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Abstract:
targets for attacks to cause catastrophic physical damage.

Industrial control systems (ICSs) are widely used in critical infrastructures, making them popular
As one of the most critical components in ICSs, the
programmable logic controller (PLC) controls the actuators directly. A PLC executing a malicious program can
cause significant property loss or even casualties. The number of attacks targeted at PLCs has increased noticeably
over the last few years, exposing the vulnerability of the PLC and the importance of PLC protection. Unfortunately,
PLCs cannot be protected by traditional intrusion detection systems or antivirus software. Thus, an effective
method for PLC protection is yet to be designed. Motivated by these concerns, we propose a non-invasive power-
based anomaly detection scheme for PLCs. The basic idea is to detect malicious software execution in a PLC
through analyzing its power consumption, which is measured by inserting a shunt resistor in series with the CPU in
a PLC while it is executing instructions. To analyze the power measurements, we extract a discriminative feature
set from the power trace, and then train a long short-term memory (LSTM) neural network with the features of
normal samples to predict the next time step of a normal sample. Finally, an abnormal sample is identified through
comparing the predicted sample and the actual sample. The advantages of our method are that it requires no
The method is

evaluated on a lab testbed, and for a trojan attack whose difference from the normal program is around 0.63%, the

software modification on the original system and is able to detect unknown attacks effectively.

detection accuracy reaches 99.83%.
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1 Introduction supervise and control most of the physical processes
in critical infrastructures including energy, water,

Industrial control systems (ICSs), which include transportation systems, the chemical industry, the

supervisory control and data acquisition (SCADA)
systems, distributed control systems (DCSs), and
programmable logic controllers (PLCs), are cyber-
physical systems that automate industrial processes
(Stouffer et al., 2011). ICSs have been widely used to
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nuclear industry, critical manufacturing, food, and
healthcare (Alcaraz and Zeadally, 2015). Not sur-
prisingly, the security of an ICS has a direct effect on
the physical world, affecting property safety, human
lives, and even national security.

When ICSs were first deployed, many of their
components were in physically secured areas and
were not connected to the Internet. Thus, security
was not a major concern and the primary goals were


Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601540&domain=pdf

520 Xiao et al. / Front Inform Technol Electron Eng 2017 18(4):519-534

functional safety and system effectiveness. Proto-
cols such as MODBUS, Ethernet/IP, and ISO-TSAP
were used to communicate with field devices and
PLCs in an ICS. Although these protocols work ef-
fectively, they do not consider attacks because an
ICS is believed to be isolated from public networks.
With the development of information technology
(IT), ICSs are increasingly connected to the Inter-
net, which increases chances of exposing the critical
infrastructure to remote attacks. Recently, Stuxnet
raised an alarm and demonstrated that ICSs are
highly vulnerable to remote malicious manipulation
and ICS security needs to be revisited (Chen and
Abu-Nimeh, 2011).

In reality, the attacks against ICSs have a larger
impact than those on IT systems. In 2000, a sewage
treatment system in Maroochy Shire, Queensland
was hacked by a disgruntled employee through a lap-
top and a wireless radio. As a result, the raw sewage
spilt out into local parks and rivers, causing environ-
mental pollution (Slay and Miller, 2007). In 2003,
the Davis-Besse nuclear plant in Ohio was hacked
because of a worm, and the nuclear plant was unable
to work for several hours (Johnson, 2010). In 2006,
the Browns Ferry nuclear plant in the United States
was hacked and the nuclear reaction unit was forced
to close (Kesler, 2011). In 2009, the two metro trains
collided because of an attack, causing passenger in-
juries and deaths (Johnson, 2010). In 2010, Stuxnet
swept around the world, and more than 45000 net-
works were infected (Chen and Abu-Nimeh, 2011).
In 2012, the most sophisticated computer malware
ever seen in industry, Flame, raged in the Middle
East, and was 20 times more harmful than Stuxnet
(Bencsath et al., 2012). In 2014, Havex started a
full-scale attack against SCADA systems in Europe
(Pretorius and van Niekerk, 2016).
of attacks are likely to emerge over time, and pro-
tecting ICSs against existing and future attacks is
important.

Similar types

Compared to IT systems, the attacks against
an ICS can affect the physical world and cause more
devastating impact. Since critical infrastructures are
the basis of national economy and people’s daily life,
their security and protection are extremely impor-
tant. After the discovery of Stuxnet, many security
mechanisms such as the network-based intrusion de-
tection system (IDS) and signature-based antivirus
software were used to enhance the security of ICSs.

