
1972 Wu et al. / Front Inform Technol Electron Eng 2017 18(12):1972-1977

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Comment:

Cryptanalysis of an identity-based public auditing

protocol for cloud storage∗

Li-bing WU1, Jing WANG1, De-biao HE‡2, Muhammad-Khurram KHAN3

(1School of Computer Science, Wuhan University, Wuhan 430072, China)

(2School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China)

(3Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh 11653, Saudi Arabia)

E-mail: whuwlb@126.com; cswjing@whu.edu.cn; hedebiao@163.com; mkhurram@ksu.edu.sa

Received Sept. 6, 2016; Revision accepted Jan. 23, 2017; Crosschecked Dec. 20, 2017

Abstract: Public verification of data integrity is crucial for promoting the serviceability of cloud storage systems.
Recently, Tan and Jia (2014) proposed an identity-based public verification (NaEPASC) protocol for cloud data to
simplify key management and alleviate the burden of check tasks. They claimed that NaEPASC enables a third-
party auditor (TPA) to verify the integrity of outsourced data with high efficiency and security in a cloud computing
environment. However, in this paper, we pinpoint that NaEPASC is vulnerable to the signature forgery attack in the
setup phase; i.e., a malicious cloud server can forge a valid signature for an arbitrary data block by using two correct
signatures. Moreover, we demonstrate that NaEPASC is subject to data privacy threats in the challenge phase; i.e.,
an external attacker acting as a TPA can reveal the content of outsourced data. The analysis shows that NaEPASC
is not secure in the data verification process. Therefore, our work is helpful for cryptographers and engineers to
design and implement more secure and efficient identity-based public auditing schemes for cloud storage.

Key words: Cloud data; Public auditing; Data integrity; Data privacy
https://doi.org/10.1631/FITEE.1601530 CLC number: TP309

1 Introduction

With the explosive growth of data in the world,
cloud storage now plays an increasingly important
role in storing and managing massive data. The
traits of powerful storage, high reliability, flexible
access, and affordable management bring a sense of
convenience to both individuals and business organi-
zations (Li et al., 2016; Liu et al., 2016). By outsourc-
ing their data to a remote cloud server, individuals

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61472287, 61501333, 61572379, and 61772377),
the Natural Science Foundation of Hubei Province, China (Nos.
2015CFA068 and 2017CFA007), the Wuhan Science and Tech-
nology Plan Project (No. 2016060101010047), and the Deanship
of Scientific Research at King Saud University, Saudi Arabia
(No. PRG-1436-16)

ORCID: De-biao HE, http://orcid.org/0000-0002-2446-7436
c©Zhejiang University and Springer-Verlag GmbH Germany 2017

and business organizations free themselves from the
management of unexpected system failures. How-
ever, shifting data from local storage to the cloud
entails some security and privacy challenges owing
to the loss of data ownership. Hence, maintaining
the integrity of outsourced data is a key issue in the
serviceability of cloud storage.

To address the security issue, many encryption
protocols (Fu et al., 2015; 2016; Xia et al., 2016)
and public auditing protocols (Guo et al., 2014; He
et al., 2015; Ren et al., 2015) have been proposed
to check the storage integrity of cloud data without
downloading the whole file. Ateniese et al. (2007)
first proposed a public auditing mechanism, called
‘provable data possession (PDP)’, to verify the data
integrity on remote nodes. Based on the mechanism
from Ateniese et al. (2007), Shacham and Waters
(2008; 2013) came up with an improved PDP scheme

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601530&domain=pdf

Wu et al. / Front Inform Technol Electron Eng 2017 18(12):1972-1977 1973

with a Boneh–Lynn–Shacham (BLS) signature. The
construction of dynamic verification of data was first
presented by Chen and Curtmola (2012), which used
error-correcting codes to support provable updates
on outsourced data files. However, these schemes
ignore certain characteristics of cloud users.

In some other similar studies, Wang et al. (2013)
designed another public auditing scheme to preserve
data privacy. It prevents the TPA from disclos-
ing the outsourced data using a masking technique.
Nonetheless, Tan and Jia (2014) claimed that the
scheme and some other work are suitable only for
one situation: one key, one file. Once the key is lost,
the cloud user would no longer be able to verify the
data integrity. Furthermore, the cloud user needs
to remember different keys for various data files if
he/she needs to outsource multiple data files into
the cloud. Otherwise, the cloud server could forge
the metadata of each data block to deceive the user
if his/her key pairs are reused for different files.

