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Abstract: Industrial control systems (ICSs) are widely used in critical infrastructures, making them popular
targets for attacks to cause catastrophic physical damage. As one of the most critical components in ICSs, the
programmable logic controller (PLC) controls the actuators directly. A PLC executing a malicious program can
cause significant property loss or even casualties. The number of attacks targeted at PLCs has increased noticeably
over the last few years, exposing the vulnerability of the PLC and the importance of PLC protection. Unfortunately,
PLCs cannot be protected by traditional intrusion detection systems or antivirus software. Thus, an effective
method for PLC protection is yet to be designed. Motivated by these concerns, we propose a non-invasive power-
based anomaly detection scheme for PLCs. The basic idea is to detect malicious software execution in a PLC
through analyzing its power consumption, which is measured by inserting a shunt resistor in series with the CPU in
a PLC while it is executing instructions. To analyze the power measurements, we extract a discriminative feature
set from the power trace, and then train a long short-term memory (LSTM) neural network with the features of
normal samples to predict the next time step of a normal sample. Finally, an abnormal sample is identified through
comparing the predicted sample and the actual sample. The advantages of our method are that it requires no
software modification on the original system and is able to detect unknown attacks effectively. The method is
evaluated on a lab testbed, and for a trojan attack whose difference from the normal program is around 0.63%, the
detection accuracy reaches 99.83%.

Key words: Industrial control system; Programmable logic controller; Side-channel; Anomaly detection; Long
short-term memory neural networks
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1 Introduction

Industrial control systems (ICSs), which include
supervisory control and data acquisition (SCADA)
systems, distributed control systems (DCSs), and
programmable logic controllers (PLCs), are cyber-
physical systems that automate industrial processes
(Stouffer et al., 2011). ICSs have been widely used to
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supervise and control most of the physical processes
in critical infrastructures including energy, water,
transportation systems, the chemical industry, the
nuclear industry, critical manufacturing, food, and
healthcare (Alcaraz and Zeadally, 2015). Not sur-
prisingly, the security of an ICS has a direct effect on
the physical world, affecting property safety, human
lives, and even national security.

When ICSs were first deployed, many of their
components were in physically secured areas and
were not connected to the Internet. Thus, security
was not a major concern and the primary goals were
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functional safety and system effectiveness. Proto-
cols such as MODBUS, Ethernet/IP, and ISO-TSAP
were used to communicate with field devices and
PLCs in an ICS. Although these protocols work ef-
fectively, they do not consider attacks because an
ICS is believed to be isolated from public networks.
With the development of information technology
(IT), ICSs are increasingly connected to the Inter-
net, which increases chances of exposing the critical
infrastructure to remote attacks. Recently, Stuxnet
raised an alarm and demonstrated that ICSs are
highly vulnerable to remote malicious manipulation
and ICS security needs to be revisited (Chen and
Abu-Nimeh, 2011).

In reality, the attacks against ICSs have a larger
impact than those on IT systems. In 2000, a sewage
treatment system in Maroochy Shire, Queensland
was hacked by a disgruntled employee through a lap-
top and a wireless radio. As a result, the raw sewage
spilt out into local parks and rivers, causing environ-
mental pollution (Slay and Miller, 2007). In 2003,
the Davis-Besse nuclear plant in Ohio was hacked
because of a worm, and the nuclear plant was unable
to work for several hours (Johnson, 2010). In 2006,
the Browns Ferry nuclear plant in the United States
was hacked and the nuclear reaction unit was forced
to close (Kesler, 2011). In 2009, the two metro trains
collided because of an attack, causing passenger in-
juries and deaths (Johnson, 2010). In 2010, Stuxnet
swept around the world, and more than 45 000 net-
works were infected (Chen and Abu-Nimeh, 2011).
In 2012, the most sophisticated computer malware
ever seen in industry, Flame, raged in the Middle
East, and was 20 times more harmful than Stuxnet
(Bencsáth et al., 2012). In 2014, Havex started a
full-scale attack against SCADA systems in Europe
(Pretorius and van Niekerk, 2016). Similar types
of attacks are likely to emerge over time, and pro-
tecting ICSs against existing and future attacks is
important.

Compared to IT systems, the attacks against
an ICS can affect the physical world and cause more
devastating impact. Since critical infrastructures are
the basis of national economy and people’s daily life,
their security and protection are extremely impor-
tant. After the discovery of Stuxnet, many security
mechanisms such as the network-based intrusion de-
tection system (IDS) and signature-based antivirus
software were used to enhance the security of ICSs.