However, traditional cyber security mechanisms have
limitations when being applied to ICSs. On the
one hand, these approaches are not applicable to all
devices in an ICS, especially the embedded devices
that are resource-constrained and cannot execute an-
tivirus software. On the other hand, vendors of ICSs
may refuse to load third-party software or upgrade
their devices to include security software, afraid of
being responsible for third-party software for poten-
tial safety incidents.

Motivated by the special characteristics of ICSs,
we focus on protecting the PLC, which is one of
the most critical components in an ICS and can-
not be protected by traditional IDS or antivirus
software. PLCs control actuators directly and if a
PLC is executing a malicious program instead of the
original one, it can damage the physical world dra-
matically, ranging from property damage to loss of
life. Already, an increasing number of attacks have
targeted PLCs, showing the importance of ensur-
ing the proper execution of a PLC and detecting
Thus, we propose NIPAD, a
non-invasive power-based anomaly detection scheme
for PLCs. The basic idea of NIPAD is to detect
whether a PLC is executing its normal program or a

abnormal scenarios.

malicious program by analyzing its power consump-
tion. Based on NIPAD, we are able to implement
a real-time monitoring system to detect abnormal
execution. Compared to traditional cyber-security
mechanisms, NIPAD is ideal for anomaly detection
in ICSs because of the following three advantages.
First, it is non-invasive, and requires no software
modification of the original ICS. Since NIPAD is a
side-channel based method, it does not interact with
the original ICS, neither does the ICS need to in-
stall third-party software. Second, NIPAD does not
need to be trained over abnormal power consump-
tion. Since abnormal samples are rare and difficult
to get in practice, we design NIPAD to be indepen-
dent toward the attacks and able to detect both ex-
isting attacks and the ones that may emerge over
time. Third, the system is renewable. Once a more
effective anomaly detection algorithm is designed,
NIPAD is able to update the algorithm.

2 Motivation and goals

ICSs control critical infrastructures, mass pro-
duction lines, etc., and thus an ICS is an attractive
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target since attacks can cause serious consequences.
The attackers can range from hostile governments,
terrorist groups, to industrial spies. In addition, mal-
practice from careless employees or intentional mis-
conduct from disgruntled employees can cause a simi-
lar negative impact (Macaulay and Singer, 2011). To
reduce the impact, it is important to detect attacks
and anomalies in a timely manner and the monitor-
ing system should require minimum modification of
the original ICS. In this section, we first introduce
the basics of an ICS, and then discuss the attack
model as well as the goals of our monitoring system.

2.1 Background

Although we focus on monitoring the execution
of a PLC, we introduce a simplified ICS below to
provide necessary background to understand our sys-
tem. A typical ICS consists of the following compo-
nents (Fig. 1):

1. Control server

The control server is used to communicate with
lower-level control devices through the supervisory
control software.

2. Human-machine interface (HMI)

The HMI includes both software and hardware,
providing an interface for human operators to mon-
itor and control the state of the control processes.
HMI software such as WinCC is able to provide a
centralized monitoring of the numerous process in-
puts and outputs.

3. Data historian

The data historian is a centralized database that
stores all process information within an ICS.

4. Programmable logic controller (PLC)

The PLC is a small industrial computer with
the capability of controlling complex industrial pro-
cesses, and is originally designed to control the logic
executed by electrical hardware such as switches, re-
lays, and timers. It is widely used in an ICS as a
real-time control unit because of its strength in be-
ing economical, flexible, configurable, and versatile.

5. Sensors and actuators

There are various sensors for measurement and
actuators for control in an ICS, such as pressure and
temperature sensors, valves, motors, robotics, relays,
and breakers.

Fig. 1 shows a simplified model of the critical
components for an ICS, whereby there is one pri-
mary control center and some field sites. The con-

Control center Field site
HMI Engineering
workstation Sensor
Cc
Actuator
Field site
Data  Control Communication Sensor
historian server router PLC
Actuator

Fig. 1 A simplified model of an industrial control
system (ICS). The PLC is the core component in an
ICS interacting with field devices

trol center includes the control server, communica-
tion routers, an HMI, engineering workstations, and
a data historian (Stouffer et al., 2011). All of them
are connected by a local area network (LAN). The
control center is responsible for centralized alarming
and reporting. It collects and logs information from
the field sites, and may generate instructions to han-
dle events. The operator in the control center is able
to remotely conduct real-time monitoring as well as
control for an entire system. A field site consists of
a control unit PLC, various sensors, and actuators.