To overcome the problem noted above, Tan and
Jia (2014) proposed an identity-based public veri-
fication protocol (NaEPASC), which simplifies key
management and alleviates the user burden. They
asserted that NaEPASC is secure and efficient in au-
diting the integrity of the outsourced data. However,
our cryptanalysis shows that their NaEPASC proto-
col is not secure when checking the data integrity
for cloud storage, because a malicious cloud server
can modify (or delete) the data block without be-
ing detected by the TPA. NaEPASC is vulnerable
to the data privacy attack; i.e., an external attacker
could disclose the data information by acting as the
TPA. Hence, our work will be able to help cryp-
tographers and engineers design more secure and
efficient identity-based public auditing schemes for
cloud storage by avoiding these two weaknesses.

2 Review of NaEPASC

In this section, we give a brief overview of the
construction of the NaEPASC protocol (Tan and Jia,
2014). Tan and Jia (2014) divided the auditing pro-
cess of their NaEPASC protocol into two phases:
setup phase and challenge phase. Here, some def-
initions are presented: G and GT denote two cyclic
groups of prime order p, and e : G × G → GT

is a bilinear map. H1, H2 : {0, 1}∗ → G and
H3 : {0, 1}∗ → Zp refer to three types of crypto-

graphic hash functions.
1. Setup phase. The PKG first executes the

algorithm KeyGen to select a random x ∈ Zp as its
secret parameter, and set (P,Q) as the public pa-
rameter, where P ∈ G is an arbitrary generator and
Q = xP . Then PKG sends the secret key {xPj}j=0,1

and the public key (P,Q) to the cloud user, where
Pj = H1(ID, j) and ID is the identity of the cloud
user.

Suppose that the data file F named ‘filename’
is divided into n blocks, and idi is the index of data
block mi. Then, the cloud user runs the algorithm
Sign to generate the signatures as noted below.

For 1 ≤ i ≤ n, the user first selects
a random element ri ∈ Zp to compute the
value of Ti = riP . Next, the user com-
putes Si = riPw + cixP0 + mixP1, where Pw =

H2(filename), ci = H3(ID, filename, idi). Finally, the
user sends {filename, {Si, Ti}1≤i≤n} to the cloud
server and removes it from local storage.

2. Challenge phase. First, the TPA randomly
chooses a c-element subset I = {l1, l2, · · · , lc} of the
set {1, 2, · · · , n}. Then, it sets chal = {i, vi}i∈I

as the auditing challenge and sends it to the cloud
server, where vi is randomly chosen from the group
Zq, |q| = |p|/2.

Upon receiving the message chal = {i, vi}i∈I ,
the cloud server executes the algorithm GenProof to
compute the corresponding proof:

⎧
⎨

⎩

μ =
∑

i∈I vimi,

Sn =
∑

i∈I viSi,

Tn =
∑

i∈I viTi.

(1)

Next, it sends the proof {μ, Sn, Tn} to the TPA as
the response.

Finally, the TPA performs VerifyProof to check
the data integrity using the following equation:

e(Sn, P) = e(Tn, Pw)e

(
lc∑

l1

civiP0 + μP1, Q

)

, (2)

where ci = H3(ID, filename, idi), P0 = H1(ID, 0),
P1 = H1(ID, 1), and Pw = H2(filename).

3 Cryptanalysis of NaEPASC

Tan and Jia (2014) claimed that NaEPASC pro-
tocol is efficient and secure in verifying the integrity
of outsourced data. In this section, we will analyze

1974 Wu et al. / Front Inform Technol Electron Eng 2017 18(12):1972-1977

the security of the NaEPASC protocol and point out
two concrete attacks against NaEPASC. In the sig-
nature forgery attack, a malicious cloud server can
modify (or delete) the outsourced data without being
detected by the TPA. In the data recovery attack,
a curious TPA can recover the content of the out-
sourced data from auditing messages. The detailed
attacks are presented below.

