
Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510 1499

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

FrepJoin: an efficient partition-based algorithm

for edit similarity join

Ji-zhou LUO‡1,2, Sheng-fei SHI1, Hong-zhi WANG1, Jian-zhong LI1

(1School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)

(2Guangdong Key Laboratory of Popular High Performance Computers,

Key Laboratory of Service Computing and Application, Shenzhen 518000, China)

E-mail: luojizhou@hit.edu.cn; shengfei@hit.edu.cn; wangzh@hit.edu.cn; lijzh@hit.edu.cn

Received June 17, 2016; Revision accepted Dec. 15, 2016; Crosschecked Nov. 6, 2017

Abstract: String similarity join (SSJ) is essential for many applications where near-duplicate objects need to be
found. This paper targets SSJ with edit distance constraints. The existing algorithms usually adopt the filter-and-
refine framework. They cannot catch the dissimilarity between string subsets, and do not fully exploit the statistics
such as the frequencies of characters. We investigate to develop a partition-based algorithm by using such statistics.
The frequency vectors are used to partition datasets into data chunks with dissimilarity between them being caught
easily. A novel algorithm is designed to accelerate SSJ via the partitioned data. A new filter is proposed to leverage
the statistics to avoid computing edit distances for a noticeable proportion of candidate pairs which survive the
existing filters. Our algorithm outperforms alternative methods notably on real datasets.

Key words: String similarity join; Edit distance; Filter and refine; Data partition; Combined frequency vectors
https://dx.doi/10.1631/FITEE.1601347 CLC number: TP311.13

1 Introduction

String similarity join (SSJ) is essential for
many applications, e.g., coalition detection (Met-
wally et al., 2007), fuzzy keyword matching (Ji
et al., 2009), data integration (Dong et al., 2007),
data cleaning (Chaudhuri et al., 2006b), and near-
duplicate object detection (Xiao et al., 2008a). It
has been applied to solve various practical prob-
lems in industrial community; e.g., Google uses
it to detect near-duplicate web pages (Henzinger,
2006), and Microsoft adopts it in the Data Debugger
Project (Chaudhuri et al., 2006a). Thus, many algo-
rithms (Gravano et al., 2001; Sarawagi and Kirpal,
2004; Arasu et al., 2006; Bayardo et al., 2007; Xiao
et al., 2008a; Feng et al., 2012; Qin et al., 2013) have
been proposed.

‡ Corresponding author
ORCID: Ji-zhou LUO, http://orcid.org/0000-0002-3302-3917

c©Zhejiang University and Springer-Verlag GmbH Germany 2017

Given two sets of strings, SSJ aims to find all
pairs of similar strings from each of the sets ac-
cording to a threshold τ of the predefined similar-
ity function such as the Jacard distance (Sarawagi
and Kirpal, 2004; Xiao et al., 2008b), cosine dis-
tance (Bayardo et al., 2007), edit distance (Xiao
et al., 2008a; Feng et al., 2012; Qin et al., 2013),
and their variants (Chaudhuri et al., 2003; Had-
jieleftheriou and Srivastava, 2010; Wang et al., 2011).
The edit distance measures the similarity of two
strings by the minimum number of edit opera-
tions (i.e., insertion, deletion, and substitution of
single characters) to transform one string to the
other. Edit distance reflects the original order
of tokens and allows non-trivial alignment, mak-
ing it a popular and important similarity func-
tion (Xiao et al., 2008a). We focus on the study
on SSJ with the edit distance constraint (also re-
ferred to as edit similarity join (ESJ)). ESJ is costly,

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601347&domain=pdf

1500 Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510

stemming from two time-consuming steps, i.e., dis-
tance verification and enumeration of all possible
pairs for which distance verifications are needed. In
fact, a trivial ESJ algorithm bears a prohibitive high
complexity of O(nτN2). Thus, the prevalent ESJ
algorithms (Gravano et al., 2001; Sarawagi and Kir-
pal, 2004; Arasu et al., 2006; Bayardo et al., 2007;
Xiao et al., 2008a; Feng et al., 2012) adopt mainly
a filter-and-refine framework, where they first gen-
erate signatures for each string and use filters over
the signatures to prune away most pairs of dissimilar
strings, and then verify the distance for the remain-
ing pairs and output the final results.

However, there exist some pitfalls in such ap-
proaches. First, they generate candidate pairs inher-
ently by enumerating string pairs and cannot catch
the dissimilarity between string subsets. Second, the
signatures of each string are mainly local structures
such as (positional) q-grams and prefixes. It means
that they cannot catch the dissimilarity of strings
from a global perspective of view. Third, as a result,
they usually generate a huge amount of candidate
pairs (Xiao et al., 2008a).

To address these issues, in this study, we pro-
pose to take the (combined) frequencies of characters
as global information of strings to target the two
time-consuming steps in ESJ. Specifically, a novel
partition-based algorithm is developed to use such
information to enumerate a smaller candidate set in
a more efficient way by partitioning the dataset into
small chunks. A new filter is proposed to use such in-
formation to further reduce the size of the candidate
set with low complexity. Unlike all existing filter-
and-refine approaches which have to access some q-
grams before discarding a string pair, our method
can directly prune away a large part of string pairs
without accessing any q-grams. The example below
illustrates our key idea:
Example 1 Consider a self-join over set R (Ta-
ble 1 with τ = 1). (1) The alphabet is par-
titioned into Σ1 = {a,g,j,l,m,p,v,y,z}, Σ2 =

{b,d,h,i,n,q,s,u,x}, and Σ3 = {c,e,f,k,o,r,t,w}. The
combined frequency vector of string s refers to
(f

(Σ1)
1 (s), f

(Σ2)
2 (s), f

(Σ3)
3 (s)), where f

(Σi)
i (s) counts

the total appearances of characters of Σi in s; e.g.,
the vector of s10 is (5, 5, 1). (2) The L1-distance of
the combined frequency vectors larger than 2τ im-
plies the dissimilarity between strings (see Lemma 8
in Section 4.4); e.g., s10 is dissimilar with s15

because the L1-distance between (5, 5, 1) and (4, 4, 2)

is 3>2τ). (3) R can be partitioned into five chunks
C1 − C5. Chunk distances are the estimated lower
bounds of L1-distances between strings from differ-
ent chunks (for details, see Section 4). Table 2 lists
the chunk distances between different chunks. (4)
Since many chunk distances are larger than 2τ , a re-
markable proportion of string pairs can be pruned
away without being enumerated, although they may
share common prefixes or grams; e.g., C5 is pruned
away for each string in C3, although s10 and s15 share
the prefix ‘David’. Similarly, C3, C4, and C5 can be
pruned directly for C2, etc.