However, traditional cyber security mechanisms have
limitations when being applied to ICSs. On the
one hand, these approaches are not applicable to all
devices in an ICS, especially the embedded devices
that are resource-constrained and cannot execute an-
tivirus software. On the other hand, vendors of ICSs
may refuse to load third-party software or upgrade
their devices to include security software, afraid of
being responsible for third-party software for poten-
tial safety incidents.

Motivated by the special characteristics of ICSs,
we focus on protecting the PLC, which is one of
the most critical components in an ICS and can-
not be protected by traditional IDS or antivirus
software. PLCs control actuators directly and if a
PLC is executing a malicious program instead of the
original one, it can damage the physical world dra-
matically, ranging from property damage to loss of
life. Already, an increasing number of attacks have
targeted PLCs, showing the importance of ensur-
ing the proper execution of a PLC and detecting
abnormal scenarios. Thus, we propose NIPAD, a
non-invasive power-based anomaly detection scheme
for PLCs. The basic idea of NIPAD is to detect
whether a PLC is executing its normal program or a
malicious program by analyzing its power consump-
tion. Based on NIPAD, we are able to implement
a real-time monitoring system to detect abnormal
execution. Compared to traditional cyber-security
mechanisms, NIPAD is ideal for anomaly detection
in ICSs because of the following three advantages.
First, it is non-invasive, and requires no software
modification of the original ICS. Since NIPAD is a
side-channel based method, it does not interact with
the original ICS, neither does the ICS need to in-
stall third-party software. Second, NIPAD does not
need to be trained over abnormal power consump-
tion. Since abnormal samples are rare and difficult
to get in practice, we design NIPAD to be indepen-
dent toward the attacks and able to detect both ex-
isting attacks and the ones that may emerge over
time. Third, the system is renewable. Once a more
effective anomaly detection algorithm is designed,
NIPAD is able to update the algorithm.

2 Motivation and goals

ICSs control critical infrastructures, mass pro-
duction lines, etc., and thus an ICS is an attractive
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target since attacks can cause serious consequences.
The attackers can range from hostile governments,
terrorist groups, to industrial spies. In addition, mal-
practice from careless employees or intentional mis-
conduct from disgruntled employees can cause a simi-
lar negative impact (Macaulay and Singer, 2011). To
reduce the impact, it is important to detect attacks
and anomalies in a timely manner and the monitor-
ing system should require minimum modification of
the original ICS. In this section, we first introduce
the basics of an ICS, and then discuss the attack
model as well as the goals of our monitoring system.

2.1 Background

Although we focus on monitoring the execution
of a PLC, we introduce a simplified ICS below to
provide necessary background to understand our sys-
tem. A typical ICS consists of the following compo-
nents (Fig. 1):

1. Control server
The control server is used to communicate with

lower-level control devices through the supervisory
control software.

2. Human-machine interface (HMI)
The HMI includes both software and hardware,

providing an interface for human operators to mon-
itor and control the state of the control processes.
HMI software such as WinCC is able to provide a
centralized monitoring of the numerous process in-
puts and outputs.

3. Data historian
The data historian is a centralized database that

stores all process information within an ICS.
4. Programmable logic controller (PLC)
The PLC is a small industrial computer with

the capability of controlling complex industrial pro-
cesses, and is originally designed to control the logic
executed by electrical hardware such as switches, re-
lays, and timers. It is widely used in an ICS as a
real-time control unit because of its strength in be-
ing economical, flexible, configurable, and versatile.

5. Sensors and actuators
There are various sensors for measurement and

actuators for control in an ICS, such as pressure and
temperature sensors, valves, motors, robotics, relays,
and breakers.

Fig. 1 shows a simplified model of the critical
components for an ICS, whereby there is one pri-
mary control center and some field sites. The con-
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Fig. 1 A simplified model of an industrial control
system (ICS). The PLC is the core component in an
ICS interacting with field devices

trol center includes the control server, communica-
tion routers, an HMI, engineering workstations, and
a data historian (Stouffer et al., 2011). All of them
are connected by a local area network (LAN). The
control center is responsible for centralized alarming
and reporting. It collects and logs information from
the field sites, and may generate instructions to han-
dle events. The operator in the control center is able
to remotely conduct real-time monitoring as well as
control for an entire system. A field site consists of
a control unit PLC, various sensors, and actuators.