3.1 Signature forgery attack

Tan and Jia (2014) proved that their signature
scheme is existentially unforgeable in Theorem 2.
However, we demonstrate that it is vulnerable to a
signature forgery attack, because a malicious cloud
is able to forge a valid signature for an arbitrary data
block. Consequently, the malicious cloud server can
modify (or delete) the original user’s data and pass
the TPA’s verification successfully.

Suppose a data file F is split into n blocks, i.e.,
F = m1 ‖ m2 ‖ · · · ‖ mn, and the signature of each
data block mi is denoted as σi = {Si, Ti}. Let A1

denote the malicious cloud server. It can commit the
signature forgery attack through the following steps:

1. A1 extracts two correctly stored data blocks
mj and mk and their corresponding signatures
{Sj , Tj} and {Sk, Tk}, where j, k ∈ {1, 2, · · · , n}.

2. A1 computes cj = H3(ID, filename, idj) and
ck = H3(ID, filename, idk) with the known parame-
ters H3, ID, filename,idj , and idk.

3. For each i, A1 computes the value of ci =

H3(ID, filename, idi) and stores it (i �= k, j).
4. For each m′

i �= mi, A1 computes T ′
i = aiTj +

biTk and S′
i = aiSj + biSk, (i �= k, j), where

⎧
⎪⎪⎨

⎪⎪⎩

ai =
cjm

′
i − cimj

cjmk − ckmj
,

bi =
ckm

′
i − cimk

ckmj − cjmk
.

(3)

5. A1 substitutes m′
i, T ′

i , and S′
i for mi, Ti, and

Si (i �= k, j).
6. In the same way, A1 can replace {mj , Tj, Sj}

and {mk, Tk, Sk}with {m′
j, T

′
j, S

′
j} and {m′

k, T
′
k, S

′
k},

respectively.
7. Upon receiving the auditing challenge

chal = {(i, vi)}i∈I from the TPA, A1 computes
μ′ =

∑
i∈I vim

′
i, S

′
n =

∑
i∈I viS

′
i, T

′
n =

∑
i∈I viT

′
i ,

where I = {l1, l2, · · · , lc} is a subset from the set
{1, 2, · · · , n}.

8. A1 returns {μ′, S′
n, T

′
n} as the auditing proof.

A1’s response can pass the TPA’s verification.
We present the proof below:

Owing to T ′
i = aiTj + biTk = (airj + birk)P ,

S′
i = aiSj + biSk = (airj + birk)Pw + cixP0 +m′xP1

(where a, b are the values computed by A1 in step 4),
we can obtain Eq. (4).

Thus, the proof {μ′, S′
n, T

′
n} can pass the verifi-

cation and modify the outsourced data without being
detected by the TPA.

In a special data modification case, the mali-
cious cloud server can preserve only two legitimate
and authentic pairs of the data blocks and their sig-
natures, and then deletes all other blocks to save
space. During the challenge phase, it can forge a
series of data blocks and corresponding signatures

e(S′
n, P) =e

(lc∑
l1

viS
′
i, P

)
= e

[lc∑
l1

vi(aiSj + biSk), P

]

=e

(lc∑
l1

vi[(airj + birk)Pw + (aicj + bick)xP0 + (aimj + bimk)xP1], P

)

=e

(lc∑
l1

vi[(airj + birk)Pw + cixP0 +m′
ixP1], P

)

=e

(lc∑
l1

vi(airj + birk)Pw, P

)
e

(
x

lc∑
l1

vi(ciP0 +m′
iP1), P

)

=e

(lc∑
l1

vi(airj + birk)P, Pw

)
e

(lc∑
l1

(viciP0 + vim
′
iP1), Q

)

=e

(lc∑
l1

viT
′
i , Pw

)
e

(lc∑
l1

viciP0 +

lc∑
l1

vim
′
iP1, Q

)
= e(T ′

n, Pw)e

(lc∑
l1

civiP0 + µ′P1, Q

)
.

(4)

Wu et al. / Front Inform Technol Electron Eng 2017 18(12):1972-1977 1975

temporarily to meet the auditing requirements by
following the above steps.