Table 1 Data partitions of the motivation example

String ID String Chunk

s1 Steve Wilson
s2 Enrico Macii C1
s3 Peter Bunemen

s4 Peter Ponelli
s5 Takeo Kanade
s6 Kate Michael C2
s7 Karl Kurbel
s8 Bart Preneel

s9 Daniel Thalmann
C3

s10 David Sammon

s11 Marianne Winslett
s12 Ernesto Damiani C4
s13 Vladik Kreinovch

s14 Vipin Kumar
s15 David Maior
s16 David Manor C5
s17 Danny Dolev
s18 Hanan Samet

Table 2 Chunk distances of the motivation example

Chunk pair Distance Chunk pair Distance

C1, C2 2 C2, C4 3
C1, C3 7 C2, C5 4
C1, C4 2 C3, C4 4
C1, C5 4 C3, C5 3
C2, C3 7 C4, C5 3

2 Preliminaries

The inputs of ESJ algorithms are two string sets
R, S, and a threshold τ . The outputs are all pairs of
strings from each set such that their edit distance is
not larger than τ (i.e., {(r, s)|ed(r, s) ≤ τ, r ∈ R, s ∈

Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510 1501

S}). For ease of exposition, we consider only self-
join (i.e., R = S). Furthermore, assume that the
readers are familiar with the elementary concepts,
such as length |s| of a string s, substring s[i : j] of
s (contiguous symbols from the ith position to the
jth position), prefix s[1 : i] of s, suffix s[i : |s|] of s,
(positional) q-grams (token, pos) of s (i.e., token =

s[pos : pos + q − 1]) (Gravano et al., 2001), and the
inverted index of a string set R (Bayardo et al., 2007;
Xiao et al., 2008a).

Given a string s on an alphabet Σ of size m,
∀αi ∈ Σ, αi’s frequency in s (denoted as fi(s))
is the number of αi’s appearances in s. The fre-
quency vector of s (denoted as f(s)) refers to vector
<f1(s), f2(s), · · · , fm(s)>. Given a string setR over
Σ and ∀αj ∈ Σ, αj ’s frequency range associated with
R (or simply frequency range) is defined as the inte-
ger interval [mj ,Mj], where mj = mins∈R fj(s) and
Mj = maxs∈R fj(s). In this study, we consider how
to accelerate ESJ by splitting frequency ranges into
small pieces and partitioning R into small chunks.
To do this, we consider the distances between vec-
tors. Given real vectors u = (u1, u2, · · · , um) and
v = (v1, v2, · · · , vm), the L1-distance between u and

v, denoted as (‖u− v‖L1), is defined as
m∑

i=1

|ui − vi|.
Definition 1 Let u = (u1, u2, · · · , um) and v =

(v1, v2, · · · , vm) be two real vectors. The positive
difference between u and v (denoted as δ+(u,v)) is

defined as
m∑

i=1,ui>vi

(ui − vi). Similarly, the negative

difference between u and v (denoted as δ−(u,v)) is

defined as
m∑

i=1,ui<vi

(vi − ui). The biased-difference

distance between u and v (denoted as δ(u,v)) is
defined as max(δ+(u,v), δ−(u,v)).

Definition 1 means that: (1) δ+(u,v) ≥ 0,
δ−(u,v) ≥ 0; (2) δ+(u,v) = δ−(v,u); (3) δ+(u,v)+
δ−(u,v) = ‖u − v‖L1 . These facts result in
Lemma 1.
Lemma 1 For any vectors u, v, and w, we have:
(1) δ(u,v) = 0 ⇐⇒ u = v; (2) δ(u,v) = δ(v,u);

(3) δ(u,v) + δ(v,w) ≥ δ(w,u); (4)
1

2
‖u − v‖L1 ≤

δ(u,v) ≤ ‖u − v‖L1 . Thus, δ(·, ·) is a distance
function.

Proof Lemmas 1(1), 1(2), and 1(4) follow Defi-
nition 1. We prove Lemma 1(3) as follows: Assume
ui 	= vi, vi 	= wi, and wi 	= ui (1 ≤ i ≤ m). The
proof can be modified easily to deal with other cases.

Notice that ui, vi, and wi (1 ≤ i ≤ m) must be one
of the six cases in Table 3, where the constraints will
be clarified in the next paragraph. If ui, vi, and wi

belong to case j, we put i into subset Jj . Notice that
J1, J2, · · · , J6 partition the set {1, 2, · · · ,m}.

Table 3 Six cases in the proof of Lemma 1

Case Description Constraint

1 ui > vi, vi > wi, wi < ui a1 + b1 − c1 = 0

2 ui > vi, vi < wi, wi > ui a2 − b2 + c2 = 0

3 ui > vi, vi < wi, wi < ui a3 − b3 − c3 = 0

4 ui < vi, vi > wi, wi < ui −a4 + b4 − c4 = 0

5 ui < vi, vi < wi, wi > ui −a5 − b5 + c5 = 0

6 ui < vi, vi > wi, wi > ui −a6 + b6 + c6 = 0

Let aj =
∑

i∈Jj
|ui − vi|, bj =

∑
i∈Jj

|vi − wi|,
and cj =

∑
i∈Jj

|wi − ui| (1 ≤ j ≤ 6). The con-
straints above can be verified easily. Moreover,

{
δ+(u,v) = a1 + a2 + a3,

δ−(u,v) = a4 + a5 + a6,
{

δ+(v,w) = b1 + b4 + b6,

δ−(v,w) = b2 + b3 + b5,
{

δ+(w,u) = c2 + c5 + c6,

δ−(w,u) = c1 + c3 + c4.

Putting these constraints together, we obtain

δ+(u,v)− δ−(u,v) + δ+(v,w)− δ−(v,w)

+ δ+(w,u)− δ−(w,u) = 0.
(1)

Let the indicator of δ(u,v) be ‘+’ if δ(u,v) =

δ+(u,v), or ‘−’ if δ(u,v) = δ−(u,v). The concate-
nation of indicators of δ(u,v), δ(v,w), and δ(w,u)

is called the ‘schema’ of (u,v,w). Eq. (1) asserts
that neither ‘+ + +’ nor ‘− − −’ is a schema un-
less δ+(u,v) = δ−(u,v), δ+(v,w) = δ−(v,w), and
δ+(w,u) = δ−(w,u), where the conclusion holds
obviously. Next, for each of (u,v,w)’s other six
schemas, we show δ(u,v) + δ(v,w) − δ(w,u) ≥ 0.

For schema ‘++−’, we have

δ(u,v) + δ(v,w)− δ(w,u)

= δ+(u,v) + δ+(v,w)− δ−(w,u)

= (a1 + a2 + a3) + (b1 + b4 + b6)− (c1 + c3 + c4)

= 0 + a2 + b3 + b6 + a4

≥ 0.

Schemas ‘+−+’ and ‘−++’ can be verified similarly.
Moreover, schemas ‘−−+’, ‘+−−’, and ‘−+−’ can
be transformed into ‘+ + −’, ‘− + +’, and ‘+ − +’,
respectively, as δ+(u,v) = δ−(v,u).