For a basic control process, controlled variables
are reported to PLCs from the sensors, and PLCs
process the signals and generate corresponding con-
trol commands to the actuators. The programs in
PLCs for a control process are downloaded from an
engineering workstation, and the HMI displays pro-
cess status information. As the core component in an
ICS, PLC provides control interfaces to the control
center and allows human operators to control field
devices and industrial production.

Each component in an ICS can be the target of
an attack, which can include eavesdropping on the
secret data in an ICS, disrupting the communica-
tion between the control center and field sites, and
modifying the control instructions in PLCs.
walls and network-based intrusion detection systems
are applied to the ICS to prevent the control center
from being attacked. However, an effective method
for protecting PLCs is yet to be designed. Thus, we
focus on detecting the attacks against PLCs. We
envision that an attack wants to damage the actua-
tors or control PLCs by executing instructions other
than the pre-defined program. Thus, our goal is to
identify whether the PLC is running a pre-defined
program or a different program.

Fire-
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2.2 Threat model

We consider an attacker who aims at download-
ing a malicious program to the PLC to cause damage.
The attacks targeted at modifying control processes
may be classified into three types: (1) reducing the
service life of controlled objects secretly—such an at-
tack can take a long time to cause damage; (2) dam-
aging the controlled objects immediately to cause
property loss; (3) modifying the control goal to de-
ceive the controlled variables into an abnormal state,
such as an abnormal temperature, pressure, and lig-
uid level, which may result in environmental pollu-
tion, property losses, or even personnel casualties.

The potential attackers are summarized in
Fig. 2. Not only do we need to pay attention to
the potential damage caused by careless or disgrun-
tled engineers downloading incorrect instructions,
but also we want to prevent adversaries from at-
tacking the system via loopholes or viruses. The
adversaries can be terrorists who are able to obtain
the control of a PLC through networks, an industrial
spy who lurks in the factory, or a disgruntled em-
ployee who controls the PLC. We detail the attack
scenarios and capability below.

1. Motivated attackers

Motivated attackers break into the ICS through
networks and may have control of the control cen-
ter and PLCs. They are usually well-prepared and
sophisticatedly organized. Their purpose is to de-
stroy or exploit critical infrastructures to threaten
national security. To cause such damage, they may
first disturb the communication between the PLC
and the control center, and turn off the alarms.
Then they may modify the control instructions run-
ning in PLCs. To mask their attack, they may send
fault information to the control center. For instance,
Stuxnet is sophisticatedly designed. First, Stuxnet
infected the local area network and controlled PLCs
to execute problematic instructions, to cause the cen-
trifuges to spin much faster than they should. At the
same time, the attackers prerecorded a period of 21 s
of normal input signals and replayed them while at-
tacking the system. Those signals were ultimately
shown on an HMI screen (Langner, 2011), and the
operators may not be aware of the abnormal situa-
tion before it is too late.

2. Industrial spies

The purpose of industrial spies is to hinder the
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HMI
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Fig. 2 Schematic of attack models. Threats may come
from disgruntled engineers or hackers

development of their competitors. We may consider
a spy who lurks in the factory for a chance to control
the PLC and he/she may perform a launch-break
attack. He/She has limited time to manipulate the
PLC, and thus may download a trojan program to
the PLC. Most of the time, the program may run
normally while it may perform harmful tasks at mid-
night. As a result, the productive process may be
affected.

3. Disgruntled employees

Employees who are disgruntled with the factory
may wish to cause damage. With experience and
knowledge of controlling PLCs, they may perform
attacks covertly by changing the information sent to
the control center, and then they may change the
programs running in the PLC to destroy the produc-
tion process secretly.

2.3 Monitoring goals

To cope with all the aforementioned attacks, we
believe that an effective monitoring system should
have the following qualities:

1. Distinguishing different programs

Our monitoring system should identify the ab-
normal programs from the original ones. Once it
detects the trojan program, it raises an alert to
operators.
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2. Non-invasive

The monitoring system is supposed to be non-
invasive and requires almost no modification to the
original ICS. Thus, the proposed method will not
affect the functionality of the existing system and
will not give rise to extra security issues.