Next, for simplicity, we will present a spe-
cific example of a signature forgery attack against
Tan and Jia (2014)’s protocol with some artifi-
cially small parameters. We use the JPBC Library
(http://gas.dia.unisa.it/projects/jpbc/) with ‘type
A pairing’ to perform the forgery attack.

Assume that the auditing challenge is chal =

{(1, 1), (2, 1), (3, 3)}, and the block m3 is corrupted
or deleted for some reasons. Let {Si, Ti} represent
the signature of block mi. Let A1 be a malicious
cloud server. As the integrity of the challenged data
is broken, A1 has to perform the signature forgery
attack in the following steps:

1. A1 extracts the values of {m1 = 251, S1 =

(xs1, ys1), T1 = (xt1, yt1)}, {m2 = 253, S2 =

(xs2, ys2), and T2 = (xt2, yt2}, since the two blocks
and corresponding signatures are stored correctly.

2. According to ci = H3(ID, filename, idi), A1

computes c1, c2, c3 and stores them.
3. A1 picks a random data block m′

3 = 255 to
replace block m3.

4. By referring to Eq. (3), A1 first calculates
the values of a and b, and then derives the signature
S

′
3 = aS0 + bS1 and T

′
3 = aT0 + bT1.

5. A1 computes μ′, S′
n, and T ′

n. It then sends
{μ′, S′

n, T
′
n} to the TPA.

6. The TPA verifies the received proof by

e(S′
n, P) = e(T ′

n, Pw)e

(
3∑

1

civiP0 + μP1, Q

)

. (5)

Our experiment shows the above equation holds.
Due to the length of large integers, we save the

value of the above parameters in Table 1, which can
be used to verify the accuracy of this attack, and all
these data are in hexadecimal format.

3.2 Data privacy attack

Tan and Jia (2014) claimed that the NaEPASC
protocol is efficient and secure when verifying the
integrity of outsourced data. In this subsection, we
prove that an external attacker can extract the out-
sourced data by acting as a TPA, and then we give
a toy example of the data recovery attack to further
illustrate the attack.

Let A2 be an external attacker who can perform
the auditing task by impersonating a public auditor.

Suppose a data file M is composed of n blocks, i.e.,
M = m1 ‖ m2 ‖ · · · ‖ mn. In addition, A2 wants to
disclose the block ms1 ,ms2 , · · · ,msc .

To obtain the content of the above data blocks,
A2 will implement a data privacy attack after the
setup phase through the following steps.

1. A2 selects a c-element subset {s1, s2, · · · , sc}
from the set {1, 2, · · · , n}, which denotes the indices
of challenged data blocks.

2. A2 queries the cloud server for at least c

times during the challenge phase, and the auditing
challenges are defined as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

chal1 = {(s1, v1s1), (s2, v1s2), · · · , (sc, s1sc)},
chal2 = {(s1, v2s1), (s2, v2s2), · · · , (sc, s2sc)},

...
chalc = {(s1, vcs1), (s2, vcs2), · · · , (sc, scsc)}.

(6)

3. In return, the cloud server responses to A2

with c corresponding auditing proofs as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pf1 = {μ1, S1n, T1n},
pf2 = {μ2, S2n, T2n},

...
pfc = {μc, Scn, Tcn},

(7)

where μi =
∑sc

s1
vjmj , Sin =

∑sc
s1
vjSj , Tin =

∑sc
s1
vjTj , and 1 ≤ i ≤ c.
4. A2 first collects some one-dimensional

matrices from its challenges such as v1 =

[v1s1 , v1s2 , · · · , v1sc], v2 = [v2s1 , v2s2 , · · · , v2sc], · · · ,
vc = [vcs1 , vcs2 , · · · , vcsc]. Then it sums up these
matrices into the following matrix:

V =

⎡

⎢
⎢
⎢
⎣

v1s1 v1s2 . . . v1sc
v2s1 v2s2 . . . v2sc

...
...

...
vcs1 vcs2 . . . vcsc

⎤

⎥
⎥
⎥
⎦
. (8)

5. Let det(V) �= 0. Then A2 computes a matrix
Y which satisfiesY V = E, whereE is a unit matrix.

6. Let matrix F = [ms1 ,ms2 , · · · ,msc]
T, and

A2 constructs a matrix U = [μ1, μ2, . . . , μc]
T, which

is constructed by part of the auditing proofs from
the cloud server.