1502 Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510

3 FreFilter and its independence

Characters’ frequencies in strings catch the sim-
ilarity of strings and can be used to help ESJ, as
shown in the following two lemmas. Lemma 2 was
proved and used in Xiao et al. (2008a). Lemma 3
suggests a more efficient way to use the frequencies
of characters.
Lemma 2 For two strings x and y, ‖f(x) −
f(y)‖L1 > 2τ implies ed(x, y) > τ .
Lemma 3 For two strings x and y, δ(f(x), f(y)) >
τ implies ed(x, y) > τ .
Proof Note that applying any edit operation (in-
sertion, deletion, or substitution of a single charac-
ter) on x or y changes δ(f(x), f(y)) by at most 1.
Lemma 1 shows that it needs at least δ(f(x), f(y))

edit operations to transform x to y.
Lemma 3 is stronger than Lemma 2. In fact,

Lemma 1(4) asserts that all pairs filtered away by
Lemma 2 can also be filtered away by Lemma 3, but
not vice versa. For example, let τ = 2, and consider
strings s=new and t=event. Note that ed(s, t) >

τ . It is easy to check δ(s, t) = 3 > τ but ‖f(s) −
f(t)‖L1 = 4 ≤ 2τ ; i.e., Lemma 3 prunes away (s, t)

but Lemma 2 does not.
Lemma 4 For strings x and y, if |x| ≥ |y| then
δ(f(x), f(y)) = δ+(f(x), f(y)).

The proof of Lemma 4 follows the fact that
|x| − |y| = δ+(f(x), f(y)) − δ−(f(x), f(y)) ≥ 0. It
simplifies the computation of δ(f(x), f(y)) if |x| > |y|
is known. In fact, typical ESJ algorithms such as Ed-
Join (Xiao et al., 2008a) and PassJoin (Li et al., 2011)
usually sort all strings by lengths, making Lemma 4
be applied directly.

Lemmas 1 and 3, which have been proved here,
provide us a new filter named FreFilter. For string
pair (x, y), FreFilter first exchanges the roles of x

and y, if necessary, to guarantee that |x| ≥ |y|.
Then, it obtains frequency vectors f(x) and f(y),
and applies Lemma 4 to compute δ(f(x), f(y)). If
δ(f(x), f(y)) > τ , FreFilter returns ‘false’ to indi-
cate ed(x, y) > τ ; else, it returns ‘true’.

The time complexity of FreFilter is obvi-
ously O(n + |Σ|). If frequency vectors are pre-
computed (by the same way as q-grams being pre-
extracted (Xiao et al., 2008a)), its complexity be-
comes O(|Σ|), which can be viewed as a constant.

Independence of FreFilter: Since distance ver-
ification is time-consuming in ESJ, several filters

have been proposed to identify string pairs (s, t) with
ed(s, t) ≤ τ . We show that FreFilter is independent
of them via settings of Example 2.
Example 2 Set τ = 5. Consider strings s0, t0 be-
low. s0=‘Petra Perner Case based reasoning for image
interpretation’ and t0=‘Petra Perner Cbr based ultra-
sonic image interpretation’. The frequencies of ‘a’, ‘e’,
‘f’, ‘o’, and ‘s’ in s0 are higher than their frequen-
cies in t0. Lemma 4 tells us δ(f(s0), f(t0)) = 6 > τ .
Thus, s0 is dissimilar to t0 according to FreFilter.

However, string pair (s0, t0) survives existing
filters, including the PassJoin filter, length filter,
count filter, position filter, prefix filter, suffix filter,
content-based mismatching filter, and content filter
Ed-Join (Xiao et al., 2008a). The details of these
filters can be found in Xiao et al. (2008a) and Li
et al. (2011). As an example, we show that (s0, t0)

survives the PassJoin filter and omit the discussion
for other filters. The PassJoin filter mandates that if
ed(s, t) ≤ τ , and t is partitioned into τ + 1 consecu-
tive segments of an approximately equal length, then
one of these segments must be a consecutive sub-
string of s. For s0 and t0, the first segment obtained
by partitioning t0 is ‘Petra Per’. It is also a segment
of s0. Thus, (s0, t0) survives the PassJoin filter.

Our experiments show that, a noticeable pro-
portion of candidate pairs surviving the existing fil-
ters can be further pruned away by FreFilter, and
vice visa. Since FreFilter is independent of the ex-
isting filters, it is expected that the performance
of ESJ algorithms can be improved greatly by in-
tegrating FreFilter into the existing algorithms. The
limited filtering effectiveness of the existing filters
stems from the fact that they use only the local
information of strings such as positional q-grams
and consecutive substrings, and ignore the global
information of strings provided by statistics such as
frequency vectors. More statistics are used to avoid
enumerating string pairs in Sections 4 and 5.

4 Data partition via frequency vectors

4.1 Overview of data partition

FreFilter captures the dissimilarity between
strings by exploiting the fact that the biased-
difference distance (bd-distance) between the fre-
quency vectors of similar strings must be small.
It also means that different strings with the same

Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510 1503

frequency vector cannot be filtered by FreFilter, but
the bd-distance computation between them should
be avoided. With this comes immediately a trivial
data partitioning strategy, i.e., to group all strings
with the same frequency vector into a data chunk.
However, data chunks generated in this way tend to
be very small and the number of data chunks is huge,
even for a small alphabet and frequency ranges. As
a result, the total computation saved is also small.

To address this issue, we propose to split the
frequency ranges of characters into small intervals.
Strings with their frequency vectors falling into a
same group of intervals are grouped into a data
chunk. The number of data chunks grows exponen-
tially with the number of split intervals and the num-
ber of characters used to partition the string set. Too
many data chunks will result in small chunks, which
is not expected. Thus, two parameters are used to
control the number of data chunks, both of which can
be adjusted according to τ and the size of datasets.

Parameters: θ is the number of characters used
to partition the string set. κ is the expected number
of split intervals of each frequency range.

Data partition: Assume that α1, α2, · · · , αθ are
partition characters, and each αj ’s frequency range
[mj ,Mj] is split into kj small intervals by an array
of split points Pj [0 : kj], such that: (1) Pj [0] = mj ,
Pj [kj] = Mj ; (2) all intervals, except [mj , Pj [1]] and
[Pj [kj − 1],Mj], have an equal length lj.

To partition string set R, FrePartition (Al-
gorithm 1) processes each string s sequentially
(lines 2–15). For each string s, Algorithm 1 first
computes id = (v1, v2, · · · , vθ) for s, such that
frequency fj(s) falls into αj ’s vjth interval (lines 3–
8). id is taken as the identifier of a data chunk. Then,
Algorithm 1 checks whether there is an existing data
chunk Rk such that Rk.id = id (line 10). If yes, it
puts s into Rk (line 11). Otherwise, it creates a new
data chunk, sets id as its identifier, and puts s into it
(line 13). Finally, all generated data chunks are re-
turned (line 16). FrePartition (Algorithm 1) runs in
time of O(N), given necessary information. In fact,
all ids of data chunks can be encoded as non-negative
integers, and be used as an array index, which makes
FrePartition scan the dataset once.

