min

tr( )   s.t. 1, ,

i j
i j

j j

J

j

 




   


  


 D S
D S

X DS s d

SLS d d

(7) 

 

where S is the representation matrix of X over the 
LSD D. Parameters λ and β are positive scalar num-
bers that balance the sparsity and the reconstruction 
error. Parameter γ is the Laplacian coefficient and is 

also a positive scalar number. We let T 1j jd d  to 

avoid D having an arbitrarily large l2-norm. 

3.3.2  Laplacian sparse dictionary learning 

Since the objective function (7) is not convex for 
D and S simultaneously, the minimization of Eq. (7) 
should be solved in an alternative manner over D and 
S. We split problem (7) into two sub-problems that 
are much easier to solve. The optimization processes 
can be iterated until converged. We iteratively opti-
mize D and S using the following two-stage method: 

Step 1: learn coefficient matrix S with fixed 
dictionary D. 

When D is fixed, the optimization function (7) 
can be rewritten as the following objective function: 
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2 T
1F

min tr( ) .  
   

 
 i

i
s

X DS s SLS     (8) 

 

The standard unconstrained optimization meth-
ods cannot be employed to address Eq. (8) because 
this problem with l1-norm is non-differentiable when 
si contains values of 0. Some sparse representation 
methods with l1-norm minimization have been pro-
posed (Lee et al., 2006; Yang and Zhang, 2011; Yang 
J et al., 2012; Yang AY et al., 2013). Adopting an 
optimization method based on coordinate descent, it 
is obvious that Eq. (8) is convex and can obtain a 
global minimum. Instead of optimizing the whole 
sparse coefficient matrix S, we update each vector si 
one by one, while keeping all the other vectors sj (i≠j) 
fixed. To optimize the problem over each si, we re-
write Eq. (8) in a vector form (Zheng et al., 2011). 

The reconstruction error 
2

F
X DS  can be re-

written as  
2
. i i

i

x Ds                           (9) 

 

The Laplacian regularizer tr(SLST) can be rewritten 
as  

T T T T

, , ,

tr( ) tr ,ij i j ij j i ij i j
i j i j i j

L L L
 

   
 
  SLS s s s s s s  

(10) 

where Lij is the entry of the Laplacian matrix. 

Combining Eqs. (9) and (10), Eq. (8) can be 
rewritten as 

 
2 T

1
,

min .i i i ij i j
i i i j

L     x Ds s s sΠ Π Π Π     (11) 

 

When updating Si, the other vectors {Sj}j≠i are 
fixed. Thus, we obtain the following optimization 
problem: 

 
2 ( ) T Tmin ( ) ,

i

j
i i i i ii i i i i

j

f s L     
s

s x Ds s s s hΠ Π  

(12) 

where 2i ij jj i
L


 h s  and ( )j

is  is the jth coefficient 

of si. 
We solve problem (8) by following the feature- 

sign search algorithm proposed by Lee et al. (2006). 

For details, please refer to Zheng et al. (2011). 
Step 2: learn dictionary D with fixed coefficient 

matrix S.  
When S is fixed, the optimization function (7) 

can be rewritten as the following objective function: 
 

2 T
1F

min   s.t. 1, .    j j j
j

j
D

X DS d d d   (13) 

 

To update the sparse dictionary atom by atom 
(Yang M et al., 2013), we rewrite S as S[s1, , sj, , 
sp], where sj is the jth row of S and p is the number of 
dictionary atoms. Eq. (13) can be written as follows: 
 

2

1
F

T

min

s.t. 1,  .

j j k k j
j k j

j j j




 
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 

 

 
D

X d s d s d

d d

     (14) 

 

Let .


  j jj k
Z X d s  By fixing all the other 

atoms dj (jk), the updating of dk can be rewritten as 
 

2

F 1 2
min   s.t. 1.  

k
k k k k

d
Z d s d d      (15) 

 
By using Lemma 1 of Rubinstein et al. (2010b) 

and letting l||dk||2, Eq. (15) can be rewritten as 
 

2T 2

1 2F
min   s.t. 1.