For a basic control process, controlled variables
are reported to PLCs from the sensors, and PLCs
process the signals and generate corresponding con-
trol commands to the actuators. The programs in
PLCs for a control process are downloaded from an
engineering workstation, and the HMI displays pro-
cess status information. As the core component in an
ICS, PLC provides control interfaces to the control
center and allows human operators to control field
devices and industrial production.

Each component in an ICS can be the target of
an attack, which can include eavesdropping on the
secret data in an ICS, disrupting the communica-
tion between the control center and field sites, and
modifying the control instructions in PLCs. Fire-
walls and network-based intrusion detection systems
are applied to the ICS to prevent the control center
from being attacked. However, an effective method
for protecting PLCs is yet to be designed. Thus, we
focus on detecting the attacks against PLCs. We
envision that an attack wants to damage the actua-
tors or control PLCs by executing instructions other
than the pre-defined program. Thus, our goal is to
identify whether the PLC is running a pre-defined
program or a different program.
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2.2 Threat model

We consider an attacker who aims at download-
ing a malicious program to the PLC to cause damage.
The attacks targeted at modifying control processes
may be classified into three types: (1) reducing the
service life of controlled objects secretly—such an at-
tack can take a long time to cause damage; (2) dam-
aging the controlled objects immediately to cause
property loss; (3) modifying the control goal to de-
ceive the controlled variables into an abnormal state,
such as an abnormal temperature, pressure, and liq-
uid level, which may result in environmental pollu-
tion, property losses, or even personnel casualties.

The potential attackers are summarized in
Fig. 2. Not only do we need to pay attention to
the potential damage caused by careless or disgrun-
tled engineers downloading incorrect instructions,
but also we want to prevent adversaries from at-
tacking the system via loopholes or viruses. The
adversaries can be terrorists who are able to obtain
the control of a PLC through networks, an industrial
spy who lurks in the factory, or a disgruntled em-
ployee who controls the PLC. We detail the attack
scenarios and capability below.

1. Motivated attackers
Motivated attackers break into the ICS through

networks and may have control of the control cen-
ter and PLCs. They are usually well-prepared and
sophisticatedly organized. Their purpose is to de-
stroy or exploit critical infrastructures to threaten
national security. To cause such damage, they may
first disturb the communication between the PLC
and the control center, and turn off the alarms.
Then they may modify the control instructions run-
ning in PLCs. To mask their attack, they may send
fault information to the control center. For instance,
Stuxnet is sophisticatedly designed. First, Stuxnet
infected the local area network and controlled PLCs
to execute problematic instructions, to cause the cen-
trifuges to spin much faster than they should. At the
same time, the attackers prerecorded a period of 21 s
of normal input signals and replayed them while at-
tacking the system. Those signals were ultimately
shown on an HMI screen (Langner, 2011), and the
operators may not be aware of the abnormal situa-
tion before it is too late.

2. Industrial spies
The purpose of industrial spies is to hinder the
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Fig. 2 Schematic of attack models. Threats may come
from disgruntled engineers or hackers

development of their competitors. We may consider
a spy who lurks in the factory for a chance to control
the PLC and he/she may perform a launch-break
attack. He/She has limited time to manipulate the
PLC, and thus may download a trojan program to
the PLC. Most of the time, the program may run
normally while it may perform harmful tasks at mid-
night. As a result, the productive process may be
affected.

3. Disgruntled employees
Employees who are disgruntled with the factory

may wish to cause damage. With experience and
knowledge of controlling PLCs, they may perform
attacks covertly by changing the information sent to
the control center, and then they may change the
programs running in the PLC to destroy the produc-
tion process secretly.

2.3 Monitoring goals

To cope with all the aforementioned attacks, we
believe that an effective monitoring system should
have the following qualities:

1. Distinguishing different programs
Our monitoring system should identify the ab-

normal programs from the original ones. Once it
detects the trojan program, it raises an alert to
operators.
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2. Non-invasive
The monitoring system is supposed to be non-

invasive and requires almost no modification to the
original ICS. Thus, the proposed method will not
affect the functionality of the existing system and
will not give rise to extra security issues.

3. Detecting abnormalities in real time
The monitoring system is able to conclude

whether the PLCs are running normally or abnor-
mally within a reasonable delay.

4. Renewable and updatable
If the proposed methods need to be updated

when a better version becomes available, it should be
able to update the monitoring system online without
disturbing the control system.