7. As U = V F , A2 can succeed in obtaining
the content of the data blocks from the equation
F = Y U .

In particular, A2 can go further and select other
data block sets to challenge, so it can recover all the

1976 Wu et al. / Front Inform Technol Electron Eng 2017 18(12):1972-1977

Table 1 Parameters of the signature forgery attack

Parameter Value(s)

x 33e2a151 dec19b64 9b71e02e 26d642fe 4d0a0b88
P 13f17424 63b556f3 b2b19e6c 6c368bc6 e7d2776e 9620d30e aa79bd93 b5d7d68d

861a575b 73e056fc a34c616d 0e22ba54 8da46c38 35efc269 ab8c8b40 955d15cc
1027db59 20039be2 8c042ab3 b7d4019f ca02a9fd dbd7dd4e efef8d3e ffb4845b
443389f9 be22b73b 73bcb18b 28566fd0 1246ac69 9a3dc206 7dddd37b fa6fd5a7

Q 95a7e384 59d4d37d f41a6e01 05ffe991 1d8feb16 9e78ec91 55b2a7f8 9dd22bd3
e0a58e6f 606f7105 262846aa 97b3de67 ee7d1ee6 80e46a14 62dde0ab 3ebe7676
4f247377 570d61f5 80e7bf76 7d81c055 01ee797f f59a23f7 d1db2d30 74ef0c1d
22f38194 14d2cade a314a40f 98b70789 31ff7fc2 29676a46 c5fda836 17c6b1c6

P0 6a55b358 25d566b8 04ea1d8e 4b2b20b9 29d707ae 2f0c242f f8629168 bccc6fd5
c7e5d967 ecc53021 ed38efae 7e12036d c0076d86 97320405 cd486dae 8def465a
6fe605f6 9c20f7f0 57572610 0e0afd29 722c50a5 a5b8d4d4 c6b6d9af b6f79043
c680b478 b8a14798 3511bb42 06c2aab0 514316e7 d342ea89 f9c42603 b7fdc533

P1 93ece5bb 198903c6 24590770 2f13030d 39d7de9f a33b9ed1 403a0ab7 1ef5c784
3d1a8c27 79f4f202 b70b4631 a18373b5 c2eaccac a576235a 6a2897b5 fc356904
5b95ce5a 2f7a5a61 ef570e23 5015a5de dc183d19 f6de8bba fbc2eab7 92de5bfd
407930ab 36ae4619 66a9d9c1 b2858a20 47cb08ba adae27d7 1b3cdc84 5bf97620

Pw 1885ab50 ca047db6 84d164e3 46eb64bb 50477910 853204df 117151f9 46386715
792720af bb0d8d06 d51724eb b7e4526d 592190d9 b5294a7b edbddce7 26b52694
27406cb2 9f67dcef 60a3badf c02efbdf 9aa9cd17 714374e1 0367c460 7a3ca5d1
c82c5fad 2f4b9609 941b646e f5ceb93a 354f2d15 e7d5a788 80200b45 4870fe3e

r1 27727ccf 025f9f79 b4d9fbaf efe9e2b4 b473ecf7
r2 1b3e5867 d96accaf c6c37273 0e6f942a c1604ace
S1 83c88c4b 85d564c2 6d3fdf51 aecfa114 c1d2ee01 ca2c8b63 1a2b46f9 f71ee98c

47f2ecd2 d0497d79 4c2808b5 ee537eb7 55d146b3 96d74e05 b8af5c13 d59891fe
21a815fd b976822e 5feb6023 b117315d e48fac54 332ae067 cd4b6ddf ffcf8fa0
bf9c4479 9f3df154 3dde4382 0aa4a3e6 e990bcdd a31949ac edc03473 2042b43c