k
k k k kl

l


  

d
Zs d d d   (16) 

 
Let us take the derivative of the object function 

(16) and then set the derivative function as zero. Then 
dk can be updated as 
 

T 2 T 2

2 2 2

( ) ( ) , k k k

l l

T l T ld Zs Zs      (17) 

 
where Tτ is a soft-threshold operator defined as  
 

0,                          ,
( )

sign( ) ,    otherwise.

x
T

x x

  


x



 




      (18) 

 
The dictionary D is updated once all atoms dk are 

updated. 
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3.3.3  Algorithm 

The optimization procedures of the proposed 
LSD are described in Algorithm 1. 
 

Algorithm 1  Laplacian sparse dictionary learning

Input: x[x1, x2, , ] n
m nx  where xi (i=1, 2, …, n) is 

the training sample of the ith object class. 
Output: Laplacian sparse subdictionary D. 

1.   Initialize each column of D to have unit l2-norm. 
2.  Fix D and solve S using convex optimization tech-

niques to solve the following function: 
 

2 T
F 1

min tr( ).i
i

   
s

X DS s SLSΠ Π  

3.   Fix S and update D. Update all the dj’s one by one by 
solving the function 

 

2 T

F 1
min    s.t. 1,  .j j j

j

j   
D

X DS d d d  

4.   Go back to 2. The iterative minimization process is 
continued until the stopping criterion is met. 

5.   Output D. 
 

The proposed LSD learning algorithm can gen-
erate a Laplacian sparse subdictionary D for each ith 
object class. We concatenate all Di’s into one dic-
tionary Dt=[D1, D2, , Dc], where c is the number of 
classes. After the dictionary Dt has been built, the 
class label of a test sample is computed in the same 
way as in SRC, where X in Eq. (1) is replaced by Dt. 

3.3.4  Convergence discussion 

The algorithm of LSD is summarized in Algo-
rithm 1. LSD is an alternating optimization problem. 
At the update step for S, we solve Eq. (8) by follow-
ing the feature-sign search algorithm proposed by Lee 
et al. (2006). They proved that the feature-sign search 
algorithm converges to a global optimum in a finite 
number of steps by proceeding in a series of feature- 
sign steps, in which each step reduces the objective 
function. At the update step for D, we update the 
sparse dictionary atom by atom while not violating 
the sparsity constraint. Executing a series of such 
steps ensures monotonic reduction. In our case, in 
each round of alternative minimization, the objective 
function of LSD decreases. LSD converges within 
three to six iterations in all the experiments to be 
presented. Fig. 1 plots the empirical convergence 
curve of LSD applied to the i-LIDS-MA database, 

from which we see that the proposed LSD algorithm 
converges after about five iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4  Experimental results 
 

The LSD we propose is a general dictionary and 
can be used in any application. We tested the per-
formance of LSD by embedding it in SRC. After 
learning LSD, we find the coefficients for a test 
sample using LSD instead of the whole training set in 
Eq. (1). 

The class label of a test sample is obtained in the 
same way as in the SRC approach. The residuals 
given in Eq. (2) are calculated, and the test sample is 
assigned to the class that yields the minimum error. 
Three widely used controlled face image databases, 
Extended Yale B (Georghiades et al., 2001; Lee et al., 
2005), ORL, and AR (Martinez and Benavente, 1998), 
and one uncontrolled person image dataset, i-LIDS- 
MA (Bąk et al., 2012), were used in the experiments. 
In our implementation, we applied Eigenfaces (Turk 
and Pentland, 1991) to reduce the dimensionality of 
face images. We compared SRC incorporating the 
proposed LSD with the original SRC (Wright et al., 
2009), SRC with MFL (Yang et al., 2010), and SRC 
with GSC (Zheng et al., 2011). As in the study by 
Wright et al. (2009), the kNN classifier was used in 
the experiments as a reference. 