3. Detecting abnormalities in real time

The monitoring system is able to conclude
whether the PLCs are running normally or abnor-
mally within a reasonable delay.

4. Renewable and updatable

If the proposed methods need to be updated
when a better version becomes available, it should be
able to update the monitoring system online without
disturbing the control system.

We define the goals as follows: Suppose there
, ™), where
each point () represents the attribute vector as

is a time series X = [z, x®) .

the PLC runs. Note that ® is an m-dimensional
vector [xgt),xgt), .. .,x,(fl)], whose elements indicate
the attributes. When the PLC is running a pro-
gram A, we obtain a time series of attributes X =
[, 2™

we will determine whether the next time series of at-

x®)]. Given those normal time series,

tributes £(**1) are from the pre-defined program A
or an abnormal program B.

3 Overview

In this section, we briefly overview the com-
ponents in NIPAD and explain how each compo-
nent works. We show the theoretical foundation of
NIPAD and our preliminary results.

3.1 Feasibility of NIPAD

The key idea of NIPAD is to distinguish the
internal state of PLCs through side-channel analy-
sis. Once the program running in PLC is differ-
ent from the pre-defined one, we may conclude that
the PLC’s execution is abnormal and is likely to
be attacked. We choose power consumption as our
analysis basis because it is easy to collect and not
susceptible to environmental influence compared to
other side-channel signals, like electromagnetic in-
terference (EMI). In addition, the power consump-
tion of a PLC is closely determined by the executing
programs.

PLCs execute a program in a cycle-scanning
manner, and a cycle consists of self-diagnosis, com-

munication, input sampling, user program execution,
and output refresh (Bolton, 2015). The CPU of a
PLC is a microprocessor or a microcontroller, and
thus the power consumption varies when PLCs ex-
ecute different instruction sets. For different pro-
grams, the power consumption is different when call-
ing the communication module, registers, or memo-
ries. In addition, the input sampling and output
refresh processes impose various amounts of power
consumption. As a result, the CPU power consump-
tion of a PLC varies and is determined by the exe-
cuting programs.

In summary, PLCs have the following character-
istics that make it feasible to detect execution status
by power analysis:

1. PLCs tend to execute a pre-defined sequence
of instructions within a period of time, and the se-
quence will not be modified frequently.

2. PLCs behave in a cyclic manner, and their
power consumption may manifest a fixed pattern.
The scanning cycle and energy consumption pattern
depend on the executing program.

3. Most PLCs have a separate alternating cur-
rent to direct current (AC-DC) converter, and thus
we can measure the power consumption at the DC
power supply without modifying the hardware or
software.

4. For reliability, PLCs often have redundant
As a result, those devices do not
need to be shut down while the resistor is between
the CPU module and GND to facilitate power mea-
surement.

power sources.

We perform simple experiments on a Siemens
S7-200 to verify the feasibility of power analysis.
Siemens S7-200 is a micro PLC that can control rela-
tively simple automation applications. We run three
programs in S7-200, and collect the power consump-
tion while it is running each of them. Program A
completes a cycle every two seconds. It opens a valve
during the first second and closes it during the fol-
lowing second. Program B behaves in the same way
with four valves. Program C' completes a cycle every
five seconds. It closes a valve during the first four sec-
onds and opens it during the following second. From
Fig. 3, we can see that the power consumption of the
CPU differs while each program is being executed.
The preliminary results encourage us to perform a
larger-scale and long-term study. To understand the
reliability of identifying the execution of a program,
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we also want to verify whether the system is able
to differentiate power consumption of two programs
that have a difference of just a few lines.

Program A Program B Program C

02 4 6

§10 02 46
Time (s) i

Time (s)

0 2 4 6
Time (s)

8 10 8 10

Fig. 3 The voltage when PLC S7-200 executes differ-
ent programs. It illustrates how power consumption
is determined by programs

3.2 Components of NIPAD

To differentiate power consumption between the
pre-defined program and unknown programs effec-
tively, NIPAD consists of data acquisition (DAQ),
pre-processing, feature extraction, and anomaly de-
tection modules (Fig. 4).