Section 4.2 is aimed to split the frequency
range. In Section 4.3 the chunk distance is de-
fined and a greedy strategy is presented for char-
acter choosing. In Section 4.4 we develop another

Algorithm 1 FrePartition(R)
Input: string set R; characters α1, α2, · · · , αθ.
Output: a partition of R.
1: p← 0;
2: for each s ∈ R do
3: for j = 1 to θ do
4: if fj(s) ≤ Pj [1] then vj = 1;
5: else if fj(s) > Pj [kj − 1] then vj = kj ;
6: else vj = �(fj(s)− Pj [1])/lj �+ 1;
7: end if
8: end for
9: id← (v1, v2, · · · , vθ);

10: if Rk.id = id (∃k ∈ [1, p] then
11: Rk ← Rk ∪ {s};
12: else
13: p← p+ 1; Rp ← {s}; Rp.id← id;
14: end if
15: end for
16: return R1, R2, · · · , Rp.

strategy to enhance the pruning effectiveness of data
partitioning.

4.2 Range split

Let R be the string set, N be the number of
strings in R, αj ∈ Σ, and [mj ,Mj] be αj ’s frequency
range. In addition, let hj [mj : Mj] store the docu-
ment frequencies of αj ’s each frequency value; i.e.,
hj[i] is the total number of R’s strings, in each of
which αj appears exactly i times. Via hj [mj : Mj],
αj ’s average frequency in R can be calculated as

μj =
Mj∑

i=mj

i · (hj [i]/N), and αj ’s frequency deviation

is σ2
j =

Mj∑

i=mj

[
(i − μj)

2 · (hj [i]/N)
]
.

To split [mj ,Mj] into small intervals with equal
length, one direct method is to view hj [mj : Mj] as
a usual histogram and use optimal interval length
lj ≈ 3.49(Mj − mj)

−1/3σj given in Scott (1979).
However, like many other methods of the same kind,
this optimal interval length is designed to produce
another histogram such that the expected error be-
tween the new histogram and the original one is min-
imized. Applying this optimal length directly will
lead to some very small data chunks, and the num-
ber of intervals will also lose control.

Instead, we adopt a tailing strategy and a try-
and-refine method. The tailing strategy is used to
avoid generating small data chunks by guaranteeing
that a large number of strings s has fj(s) fall into the

1504 Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510

first interval and the last interval. The try-and-refine
method aims to control the number of intervals. It
tries to split [mj ,Mj] into intervals of length lj ≈
3.49(Mj − mj)

−1/3σj . If the interval number is far
from κ, it adjusts lj and tries again.

RangeSplit (Algorithm 2) splits frequency range
[mj ,Mj]. To avoid summing values in hj [mj : Mj]

repeatedly, it first cumulates values in hj [mj : i] into
Hj [i] for mj ≤ i ≤ Mj (lines 1–4). Then, it invokes
IntervalSplit to split [mj ,Mj] into intervals of initial
length 3.49(Mj − mj)

−1/3σj (lines 5–6). Interval
number k and an array P [0 : k] of partition points
are returned. If |k−κ| is too large, then lj is increased
or decreased by one accordingly (lines 7–8). Then, it
tries to split with the updated lj repeatedly until k
equals κ approximately (lines 10–13) or the new try
makes things worse (line 14). The final lj , kj , and
P [0 : kj] are returned.

Algorithm 2 RangeSplit(αj)
1: Hj [mj]← hj [mj];
2: for i = mj + 1 to Mj do
3: Hj [i]← Hj [i− 1] + hj [i];
4: end for
5: lj ← 3.49(Mj −mj)

−1/3σj ;
6: kj , Pj ← IntervalSplit(Hj , lj);
7: if kj > κ+ 1 then inc← 1;
8: else if kj < κ− 1 then inc← −1;
9: end if

10: while |kj − κ| > 1 do
11: lj ← lj + inc;
12: k, P ← IntervalSplit(Hj , lj);
13: if |k − κ| < |kj − κ| then kj ← k; Pj ← P ;
14: else lj ← lj − inc;
15: break;
16: end if
17: end while
18: return kj , Pj [0 : kj], and lj .

IntervalSplit (Algorithm 3) splits range [mj ,Mj]

into intervals with a given length lj and returns in-
terval number k and the array P [0 : k] of parti-
tion points. The tailing strategy, is implemented as
‘while’ conditions in lines 2 and 6.

4.3 Character selection and chunk distance

Given αj ∈ Σ and string set R, all statistics
are known. Thus, [mj ,Mj]’s split, as well as its
interval length lj and interval number kj , is deter-
mined by Algorithm 2. In what follows, lj , kj , and

Algorithm 3 IntervalSplit(H [0 : Mj], lj)
1: k ← 1; i← mj ; P [0]← mj ;

2: while Hj [i] <
1

2
(Hj [i+ lj]−Hj [i]) do

3: i← i+ 1;
4: end while
5: P [k]← i; k← k + 1;
6: while Hj [i+ lj]−Hj [i] < 2(Hj [Mj]−Hj [i+ lj]) do
7: i← i+ lj ; P [k]← i; k ← k + 1;
8: end while
9: P [k]←Mj ;

10: return k and P [0 : k].

interval [Pj [i − 1] + 1, Pj [i]] will be called “αj’s in-
terval length”, “αj ’s interval number”, and “αj ’s ith
interval”, respectively, without any ambiguity.
Definition 2 The split distance between αj ’s i1th
and i2th intervals (1 ≤ i1, i2 ≤ kj) is defined as
δj(i1, i2) = max(0, (|i1 − i2| − 1) · lj).
Lemma 5 E(δj(i1, i2)) =

(kj − 1)(kj − 2)

3kj
lj , if i1

and i2 is chosen from [1, kj] randomly and uniformly.
Proof

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pr(δj(i1, i2) < lj) =
1

kj
+

kj−1∑

j=1

2

k2j

=
kj + 2(kj − 1)

k2j
,

Pr(δj(i1, i2) = klj) =
kj−k∑

j=1

2

k2j
=

2(kj − k)

k2j
,

1 ≤ k ≤ kj − 2.

Therefore,

E(δj(i1, i2)) =

kj−2∑

k=0

klj · Pr (δj(i1, i2) = klj)

=
(kj − 1)(kj − 2)

3kj
lj .

Definition 3 The pruning ability of αj is defined

as
(kj − 1)(kj − 2)

3kj
lj .

Greedy-selected-character algorithm: sort char-
acters of Σ in descending order of their pruning abil-
ity as α1, α2, · · · , αm. Return α1, α2, · · · , αθ as well
as their interval lengths, interval numbers, and divi-
sion point arrays.

Chunk distance: Now, let α1, α2, · · · , αθ be se-
lected as partition characters, and R1, R2, · · · , Rp be
data chunks returned by FrePartition. We consider
the lower bound of the edit distance between any
pair of strings from two data chunks.

Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510 1505

Consider data chunks Ri and Rj , with Ri.id =

(vi1, vi2, · · · , viθ) and Rj .id = (vj1, vj2, · · · , vjθ),
respectively. For any s ∈ Ri and t ∈ Rj ,
each αk (1 ≤ k ≤ θ) contributes at least
max (0, (|vik − vjk| − 1) · lk) to ‖f(s) − f(t)‖L1 .
Thus, the total contribution of α1, α2, · · · , αθ gives
a lower bound of ‖f(s)− f(t)‖L1 .
Definition 4 Chunk distance dis(Ri, Rj) be-
tween data chunks Ri and Rj , with Ri.id =

(vi1, vi2, · · · , viθ) and Rj .id = (vj1, vj2, · · · , vjθ), is

defined as
θ∑

k=1

max(0, (|vik − vjk| − 1) · lk).
Lemma 6 For data chunks Ri, Rj and s ∈ Ri, t ∈
Rj , dis(Ri, Rj) > 2τ implies ed(s, t) > τ .
Lemma 7 If Ri and Rj are data chunks drawn
from R1, R2, · · · , Rp randomly and uniformly, then

E(dis(Ri, Rj)) >
θ∑

j=1

(kj − 1)(kj − 2)

3kj
lj .

Discussion:
1. Note that E(dis(Ri, Rj)) � 2τ means that

many chunk-pairs with chunk distances are larger
than 2τ and all string pairs from such chunk pairs
are dissimilar. E(dis(Ri, Rj)) is determined by θ and
κ. We set κ = �log2 avgLen and θ to be the solution

of
θ∑

j=1

(kj − 1)(kj − 2)

3kj
lj = 2τ , where avgLen is the

average length of strings in R.
For example, if avgLen=100, then κ = 6. Fur-

ther, assume lj = 2 and kj = κ. Then θ = 5 en-
ables E(dis(Ri, Rj)) > 11, which is large enough for
τ = 1 − 4. As another example, assume lj = 4 and
kj = κ = 6. Then θ = 3 enables E(dis(Ri, Rj)) >

13, which is large enough for τ = 1−5. In Section 4.4
we will propose a novel technique to compute a small
θ for large τ by amplifying lj .

2. lj is determined by σ2
j to a large extent. On

the one hand, a larger σ2
j means a wider frequency

range [mj ,Mj]. On the other hand, the initial value
of lj is 3.49(Mj −mj)

−1/3σj .
3. The sizes of data chunks generated by FrePar-

tition are unbalanced, because each character’s fre-
quency follows a normal distribution approximately.
However, our method can guarantee that no data
chunks with a very small size are generated. In the
other aspect, if the data partition is used to guar-
antee the balanced sizes of data chunks, then many
similar strings will fall into different data chunks. In
contrast to this, our method can find most of similar
strings by joining all data chunks with themselves.

4. To join two different datasets R and S, a
common data partition strategy should be applied on
them. Such a strategy can be obtained by redefining
hj[i] (Algorithm 2) to be the total number of R∪S’s
strings, in each of which αj appears exactly i times.
Then, R and S can be partitioned into data chunks
by Algorithm 1.

4.4 Z-folding combination of characters

Let Σ1, Σ2, · · · , Σθ be a partition of alphabet
Σ, and s be a string of R. Each Σi is called a com-
bined character associated with the partition. Σi’s
combined frequency in string s, denoted as f (Σi)

i (s),
is the total number of appearances in s of all charac-
ters of Σi; i.e., f (Σi)

i (s) =
∑

αj∈Σi
fj(s). Vector <

f
(Σ1)
1 (s), f

(Σ2)
2 (s), · · · , f (Σθ)

θ (s)> is referred to as the
combined frequency vector of s associated with the
partition and written as f (c)(s). With the aid of av-
erage frequency μj and deviation σ2

j of each character
αj , average frequency μΣi of combined character Σi

can be computed as μΣi =
∑

αj∈Σi
μj and deviation

σ2
Σi

of Σi can be computed as σ2
Σi

=
∑

αj∈Σi
σ2
j .

Given a partition Σ1, Σ2, · · · , Σθ of Σ and the
statistics of each combined character Σi (1 ≤ i ≤ θ),
RangeSplit (Algorithm 2) can treat each Σi as a
usual character and split its frequency range into
small intervals. Thus, the interval length, inter-
val number, and vth interval of Σi are determined
similarly. According to |f (Σi)

i (s1) − f
(Σi)
i (s2)| ≤

∑
αj∈Σi

|fj(s1) − fj(s2)|, we can obtain Lemma 8,
which states the utility of combined characters:
Lemma 8 For strings s1 and s2, if ‖f (c)(s1) −
f (c)(s2)‖L1 > 2τ , then ed(s1, s2) > τ .
Lemma 9 If Σi is a combined character and αj ∈
Σi ∩Σ, then the ratio between the interval length of
Σi and that of αj is (σΣi/σj)

3/2.
Proof Essentially, RangeSplit solves lj = 3.49((κ−
2)lj)

−1/3σj approximately and iteratively.
Now, the remaining issue is how to break up al-

phabet Σ into combined characters Σ1, Σ2, · · · , Σθ

such that the expectation of chunk distances is max-

imized. This means that
θ∑

i=1

li reaches the maxi-

mum value, according to Lemma 7 and ki ≈ κ.
Moreover, li increases with the increase of σΣi , and
θ∑

i=1

σ2
Σi

= σ2
Σ is a constant. This suggests that the

partition of Σ should make all σ2
Σi

(1 ≤ i ≤ θ)
approximately equal. Here comes the following

1506 Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510

Z-folding algorithm:
Z-folding-combined-character algorithm: Sort

characters of Σ in descending order of their standard
deviations as α1, α2, · · · , αm. For k from 0 to �m/θ,
allot αkθ+1, αkθ+2, · · · , αkθ+θ to Σ1, Σ2, · · · , Σθ as
follows: if k is even, assign αkθ+j to Σj ; if k is odd,
assign αkθ+j to Σθ−j+1. Return Σ1, Σ1, · · · , Σθ as
well as their interval lengths, interval numbers, and
partition point arrays.
Example 3 Let θ = 3 and κ = 6. Consider
string set R in Table 1. (1) After characters are
sorted in descending order of their deviations, the
Z-folding-combined-character algorithm breaks up
the alphabet into subsets Σ1, Σ2, and Σ3 (Exam-
ple 1). (2) Then, the combined frequency vector of
each string is calculated from the frequency vector.
Meanwhile, the frequency range, as well as the devi-
ation, of each combined character is figured out; e.g.,
f (c)(s10) = (5, 5, 1) and f (c)(s14) = (4, 4, 2). The fre-
quency ranges of Σ1, Σ2, and Σ3 are [1, 8], [1, 7], and
[0, 8], respectively. (3) RangeSplit splits (a) [1, 8] into
[0, 2], [3, 4], [5, 6], and [7, 8], (b) [1, 7] into [1, 2], [3, 4],
[5, 6], and [7, 7], and (c) [0, 7] into [0, 1], [2, 3], [4, 5],
and [6, 7]. Thus, interval numbers k1 = k2 = k3 = 4

and interval lengths l1 = l2 = l3 = 2. (4) Using
results of Example 3(3), FrePartition partitions R

into five chunksC1, C2, · · · , C5 with (0, 1, 2), (1, 0, 2),
(2, 2, 0), (1, 2, 2), and (1, 1, 1) as chunk ids, respec-
tively. (5) The chunk distances can be evaluated;
e.g., dis(C2, C3) = 7.