We define the goals as follows: Suppose there
is a time series X = [x(1),x(2), . . . ,x(n)], where
each point x(t) represents the attribute vector as
the PLC runs. Note that x(t) is an m-dimensional
vector [x

(t)
1 , x

(t)
2 , . . . , x

(t)
m ], whose elements indicate

the attributes. When the PLC is running a pro-
gram A, we obtain a time series of attributes X =

[x(1),x(2), . . . ,x(t)]. Given those normal time series,
we will determine whether the next time series of at-
tributes x(t+1) are from the pre-defined program A

or an abnormal program B.

3 Overview

In this section, we briefly overview the com-
ponents in NIPAD and explain how each compo-
nent works. We show the theoretical foundation of
NIPAD and our preliminary results.

3.1 Feasibility of NIPAD

The key idea of NIPAD is to distinguish the
internal state of PLCs through side-channel analy-
sis. Once the program running in PLC is differ-
ent from the pre-defined one, we may conclude that
the PLC’s execution is abnormal and is likely to
be attacked. We choose power consumption as our
analysis basis because it is easy to collect and not
susceptible to environmental influence compared to
other side-channel signals, like electromagnetic in-
terference (EMI). In addition, the power consump-
tion of a PLC is closely determined by the executing
programs.

PLCs execute a program in a cycle-scanning
manner, and a cycle consists of self-diagnosis, com-

munication, input sampling, user program execution,
and output refresh (Bolton, 2015). The CPU of a
PLC is a microprocessor or a microcontroller, and
thus the power consumption varies when PLCs ex-
ecute different instruction sets. For different pro-
grams, the power consumption is different when call-
ing the communication module, registers, or memo-
ries. In addition, the input sampling and output
refresh processes impose various amounts of power
consumption. As a result, the CPU power consump-
tion of a PLC varies and is determined by the exe-
cuting programs.

In summary, PLCs have the following character-
istics that make it feasible to detect execution status
by power analysis:

1. PLCs tend to execute a pre-defined sequence
of instructions within a period of time, and the se-
quence will not be modified frequently.

2. PLCs behave in a cyclic manner, and their
power consumption may manifest a fixed pattern.
The scanning cycle and energy consumption pattern
depend on the executing program.

3. Most PLCs have a separate alternating cur-
rent to direct current (AC-DC) converter, and thus
we can measure the power consumption at the DC
power supply without modifying the hardware or
software.

4. For reliability, PLCs often have redundant
power sources. As a result, those devices do not
need to be shut down while the resistor is between
the CPU module and GND to facilitate power mea-
surement.

We perform simple experiments on a Siemens
S7-200 to verify the feasibility of power analysis.
Siemens S7-200 is a micro PLC that can control rela-
tively simple automation applications. We run three
programs in S7-200, and collect the power consump-
tion while it is running each of them. Program A

completes a cycle every two seconds. It opens a valve
during the first second and closes it during the fol-
lowing second. Program B behaves in the same way
with four valves. Program C completes a cycle every
five seconds. It closes a valve during the first four sec-
onds and opens it during the following second. From
Fig. 3, we can see that the power consumption of the
CPU differs while each program is being executed.
The preliminary results encourage us to perform a
larger-scale and long-term study. To understand the
reliability of identifying the execution of a program,
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we also want to verify whether the system is able
to differentiate power consumption of two programs
that have a difference of just a few lines.
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Fig. 3 The voltage when PLC S7-200 executes differ-
ent programs. It illustrates how power consumption
is determined by programs

3.2 Components of NIPAD

To differentiate power consumption between the
pre-defined program and unknown programs effec-
tively, NIPAD consists of data acquisition (DAQ),
pre-processing, feature extraction, and anomaly de-
tection modules (Fig. 4).

PLC

R

Power
supply

Data
acquisition

Pre-
processing

Anomaly
detection

Feature
extraction

Fig. 4 Major components of NIPAD

To collect the power consumption of a PLC, we
insert a current shunt resistor between its CPU mod-
ule and power supply (PS) module, which is an AC-
DC convertor. Since most PLCs are modular, they
have an isolated PS module, a CPU module, a com-
munication processor (CP) module, and input and
output (I/O) modules. Inserting a current shunt
resistor requires no device-level modifications. The
inserted resistor is 0.1 Ω, which is small enough to
avoid side effects on the original circuit, and we will
explain it in detail in Section 4. Because the resis-
tance is a constant value, the voltage drop indicates
the current of the CPU as well as its power consump-
tion. Thus, measuring the power consumption of the
PLC is equivalent to measuring the voltage drop over
the resistor.