4.1  Image database and experimental setting 

1. Extended Yale B database: The Extended Yale 
B database consists of images captured from 38 in-
dividuals under various laboratory-controlled lighting 

Fig. 1  Example of the convergence of Laplacian sparse 
dictionary (LSD) 
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conditions. This database has a total of 2414 frontal- 
face images. Fig. 2 shows some examples. For each 
subject, 32 images were randomly selected for train-
ing and the rest were used for testing. In the sparse 
representation model, parameter λ (Eq. (1)) was ad-
justed to achieve the best performance. To ensure a 
fair comparison, we used the same experimental set-
ting as used by Yang et al. (2010). The associated 
dimension of features was set to 504. In our proposed 
LSD, we set λβ0.001, γ0.01, and k   5.  

 
 
 
 
 
 
2. ORL database: The ORL database contains a 

total of 400 images captured from 40 individuals. The 
images show variation in facial expression and facial 
details (glasses/no glasses). Fig. 3 shows some ex-
amples. In our experiment, the first six images of each 
individual were used for training and the remaining 
four for testing. The parameters λ and p were chosen 
to achieve the best performance for each method and 
were set the same as in the study of Yang et al. (2010). 
The associated dimension of features was set to 140. 
In our proposed LSD, we set λβ0.001, γ0.01, and 
k  5.  

 
 
 
 
 
 

 
3. AR database: The AR database contains 

frontal images captured from 126 individuals (Mar-
tinez and Benavente, 1998). For each individual, 26 
pictures were taken with different illumination and 
expressions in two separate sessions. Fig. 4 shows 
some examples from the AR database. To ensure a 
fair comparison, we used the same experimental set-
tings as used by Yang et al. (2010). In our experiment, 
a subset of the database consisting of 50 male and  
50 female subjects was used. For each subject, the 
training set contained seven images from session 1 
and the test set contained seven images from session 2. 
Following Yang et al. (2010), parameters λ and p were 

selected to achieve the best performance. The asso-
ciated dimension of features was set to 300. In our 
proposed LSD, we set λβ0.001, γ0.01, and k5. 

 
 
 
 
 
 
 
 
 
 
4. i-LIDS-MA dataset: The i-LIDS Multiple- 

Camera Tracking Scenario (MCTS) dataset with 
multiple camera views was originally released by the 
Home Office in the UK. Images were captured from 
non-overlapping multiple camera views subject to 
significant occlusions and large variation in view 
angle and illumination. i-LIDS-MA images were 
collected from i-LIDS video surveillance data cap-
tured at an airport (Bąk et al., 2012). This database 
contains multiple images of 40 individuals extracted 
from two non-overlapping cameras (cameras 1 and 3 
in their original setting) and there are large viewpoint 
changes. For each individual, 46 frames are annotated 
manually from both cameras. There are 40246
3680 annotated images. Fig. 5 shows some examples 
from the i-LIDS-MA database. The dataset is very 
challenging since it was built from data captured in 
real scenarios without predefined environmental set-
tings. It is an uncontrolled recognition problem unlike 
the previously described controlled recognition 
problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Some examples of the ORL database 

Fig. 5  Sample images from the i-LIDS-MA dataset 
Top and bottom lines correspond to images from different
cameras. Columns illustrate the same person 

Fig. 2  Some examples from the Extended Yale B database

Fig. 4  Some examples from the AR database 
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In our experiment, for each person, the training 
set contained 46 images from camera 1 and the test set 
contained 46 images from camera 3. Parameters λ and 
p were selected to achieve the best performance. The 
associated dimension of features was set to 400. In 

our proposed LSD, λβ0.001, γ0.01, and k 5. 

4.2  Results and analysis 

4.2.1  Results  

The results from five methods applied to the 
three face image databases and one person image 
dataset are shown in Table 1, which lists the maxi-
mum recognition rate of each method. Our extensive 
experimental results show that SRC with the pro-
posed LSD achieves the highest recognition rate and 
outperforms the original SRC method, SRC with 
MFL, and SRC with GSC. The classical kNN method 
performs the worst. The improvement from using 
LSD was about 6.96% over NN, 2.33% over SRC, 
1.8% over MFL, and 0.91% over GSC on the Ex-
tended Yale B database. The improvement was about 
4.38% over NN, 3.75% over SRC, 2.5% over MFL, 
and 1.25% over GSC on the ORL database. The im-
provement was about 6.43% over NN, 3.43% over 
SRC, 2.71% over MFL, and 0.86% over GSC on the 
AR database. The improvement was about 5.61% 
over NN, 3.16% over SRC, 1.86% over MFL, and 
0.92% over GSC on the i-LIDS-MA database. 