5 Partition-based edit similarity join
algorithm

5.1 Chunk filtering

Given the partitioning strategy and data chunks
R1, R2, · · · , Rp generated by Algorithm 1, the chunk
distance between any two chunks can be computed
according to Definition 4. Furthermore, Lemma 6
states that the relationships between chunk distances
and 2τ ’s can be used to filter away some candidate
pairs. Such relationships can be recorded and taken
as a new filter, ChunkFilter. Formally, ChunkFilter
is a p × p matrix M , where M(i, j) = 0 or 1 (1 ≤
i, j ≤ p). M(i, j) = 0 means that dis(Ri, Rj) ≤ 2τ ,
and M(i, j) = 1 means that dis(Ri, Rj) > 2τ .

ChunkFilter can be constructed easily. We enu-
merate all p(p− 1)/2 chunk pairs (Ri, Rj)’s, check

whether dis(Ri, Rj) ≤ 2τ or not, and set entry
M(i, j) accordingly. The algorithm is omitted here
for simplicity. Note that the dissimilarity caught by
ChunkFilter can also be caught by FreFilter, since
Lemma 3 is stronger than Lemma 2. However, us-
ing ChunkFilter to find the dissimilarity between two
strings (with their chunk ids given) costs only time
of O(1), while using FreFilter to do the same thing
costs time of O(|Σ|). This suggests that ChunkFil-
ter can be used to save some computation caused by
FreFilter, if ChunkFilter is applied before FreFilter.

5.2 FrepJoin algorithm

The FrepJoin algorithm integrates FreFilter and
ChunkFilter into the filter-and-refine framework,
and makes it possible to remarkably improve the per-
formance of any ESJ algorithm A under this frame-
work with small extra costs. The key idea is to ex-
ploit two light-weighted filters to reduce the number
of candidate pairs generated by A. The candidate
pairs pruned away by the new filters result in re-
markable savings on edit distance verification.

FrepJoin (Algorithm 4) runs in three stages: In
the first stage (lines 1–8), the data set is constructed
and ChunkFilter is partitioned. In the second stage
(lines 9–12) an existing algorithm A is used to gen-
erate a candidate set for each string. The third stage
(lines 13–18) is to use ChunkFilter and FreFilter to
reduce the candidate set further and verify the re-
maining candidate pairs. It is not hard to understand
the algorithm with the concepts built in Section 4.
The explanation of each line is omitted.

Analysis: In contrast to the selected ESJ algo-
rithm A, the main extra costs of our algorithm occur
in the first stage. This is because the second stage
executes the same operations as in algorithm A, and
the third stage increases only two filters. For Chunk-
Filter, each application costs time of O(1). For Fre-
Filter, each application costs time of O(|Σ|), when
the frequency vectors are recorded. These two costs
are small, compared with the saved computation of
edit distance verification, which costs time of O(nτ).

Now, let us focus on the total cost of the first
stage. Line 1 costs time of O(nN), since it scans
the dataset twice. Line 2 costs time of O(θ), ac-
cording to the Z-folding algorithm. Line 3 costs
time of O(|Σ|N), since it scans the frequency vec-
tor of each string twice. Lines 4–5 cost time of
O(nθ) in total, since there are θ combined characters

Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510 1507

Algorithm 4 FrepJoin(R, τ)
Input: string set R; edit distance upper bound τ .
Output: pair set S of strings in R with ed(·, ·) ≤ τ .
1: Scan R to obtain statistics for each character of Σ;
2: Generate combined characters Σ1, Σ2, · · · , Σθ;
3: Scan frequency vectors to obtain statistics of the

combined characters;
4: for each Σj do
5: RangeSplit(Σj);
6: end for
7: R1, R2, · · · , Rp ← FrePartition(R);
8: Mp×p ← ChunkFilter(R1, R2, · · · , Rp);
9: S ← ptyset;

10: I ← buildIndex(R);
11: for each x ∈ R do
12: Use I and existing filters to obtain a candidate

set A for x;
13: if M(x.cid, y.cid) = 0 or FreFilter(x, y) = 1 then
14: continue;
15: end if
16: if Verify(x, y) = true then
17: Add pair < x, y > into S;
18: end if
19: end for
20: return S.

and the expense of algorithm RangeSplit(·) is O(n2).
Line 7 costs time of O(nN), since it scans the dataset
once. Line 8 costs time of O(θκ2θ), according to
Section 5.1. Note that n � N and parameters (κ, θ)
can be viewed as small constants. Thus, the to-
tal cost of the first stage is O(nN), which is caused
mainly by scanning the dataset and the frequency
vectors.

6 Experimental evaluation

We compared the following algorithms: (1) Ed-
Join, which integrates the existing filters (Xiao et al.,
2008a), (2) Ed-Join+FF, which is the Ed-Join al-
gorithm with FreFilter added after all existing fil-
ters, (3) FF+Ed-Join, which is the Ed-Join algo-
rithm with FreFilter added after the Prefix Filter
and Length Filter, and (4) PassJoin (Li et al., 2011).
Frep+A is Algorithm 4, where A is PassJoin or Ed-
Join. All algorithms were implemented as in-memory
algorithms with C++, with all their inputs loaded
into the memory before run. Moreover, the alphabet
is the English alphabet plus a wild card. All symbols
not in the English alphabet were mapped to the wild
card.

All experiments were performed on an IBM
x3650 M3 system with Intel� Xeon 2.67 GHz 4-core
CPU and 8 GB RAM. The operating system is sci-
entific Linux. The algorithms were compiled using
g++ 4.4.4 with -O3 flag.

We used three public-available real datasets to
evaluate our methods. They are DBLP, TREC, and
AOL Query Log. They were chosen to cover strings
of different average lengths and different contents.
Detailed statistics of these datasets can be found
in Xiao et al. (2008a) and Li et al. (2011). These
datasets were transformed and cleaned as in Xiao
et al. (2008a). The frequencies of single characters
in each string were counted at the time of tokenizing
q-grams. Thus, 27N × 10−6 Mb space is needed for
storing the frequency vectors in experiments, where
N is the number of strings in the dataset.

q affects the performance of Ed-Join, and thus
We have Ed-JoinFF and FFEd-Join. Here we set
q = 5 to guarantee the performance of Ed-Join on
the chosen datasets, according to the experimental
results in Section 6.2 of Xiao et al. (2008a). κ was
set to be �log2 avgLen. Thus, different datasets had
different κ’s. For θ, we find θ ≤ 3 holds for all
cases of our experiments, according to the method
in Section 4.3. For simplicity of statement, we fixed
θ = 3 here.