PLC
R Data Pre- Feature Anomaly
acquisition| ‘|processing extraction detection
Power
supply

Fig. 4 Major components of NIPAD

To collect the power consumption of a PLC, we
insert a current shunt resistor between its CPU mod-
ule and power supply (PS) module, which is an AC-
DC convertor. Since most PLCs are modular, they
have an isolated PS module, a CPU module, a com-
munication processor (CP) module, and input and
output (I/O) modules.
resistor requires no device-level modifications. The
inserted resistor is 0.1 2, which is small enough to
avoid side effects on the original circuit, and we will
explain it in detail in Section 4. Because the resis-

Inserting a current shunt

tance is a constant value, the voltage drop indicates
the current of the CPU as well as its power consump-
tion. Thus, measuring the power consumption of the
PLC is equivalent to measuring the voltage drop over
the resistor.

We use data acquisition equipment to collect
the voltage drop across the resistor. In particular,
we use an Agilent U2541A, which has the ability of

saving signals to a file with a maximum sampling
rate of 250 kHz. We customize a data acquisition
module that is able to transfer the signal over Eth-
ernet. With the module, we are able to implement
real-time monitoring.

After receiving the time-domain signal, we first
perform a pre-processing procedure including remov-
ing the DC signal data and filtering out the high-
frequency noise. Then we extract a variety of fea-
tures from those time-domain signals. To achieve
a better classification and reduce training complex-
ity, we use sparse coding algorithms (Lee et al.,
2006) to choose a proper feature combination. The
aim of sparse coding algorithms is to find a set of
basis vectors that are able to represent the input
vector. Sparse coding is proven to be an effective
method for feature selection when the feature ma-
trix is sparse. Since there are no abnormal sam-
ples, we can use only positive samples for training
to predict negative samples. We choose long short-
term memory (LSTM) neural networks (Gers et al.,
2000) for anomaly detection. An LSTM neural net-
work is an improved algorithm from recurrent neural
networks, which is well-suited for training a predic-
tion model to predict the following time series. We
then recognize the anomalies by comparing the pre-
dicted time series with real-time series. To demon-
strate its effectiveness, we also use one-class support
vector machine (SVM) (Manevitz and Yousef, 2002)
and a correlation-based anomaly detection algorithm

(Nandakumar and Jain, 2004) for comparison.

To detect the abnormal programs effectively,
there are a few challenges for NIPAD, which are
listed below:

1. How to collect data accurately without affect-
ing the original operation of PLCs? How to reduce
the data fluctuation caused by noise?

2. How to construct proper feature space?
Namely, how to extract abundant features and then
select the most discriminative features from them?

3. Since there are almost no abnormal samples
in actual industrial control processes, and we are
not allowed to conduct an attack on a real control
system, how to detect abnormal program execution
with only the power traces of normal programs?

We will describe how we overcome these chal-
lenges to NIPAD in detail in the following sections.
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4 Technical details

In this section, we describe the critical compo-
nents of NIPAD in detail. We explain how to col-
lect relatively stable power traces, how to construct
proper feature sets, and how to apply LSTM neural
networks for anomaly detection.

4.1 Power consumption acquisition

We use a 0.1-2 current shunt resistor to collect
the power consumption of a Siemens S7-300 PLC,
which is a modular PLC and has individual PS, CPU,
and I/O modules. The schematic is shown in Fig. 5,
and we are able to collect the power consumption
through measuring the voltage drop of the resistor.
Inserting such a shunt resistor is safe because the
equivalent resistance of the PLC is above 100 € and
the resistor is 0.1 . On the one hand, the power
consumption of the PLC will be at least a thousand
times larger than the power consumption of the re-
sistor. Thus, inserting the resistor does not affect the
functionality of the PLC components, and the power
consumption of the resistor is negligible. On the
other hand, the current through the PLC is around
several hundred milliamperes, and thus the power
consumption of the resistor is less than a milliwatt,
which is far less than the resistor’s rated power and
will not cause a circuit break. As a result, inserting
a 0.1-Q resistor between the PS module and CPU
module will not have a side effect on the original
circuit.