S2 1d0626ae b2fe1081 6b9c277d ffc167c2 43745d5e c285efdd b53d9df9 6b5eacef
992477a8 afece68d ca0a3251 3cb35b35 5fb2819f 0b82dc0f 0e111163 a622b42d
17097a86 8bec4e6d 539b9ef2 29e05e16 090023e8 e09d5b2f ae9f8e9a 199ab4a3
d073af6e 22e12dda 1b8d1fde b8626820 9fb6c3b9 8eb1c45a eeda68a8 a252d4be

a 80000000 00000800 00000000 00000000 00000000
b 00000002
S

′
3 901114cb 2e5a92a2 1eee1dd0 16acc6d1 04bdab93 9dfb7f82 0270d923 763a0360

66120aa7 d3205d22 6d65add1 5c821c33 e3db9b5a 8036f447 3c2578a4 21f6551f
8cbbcb71 cd09bdf0 affd30bc 427c442d 38fe7297 c798dc38 dad51817 0947a86d
2b5cba05 9288d992 5eeb5c1d 56ea0186 61f59847 0d892f0a b0b2e2b6 b48ca72a

T
′
3 149f7356 a859554f 5a16a040 bbc35a29 02cbeb95 7897287a 0ab2b468 7d842a20

49b22695 703d8236 36dd52ca 9764cff9 433512e6 b43cc8fd 1311789d 269d206d
7465267d a98fe305 cced1495 7860f185 02c2e64b d46a5032 0f7e6c0a 7f8d4011
f344fd2c 8b250b8c 20ef0a11 fe97884d 70f421cb 4b8e359b aa0adf0b e1e6d7b6

block data of the data file. Therefore, NaEPASC
cannot preserve the privacy of outsourced data in
the cloud.

Now, we present a simple example to prove that
the curious TPA can actually reveal the content of
the challenged data blocks. For simplicity, we select
some parameters that are as small as possible:

1. The adversary A2 acts as a TPA to perform
the auditing challenges. Now, it first selects a three-
element subset I = {1, 2, 3}. It first selects three
random values {v11 = 1, v12 = 1, v13 = 4} ∈ Zp,

and then sends chal1 = {(1, 1), (2, 1), (3, 4)} as the

auditing challenge to the cloud server.
2. Upon receiving chal1, the cloud server com-

putes ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μ1 =

3∑

i=1

v1imi = 1× 3586+

1× 3587 + 4× 3588 = 21 525,

S1n =

3∑

i=1

v1iSi, T1n =

3∑

i=1

v1iTi,

(9)

where m1 = 3586, m2 = 3587, and m3 = 3588.
3. Next, A2 repeats step 1 twice. It al-

ways chooses the same data blocks {m1,m2,m3}

Wu et al. / Front Inform Technol Electron Eng 2017 18(12):1972-1977 1977

as the challenged blocks but with different ran-
dom values vji. For example, let {v21 = 1, v22 =

2, v23 = 3} and {v31 = 1, v32 = 5, v33 = 5}. Then,
it sends chal2 = {(1, 1), (2, 2), (3, 3)} and chal3 =

{(1, 1), (2, 5), (3, 1)} to the cloud server.
4. Similar to step 2, the cloud server returns

the auditing proofs {μ2, S2n, T2n} and {μ3, S3n, T3n}
to A2 after receiving the auditing challenge chal2
and chal3, where μ2 =

∑3
i=1 v2imi = 1 × 3586 +

2 × 3587 + 3 × 3588 = 21 524, μ3 =
∑3

i=1 v3imi =

1× 3586 + 5× 3587 + 1× 3588 = 25 109.

5. Now, A2 can obtain the matrix V , con-
structed by a random value vji, and another matrix
Y derived from the formula Y V = E, as follows:

V =

⎡

⎣
1 1 4

1 2 3

1 5 1

⎤

⎦,Y =

⎡

⎣
−13 19 −5

2 −3 1

3 −4 1

⎤

⎦.

6. Let U = [μ1, μ2, μ3]
T = [21525, 21524,

25109]T. A2 computes the value of Y U and the re-
sult is
⎡

⎣
−13 19 −5

2 −3 1

3 −4 1

⎤

⎦

⎡

⎣
21 525

21 524

25 109

⎤

⎦ =

⎡

⎣
3586

3587

3588

⎤

⎦ .

Because the data blocks sampled for checking are
exactly m1 = 3586, m2 = 3587, and m3 = 3588, A2

succeeds in disclosing the content of the challenged
data blocks.