Three sets of experiments were conducted to
evaluate: (1) the independence of FreFilter, by
comparing the filtering effectiveness between algo-
rithms Ed-Join+FF and FF+Ed-Join, (2) the per-
formance of the data partition, by considering the
filtering effectiveness of data partitioning, the im-
pacts of parameters on running time, the size of the
global index, and the impact of data partitioning on
the size of the candidate set, and (3) the efficiency
of FrepJoin for ESJ, compared with those of Ed-Join
and PassJoin. The results are reported in Figs. 1–3.

Fig. 1 compares the filtering effectiveness (i.e.,
the ratio of the number of remaining string pairs to
the number of enumerated string pairs) of filters in
different settings. We find that, on all three datasets,
many pairs surviving the existing filters can be fur-
ther pruned away by FreFilter, and vice visa. Thus,
our FreFilter is independent of the existing filters.

Fig. 2 evaluates the performances of data par-
titioning on DBLP with algorithm Frep+EdJoin.
Fig. 2a compares the effectiveness of filtering
data-chunk pairs by setting different values for θ,

1508 Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510

and the ratios of chunk pairs with chunk distances
larger than 2τ to all chunk pairs are reported. Fig. 2b
compares the effects of combined characters on the
running time of the join algorithms. Fig. 2c com-
pares the numbers of indexed entries in the global
index, and the total numbers of index entries in the
local indices are counted for different q’s, θ’s, and
τ ’s.

Fig. 3 compares the running times of algorithms
on different datasets. Frep+EdJoin (Frep+PassJoin
resp.) consistently outperforms Ed-Join (PassJoin
resp.) when τ > 3, and this becomes more evident
when τ and q increase. For a small τ , the former is

slightly slower than the latter. This is because: (1)
For any τ , our partition-based method can enumer-
ate smaller candidate sets in a more efficient way,
and the frequency filter can further reduce the can-
didate pairs whose edit distances need to be checked.
(2) However, for a small τ , edit distance verification
may be faster than our frequency filter.

7 Related work

Many studies on the ESJ algorithms,
e.g., PartEnum (Arasu et al., 2006), AllPairs
(Bayardo et al., 2007), SSJoin (Chaudhuri et al.,

2 4 86 10
0.000

0.004
0.008

0.012
0.700

0.800

0.900

1.000

Content filter (DBLP)
Frequency filter (DBLP)
Content filter (TREC)
Frequency filter (DBLP)

Edit distance threshold

E
ffe

ct
iv

en
es

s
of

 fi
lte

rs

Content filter (DBLP)
Frequency filter (DBLP)
Content filter (TREC)
Frequency filter (DBLP)

Edit distance threshold

E
ffe

ct
iv

en
es

s
of

 fi
lte

rs

2 4 86 10
0.000
0.002
0.004
0.006
0.008

0.200
0.300

0.500

0.700
0.800

0.400

0.600

Content filter (DBLP)
Frequency filter (DBLP)
Content filter (TREC)
Frequency filter (DBLP)

Edit distance threshold

E
ffe

ct
iv

en
es

s
of

 fi
lte

rs

2 4 86 10
0.000
0.002
0.004
0.006
0.008

0.200
0.300

0.500

0.700
0.800

0.400

0.600

(a) (b) (c)

Fig. 1 Independences of frequency filters Ed-Join+FF (a), FF+Ed-Join (b), and Ed-Join(c), with q = 5 and
θ = 3

DBLP
τ=2 τ=4
τ=6
τ=10

τ=8

3 4 5 6 7 8
0.0
0.1
0.2

0.4
0.3

0.6
0.5

0.7
0.8

1.0
0.9

Number of combined characters

R
at

io
 o

f p
ru

ne
d

ch
un

k
pa

irs

τ=2

τ=8

τ=4

τ=10

τ=6

3 4 5 6 7 8
Number of combined characters

1100

0

400
300
200

700
600
500

100

1000
900
800

Ti
m

e
(s

)

3 4 5 6 7

2
4
6
8

10
12
14
16
18
20
22
23 Global index (θ=3)

Global index (θ=5)
Global index (θ=4)

Local index (total)

Length of q-grams

N
um

be
r o

f
in

de
xe

d
en

tit
ie

s
(M

b)

(a) (b) (c)

Fig. 2 Performance evaluation of data partitioning: (a) filtering effectiveness in DBLP; (b) time vs. number
of characters in DBLP with q = 5; (c) number of indexed entities with τ = 6

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Edit distance threshold

Ti
m

e
(s

)

PassJoin
Frep+PassJoin
EdJoin (q=5)
Frep+EdJoin (q=5)

PassJoin
Frep+PassJoin
EdJoin (q=5)
Frep+EdJoin (q=5)

1 2 3 4 5 6 7 8 9 10
Edit distance threshold

Ti
m

e
(s

)

0
20
40
60
80

100
120
140
160
180

PassJoin
Frep+PassJoin
EdJoin (q=3)
Frep+EdJoin (q=3)

Edit distance threshold

Ti
m

e
(s

)

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5

(a) (b) (c)

Fig. 3 Performance evaluation of FrepJoin in databases DBLP (a), TREC (b), and AOL Query Log (c)
compared with those of Ed-Join and PassJoin

Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510 1509

2006b), Ed-Join (Xiao et al., 2008a), TrieJoin (Feng
et al., 2012), PassJoin (Li et al., 2011), and
VcChunkJoin (Qin et al., 2013), employ the filter-
and-refine framework, where algorithms usually
use q-grams to filter out most dissimilar pairs and
further verify the remaining pairs. Several filters
have been developed, e.g., the counting filter (Gra-
vano et al., 2001; Chaudhuri et al., 2006b), length
filter (Gravano et al., 2001), positional filter (Gra-
vano et al., 2001; Xiao et al., 2008b), prefix filter
(Arasu et al., 2006; Chaudhuri et al., 2006b; Xiao
et al., 2008b), suffix filter (Xiao et al., 2008b),
non-overlapping segment based filters (Qin et al.,
2013), and content-based mismatching filter (Xiao
et al., 2008a). Although our frequency filter is a
special form of the content-based filter, it is not
adopted explicitly before and can prune away many
candidate pairs that survive the existing ones.