PS module | +
AC @220V (AC-DC |24V cPu
module
converter) - 01Q
A

R

DAQ
unit

Fig. 5 Schematic of power consumption acquisition.
The power supply (PS) module and DAQ unit should
be commonly grounded

An alternate method to measure power con-
sumption is a closed-loop hall current sensor. Al-
though a hall sensor can achieve complete isola-
tion from the PLC circuits, it is easily susceptible
to spatial electromagnetic disturbance and can pro-
vide neither satisfactory frequency responses to high-
frequency power consumption change nor satisfac-

tory precision. Because of the modularity of PLCs,
we are able to insert a resistor between the PS mod-
ule and CPU module easily. For safety, factories tend
to allocate redundant PS modules for PLCs. Thus,
the process of inserting a resistor does not need to
interrupt the operation of PLCs.

To collect the voltage drop of the resistor, we
use an Agilent U2541A data acquisition unit with a
sampling rate of 250 kHz. The unit should be prop-
erly grounded; namely, the PS module, the resistor,
and the unit should be commonly grounded. This is
because there is high impedance between DC earth
and AC earth, and with the impact of spatial elec-
tromagnetic field, there would be a voltage difference
between the ground of the PS module and the DAQ
unit. Thus, to obtain a correct signal and avoid any
common mode interference, the PS module and the
DAQ unit need to be commonly grounded.

4.2 Feature construction

To effectively distinguish normal signals and ab-
normal signals, it is essential to construct proper fea-
ture sets, including original feature extraction and
feature selection.
nals are segmented by a window size of 5 s, which
is called a sample. A statistical histogram (Pear-
son, 1901) offers time robustness, and is widely used
for original feature construction in digital image pro-
cessing (Lowe, 2004; Dalal and Triggs, 2005; Wang
et al., 2013). To construct a rich feature space, we
first choose the statistical histogram of a sample as
our feature. Feature f; is defined as follows:

The measured time-domain sig-

{m:m < H,m e M}, j=1,
Ji=qH{m:tja<m<tj_1,me M}, 1<j<N,
[{m:m > Hy,m e M}|, j=N.
(1)
Here, M is the set of current measurements in a sam-
ple, N defines the number of features, H; denotes the
threshold chosen to estimate the global minimum of
the measurements, and Hy, denotes the global maxi-
mum of the measurements. We divide the measure-
ments into N blocks by the following threshold:

' JHy, — H,
i =
N -2

We choose N as 102, Hy as 0.11 A, and Hy, as 0.16 A.
Thus, we obtain 102 original features.
We also use the LibXtract library (Bullock and

+ H,.
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Conservatoire, 2007) for feature extraction. This is
a cross-platform software library that can be used
for extracting low-level features of time series. We
extract 17 time-domain features and 14 frequency-
domain features as our original features. Thus, we
have 133 features in total, including 102 histogram
features and 31 features from the LibXtract library.
However, the original features are redundant and
noisy. To reduce over-fitting and shorten the training
time, we need to find a proper feature subset of the
original features by removing the redundant features
and picking out the discriminative features. An opti-
mal feature combination is supposed to differentiate
the programs at the maximum level. A proper solu-
tion is to calculate the contribution of each feature,
and then give them a corresponding weight. How-
ever, it is too time-consuming for so many features.
Another solution is to regard the feature selection
problem as a combinatorial optimization problem,
and sparse coding has proved to be an efficient solu-
tion to this problem.

Sparse coding is applied for learning a set of
over-complete basis vectors to reconstruct a signal
(Xu et al., 2013), and is widely used in image denois-
ing, speech signal processing, and feature selection
(Zhong et al., 2012; Ni et al., 2015). It is one of the
most effective methods for feature selection when the
feature matrix is sparse.

To select an optimal feature subset from the
original feature space with sparse coding, we assume
a linear classifier model, which is used to predict the
label of a sample:

f=w"z 40, (2)

where f is the predicted label of a sample, © an
N-dimensional feature vector, w the corresponding
coefficients of the classifier, and b a bias.

We assume that y is the actual label of the sam-
ple. For a classifier, the primary goal is to compute
the optimal parameter vector w which minimizes the
loss function between f and y. We choose a simple
yet efficient function from various options of the loss
function, which is the quadratic loss function:

M
argmiil Zl lyi — (wha; + b)]27 (3)

w7

where M is the number of samples and the input x;
should be normalized.

The original feature space in our method is rich
yet redundant, and there may be some noise. Ac-
tually, only a small subset of original features are
discriminative. Thus, the original features to some
extent are sparse, which means that we need to min-
imize the amount of nonzero data in w while mini-
mizing the quadratic loss function. We can represent
the goal as follows:

M
. A 2
arglgl’il {; [yl (w :]31—|—b)] +/\||w|0}7 (4)

where A is a parameter for adjustment.