4 Conclusions

In this paper, we first reviewed the NaEPASC
protocol proposed by Tan and Jia (2014), and then
pinpointed the insecurity in both the setup phase
and the challenge phase. The cryptanalysis demon-
strates that a malicious cloud server can imperson-
ate the cloud user to generate a valid signature so
that it can pass the verification of TPA without cor-
rect data storage. Meanwhile, the analysis shows
that NaEPASC cannot maintain the privacy of the
data, because the TPA can reveal the content of out-
sourced data through auditing challenges and proofs.
Hence, NaEPASC is not suitable for checking the
storage correctness of outsourced data as a public
auditing protocol. Although we have not conceived
a good idea for solving the problems, our work can
help cryptographers and engineers design and imple-
ment more secure and efficient identity-based public
auditing schemes for cloud storage.

References
Ateniese, G., Burns, R., Curtmola, R., et al., 2007. Provable

data possession at untrusted stores. Proc. 14th ACM
Conf. on Computer and Communications Security,
p.598-609. https://doi.org/10.1145/1315245.1315318

Chen, B., Curtmola, R., 2012. Robust dynamic provable data
possession. 32nd Int. Conf. on Distributed Computing
Systems Workshops, p.515-525.
https://doi.org/10.1109/ICDCSW.2012.57

Fu, Z.J., Sun, X.M., Liu, Q., et al., 2015. Achieving efficient
cloud search services: multi-keyword ranked search over
encrypted cloud data supporting parallel computing.
IEICE Trans. Commun., E98.B(1):190-200.
https://doi.org/10.1587/transcom.E98.B.190

Fu, Z.J., Ren, K., Shu, J.G., et al., 2016. Enabling per-
sonalized search over encrypted outsourced data with
efficiency improvement. IEEE Trans. Parall. Distrib.
Syst., 27(9):2546-2559.
https://doi.org/10.1109/TPDS.2015.2506573

Guo, P., Wang, J., Geng, X.H., et al., 2014. A variable
threshold-value authentication architecture for wireless
mesh networks. J. Intern. Technol., 15(6):929-935.
https://doi.org/10.6138/JIT.2014.15.6.05

He, D.B., Zeadally, S., Wu, L.B., 2015. Certificateless public
auditing scheme for cloud-assisted wireless body area
networks. IEEE Syst. J., in press.
https://doi.org/10.1109/JSYST.2015.2428620

Li, J.T., Zhang, L., Liu, J.K., et al., 2016. Privacy-preserving
public auditing protocol for low performance end devices
in cloud. IEEE Trans. Inform. Forens. Secur., 11(11):
2572-2583. https://doi.org/10.1109/TIFS.2016.2587242

Liu, J.K., Au, M.H., Huang, X., et al., 2016. Fine-grained
two-factor access control for web-based cloud computing
services. IEEE Trans. Inform. Forens. Secur., 11(3):
484-497. https://doi.org/10.1109/TIFS.2015.2493983

Ren, Y.J., Shen, J., Wang, J., et al., 2015. Mutual verifiable
provable data auditing in public cloud storage. J.
Intern. Technol., 16(2):317-323.
https://doi.org/10.6138/JIT.2015.16.2.20140918

Shacham, H., Waters, B., 2008. Compact proofs of retriev-
ability. LNCS, 5350:90-107.
https://doi.org/10.1007/978-3-540-89255-7_7

Shacham, H., Waters, B., 2013. Compact proofs of retriev-
ability. J. Cryptol., 26(3):442-483.
https://doi.org/10.1007/s00145-012-9129-2

Tan, S., Jia, Y., 2014. NaEPASC: a novel and efficient public
auditing scheme for cloud data. J. Zhejiang Univ.-Sci.
C (Comput. & Electron.), 15(9):794-804.
https://doi.org/10.1631/jzus.C1400045

Wang, C., Chow, S.S.M., Wang, Q., et al., 2013. Privacy-
preserving public auditing for secure cloud storage.
IEEE Trans. Comput., 62(2):362-375.
https://doi.org/10.1109/TC.2011.245

Xia, Z., Wang, X., Sun, X., et al., 2016. A secure and
dynamic multi-keyword ranked search scheme over en-
crypted cloud data. IEEE Trans. Parall. Distrib.
Syst., 27(2):340-352.
https://doi.org/10.1109/TPDS.2015.2401003