Partition techniques are not new for ESJ.
PartEnum (Arasu et al., 2006) generates signatures
for each string by projecting its feature vector to ran-
domly selected two-level partitioned q-gram sets. It
needs many candidate pairs to guarantee complete-
ness. The suffix filter (Xiao et al., 2008b) adopts
a divide-and-conquer framework to perform set-
similarity join. Both PartEnum and the suffix fil-
ter are still string-pair based and cannot catch the
dissimilarity between subsets. Trie-Join (Feng et al.,
2012) takes a trie-structure as an index to group
together strings with the same prefixes. Its sub-
trie pruning rule is able to prune away the whole
groups of strings. As reported in Feng et al. (2012),
it works well for only short strings. In Sarawagi
and Kirpal (2004), a string set was partitioned into
clusters of partially overlapping strings to reduce the
index size, and thus the performance of weighted in-
tersection similarity join is improved. Although it
can be adapted to ESJ, its performance is not guar-
anteed. Vernica et al. (2010) used token (groups)
to generate data partition for each computing node
of MapReduce. Afrati et al. (2012) used the ball-
hashing method to generate data partition for each
computing node of MapReduce. Unlike our method,
both methods in Vernica et al. (2010) and Afrati
et al. (2012) may allot a string into several data sub-
sets. This is beneficial only to parallel computing.
Moreover, Sarawagi and Kirpal (2004), Vernica et al.
(2010), and Afrati et al. (2012) did not use global
information of strings and could not provide lower

bounds of edit distances. It is also popular to parti-
tion strings into a group of string-segments, and to
transform approximate string matching into an ex-
act search (Navarro and Salmela, 2009; Wang et al.,
2009; Ge and Li, 2011). Besides, it was proposed
in Li et al. (2008) to partition long inverted lists into
shorter ones and to skip irrelevant ones while pro-
cessing approximate string matching. Our method
intends to partition the string set into small chunks
with performance guaranteed, and is orthogonal to
those methods mentioned above.

8 Conclusions

Frequency vectors of strings can be exploited to
improve the efficiency of edit string similarity join.
The statistics can be used to design an independent
filter and to partition a dataset into data chunks with
guaranteed distances, so that a remarkable propor-
tion of candidate pairs can be pruned away without
paying to enumerate them. Experiments confirmed
our views.

References
Afrati, F.N., Sarma, A.D., Menestrina, D., et al., 2012. Fuzzy

joins using MapReduce. Int. Conf. on Data Engineer-
ing, p.498-509. https://doi.org/10.1109/ICDE.2012.66

Arasu, A., Ganti, V., Kaushik, R., 2006. Efficient exact
set-similarity joins. Int. Conf. on Very Large Data
Bases, p.918-929.

Bayardo, R.J., Ma, Y., Srikant, R., 2007. Scaling up all
pairs similarity search. Int. World Wide Web Conf.,
p.131-140. https://doi.org/10.1145/1242572.1242591

Chaudhuri, S., Ganjam, K., Ganti, V., et al., 2003. Robust
and efficient fuzzy match for online data cleaning. Int.
SIGMOD Conf. on Management of Data, p.313-324.
https://doi.org/10.1145/872757.872796

Chaudhuri, S., Ganti, V., Kaushik, R., 2006a. Data de-
bugger: an operator-centric approach for data quality
solutions. IEEE Data Eng. Bull., 29(2):60-66.

Chaudhuri, S., Ganti, V., Kaushik, R., 2006b. A primitive
operator for similarity joins in data cleaning. Int. Conf.
on Data Engineering, p.687-698.
https://doi.org/10.1109/ICDE.2006.9

Dong, X., Halevy, A.Y., Yu, C., 2007. Data integration with
uncertainty. Int. Conf. on Very Large Data Bases,
p.687-698.

Feng, J., Wang, J., Li, G., 2012. Trie-join: a trie-based
method for efficient string similarity joins. VLDB J.,
21(4):437-461.
https://doi.org/10.1007/s00778-011-0252-8

Ge, T., Li, Z., 2011. Approximate substring matching over
uncertain strings. Proc. VLDB Endow., 4(11):772-782.

Gravano, L., Ipeirotis, P.G., Jagadish, H.V., et al., 2001.
Approximate string joins in a database (almost) for
free. Int. Conf. on Very Large Data Bases, p.491-500.

1510 Luo et al. / Front Inform Technol Electron Eng 2017 18(10):1499-1510

Hadjieleftheriou, M., Srivastava, D., 2010. Weighted Set-
Based String Similarity. Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineer-
ing. AT&T Lab-Research.

Henzinger, M.R., 2006. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. Int. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, p.284-291.
https://doi.org/10.1145/1148170.1148222

Ji, S., Li, G., Li, C., et al., 2009. Efficient interactive
fuzzy keyword search. Int. World Wide Web Conf.,
p.371-380. https://doi.org/10.1145/1526709.1526760

Li, C., Lu, J., Lu, Y., 2008. Efficient merging and filtering
algorithms for approximate string searches. Int. Conf.
on Data Engineering, p.257-266.
https://doi.org/10.1109/ICDE.2008.4497434

Li, G., Deng, D., Wang, J., et al., 2011. Pass-Join: a
partition-based method for similarity joins. Proc.
VLDB Endow., 5(3):253-264.
https://doi.org/10.14778/2078331.2078340

Metwally, A., Agrawal, D., Abbadi, A.E., 2007. Detectives:
detecting coalition hit inflation attacks in advertising
networks streams. Int. World Wide Web Conf., p.241-
250. https://doi.org/10.1145/1242572.1242606

Navarro, G., Salmela, L., 2009. Indexing variable length
substrings for exact and approximate matching. Int.
Symp. on String Processing and Information Retrieval,
p.214-221.
https://doi.org/10.1007/978-3-642-03784-9_21

Qin, J., Wang, W., Xiao, C., et al., 2013. Vchunkjoin: an

efficient algorithm for edit similarity joins. Trans.
Knowl. Dat. Eng., 25(8):1916-1929.
https://doi.org/10.1109/TKDE.2012.79

Sarawagi, S., Kirpal, A., 2004. Efficient set joins on similarity
predicates. Int. SIGMOD Conf. on Management of
Data, p.743-754.
https://doi.org/10.1145/1007568.1007652

Scott, D.W., 1979. On optimal and data-based histograms.
Biometrika, 66:605-610.
https://doi.org/10.1093/biomet/66.3.605

Vernica, R., Carey, M.J., Li, C., 2010. Efficient parallel
set-similarity joins using MapReduce. Int. SIGMOD
Conf. on Management of Data, p.495-506.
https://doi.org/10.1145/1807167.1807222

Wang, J., Li, G., Feng, J., 2011. Fast-join: an efficient
method for fuzzy token matching based string similarity
join. Int. Conf. on Data Engineering, p.458-469.
https://doi.org/10.1109/ICDE.2011.5767865

Wang, W., Xiao, C., Lin, X., et al., 2009. Efficient approx-
imate entity extraction with edit distance constraints.
Int. SIGMOD Conf. on Management of Data, p.759-
770. https://doi.org/10.1145/1559845.1559925

Xiao, C., Wang, W., Lin, X., 2008a. Ed-Join: an efficient
algorithm for similarity joins with edit distance con-
straints. Proc. VLDB Endow., 1(1):933-944.
https://doi.org/10.14778/1453856.1453957

Xiao, C., Wang, W., Lin, X., et al., 2008b. Efficient similarity
joins for near duplicate detection. Int. World Wide Web
Conf., p.131-140.
https://doi.org/10.1145/2000824.2000825