It is known that solving the £y-norm problem is
NP-hard, and the /p-norm can be transferred to the
{1-norm, which can be solved with the ¢;-regularized
least squares method (Candes and Tao, 2006). Thus,
the feature selection problem can be summarized as

. al T 2
arg min {; i — @ +0)] + Al b (5)

To estimate the optimal feature subset, we need
M, positive samples and M, negative samples, and
each sample is N-dimensional.
sents the ith sample which consists of IV features,
and y; is the actual label of the ith sample. We
use ‘4+1’ to label positive samples and ‘—1’ for neg-
ative samples. The solution of Eq. (5) is a sparse

Namely, x; repre-

vector w, and the nonzero elements in it correspond
to discriminative features which are selected from
the original N-dimensional feature space. We may
choose a proper feature dimensionality by adjusting
A

We finally choose 12 discriminative features
from the original feature space with the sparse coding
algorithm. The features are mean, sum, skewness,
spectral mean, rms__amplitude, and seven features
from Eq. (1). The definitions of these features are as
follows:

mean :
k=1
N
sum : Zxk, (7)
k=1
1SN (ap—7\°
p —
ki D=
skewness NZ( o ) ) (8)
k=1
N
spectral _mean : M, 9)
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rms__amplitude :

Here, N is the number of power data in a sample,
x) the power value of the kth data, o the standard
deviation, fj the kth frequency after frequency trans-
formation, and ay the energy of fi.

4.3 Anomaly detection

Since the abnormal (or attack) events occur
rarely and we cannot conduct an attack on a real
control system, detecting unknown attacks is a
must, which means that we are supposed to detect
the abnormal programs without any negative sam-
ple. There are various anomaly detection methods,
among which the correlation-based method and the
one-class SVM based method are two of the most
widely used methods. LSTM networks have recently
proved to be a useful method for anomaly detec-
tion in time series (Malhotra et al., 2015). We use
LSTM networks for anomaly detection, and prove
that LSTM networks work better than one-class
SVM and the correlation-based method for time se-
ries through experiments, as shown in Section 5.

An LSTM network is an artificial neural network
that contains LSTM blocks which overcome the van-
ishing gradient problem by employing multiplicative
gates that enforce constant error flow through the
internal state. An LSTM network is well-suited for
capturing the structure of time series and predict-
ing time series at different time scales. For a time
series X = [z, 2.,
dimensional vector [xgt)7xgt), ... ,xg,?] which repre-
sents the features of a sample, we train a prediction
model learning from the former n samples to pre-
dict the next sample of m features. That is, we take

x(™], where z(*) is an m-

n X m units in the input layer and m units in the
output layer. The LSTM units consist of two hidden
layers, and each unit in a lower LSTM hidden layer
is fully connected to each unit in the LSTM hid-
den layer above it through feedforward connections.

For each of the m features, there is an error egt) be-
(®)

tween x;’ and its value is as predicted. Thus, we
compute an error vector e*) = [egt), egt), . ,61(7?] for

each sample *). We then consider an observation
x(Y) as anomaly when the error vector e(*) meets the
requirement of Eq. (11). We can improve the detec-

tion performance through adjusting threshold 7:

m egt)
® >T.

i=1 5

(11)

5 Evaluation

To demonstrate the efficiency of NIPAD, we
build a testbed which simulates the liquid control
process in a real factory. In addition, we conduct
three trojan attacks that correspond to three kinds
of attacks mentioned in Section 2. The attacks pre-
tend to be the normal programs that cannot be dis-
covered as abnormalities from the HMI monitoring
picture. This section describes our experiments and
results on the testbed.

5.1 Evaluation metrics

In this study, we use two metrics to evaluate
our method, which are accuracy and equal error rate
(EER). Accuracy is the percentage of the number of
correctly labeled samples out of the total number of
samples, and a higher accuracy means a better clas-
sification performance. EER is the false acceptance
rate (FAR) where it equals the false rejection rate
(FRR). EER is an evaluation metric of a classifica-
tion algorithm and a smaller EER means a better
performance. We label samples as normal (positive)
or abnormal (negative). Accuracy, FAR, and FRR
are defined below:

Number of correctly labeled samples

Accuracy =
Y Total nu