 
 
 
 
 
 
 
 
 
 
 
 
 
To prove that the enhancement of recognition 

accuracy from using LSD was statistically significant, 
we carried out some statistical analyses. For example, 
we tested the null hypothesis that GSC and LSD 
methods yield the same recognition rate on the ORL 

database. We compared 10 times top recognition rates 
of LSD with 10 times top recognition rates of GSC. 
Results from a Wilcoxon signed rank test are shown 
in Fig. 6. Since the test rejected the null hypothesis, 
we can conclude that the proposed LSD method 
yields higher recognition rates than GSC.  

 
 
 
 
 
 
 
 
 

 

The experimental results and statistical analysis 
suggest that the proposed LSD algorithm can build a 
more robust and representative dictionary enabling an 
improvement in classification accuracy.  

4.2.2  Parameter sensitivity analysis 

In this section, we present the recognition ac-
curacies with different parameter values. In our LSD, 
there are four parameters: λ is the tradeoff parameter 
used to balance the sparsity and the reconstruction 
error, β is a constant to balance the sparse dictionary 
basis term and reconstruction error, γ is the regulari-
zation parameter, and k is the number of nearest 
neighbors. λ is the same parameter as that used in 
SRC and MFL. We selected λ from {0.01, 0.001, 
0.0001}, β from {0.001, 0.0005, 0.0001}, γ from 
{0.01, 0.005, 0.001, 0.0005, 0.0001}, and k from {2, 3, 
4, 5, 6}. 

Based on the ORL database, we show the top 
recognition rates when β varies from 0.001 to 0.0001, 

γ varies from 0.01 to 0.0001 and λ0.01 (Fig. 7), 

0.001 (Fig. 8), or 0.0001 (Fig. 9). Fig. 10 shows the 
top recognition rate when k varies from 2 to 6, λ varies 

from 0.01 to 0.0001, and βγ0.001. 

The performance of LSD varied from 97.5% to 

99.3% with different λ, β, γ, and k values. The 

recognition accuracy of LSD was better than that of 
the other algorithms and stable over a large range of 
parameter values. 

Table 1  The top recognition rates of different methods on 
test databases 

Method 
Top recognition rate (%) 

E-Yale B ORL AR i-LIDS-MA

kNN 92.46% 94.37% 88.14% 53.42% 

SRC 97.09% 95.00% 91.14% 55.87% 

MFL 97.62% 96.25% 91.86% 57.17% 

GSC 98.51% 97.50% 93.71% 58.11% 

LSD 99.42% 98.75% 94.57% 59.03% 

 

Fig. 6  Results from a Wilcoxon signed rank test 

Hypothesis test summary

Null hypothesis

The median of differences
between GSC and LSD
equals 0

Related-
samples
Wilcoxon
signed rank
test

Asymptotic significances are displayed. The significance level is 0.05.

0.038
Reject the
null
hypothesis

Test Sig. Decision

1
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5  Conclusions 
 

In this paper, we proposed a Laplacian sparse 
dictionary (LSD) learning method based on manifold 
learning and double sparsity. The proposed LSD al-
gorithm is a general dictionary learning method in 
that a Laplacian sparse subdictionary is learned for 
each class from the samples within that class. The 
Laplacian sparse dictionary has a sparse structure and 
can preserve the local structure of the data space. 
Embedding LSD into sparse representation-based 
classification (SRC) can improve the performance of 
SRC-based image classification. Our experiments on 
the Extended Yale B, ORL, and AR face image da-
tabases and the i-LIDS-MA person image dataset 
demonstrated that the proposed LSD algorithm has 
high accuracy and stable performance. Comparative  
experiments using the four benchmark image data-
bases showed that the proposed LSD was superior to 
the state-of-the-art dictionary methods. 
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