We use data acquisition equipment to collect
the voltage drop across the resistor. In particular,
we use an Agilent U2541A, which has the ability of

saving signals to a file with a maximum sampling
rate of 250 kHz. We customize a data acquisition
module that is able to transfer the signal over Eth-
ernet. With the module, we are able to implement
real-time monitoring.

After receiving the time-domain signal, we first
perform a pre-processing procedure including remov-
ing the DC signal data and filtering out the high-
frequency noise. Then we extract a variety of fea-
tures from those time-domain signals. To achieve
a better classification and reduce training complex-
ity, we use sparse coding algorithms (Lee et al.,
2006) to choose a proper feature combination. The
aim of sparse coding algorithms is to find a set of
basis vectors that are able to represent the input
vector. Sparse coding is proven to be an effective
method for feature selection when the feature ma-
trix is sparse. Since there are no abnormal sam-
ples, we can use only positive samples for training
to predict negative samples. We choose long short-
term memory (LSTM) neural networks (Gers et al.,
2000) for anomaly detection. An LSTM neural net-
work is an improved algorithm from recurrent neural
networks, which is well-suited for training a predic-
tion model to predict the following time series. We
then recognize the anomalies by comparing the pre-
dicted time series with real-time series. To demon-
strate its effectiveness, we also use one-class support
vector machine (SVM) (Manevitz and Yousef, 2002)
and a correlation-based anomaly detection algorithm
(Nandakumar and Jain, 2004) for comparison.

To detect the abnormal programs effectively,
there are a few challenges for NIPAD, which are
listed below:

1. How to collect data accurately without affect-
ing the original operation of PLCs? How to reduce
the data fluctuation caused by noise?

2. How to construct proper feature space?
Namely, how to extract abundant features and then
select the most discriminative features from them?

3. Since there are almost no abnormal samples
in actual industrial control processes, and we are
not allowed to conduct an attack on a real control
system, how to detect abnormal program execution
with only the power traces of normal programs?

We will describe how we overcome these chal-
lenges to NIPAD in detail in the following sections.
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4 Technical details

In this section, we describe the critical compo-
nents of NIPAD in detail. We explain how to col-
lect relatively stable power traces, how to construct
proper feature sets, and how to apply LSTM neural
networks for anomaly detection.

4.1 Power consumption acquisition

We use a 0.1-Ω current shunt resistor to collect
the power consumption of a Siemens S7-300 PLC,
which is a modular PLC and has individual PS, CPU,
and I/O modules. The schematic is shown in Fig. 5,
and we are able to collect the power consumption
through measuring the voltage drop of the resistor.
Inserting such a shunt resistor is safe because the
equivalent resistance of the PLC is above 100 Ω and
the resistor is 0.1 Ω. On the one hand, the power
consumption of the PLC will be at least a thousand
times larger than the power consumption of the re-
sistor. Thus, inserting the resistor does not affect the
functionality of the PLC components, and the power
consumption of the resistor is negligible. On the
other hand, the current through the PLC is around
several hundred milliamperes, and thus the power
consumption of the resistor is less than a milliwatt,
which is far less than the resistor’s rated power and
will not cause a circuit break. As a result, inserting
a 0.1-Ω resistor between the PS module and CPU
module will not have a side effect on the original
circuit.

 PS module
(AC-DC

 converter)

CPU 
moduleAC 220 V  

+
24 V

−

DAQ 
unit

 0.1 Ω  

R

Fig. 5 Schematic of power consumption acquisition.
The power supply (PS) module and DAQ unit should
be commonly grounded

An alternate method to measure power con-
sumption is a closed-loop hall current sensor. Al-
though a hall sensor can achieve complete isola-
tion from the PLC circuits, it is easily susceptible
to spatial electromagnetic disturbance and can pro-
vide neither satisfactory frequency responses to high-
frequency power consumption change nor satisfac-

tory precision. Because of the modularity of PLCs,
we are able to insert a resistor between the PS mod-
ule and CPU module easily. For safety, factories tend
to allocate redundant PS modules for PLCs. Thus,
the process of inserting a resistor does not need to
interrupt the operation of PLCs.

To collect the voltage drop of the resistor, we
use an Agilent U2541A data acquisition unit with a
sampling rate of 250 kHz. The unit should be prop-
erly grounded; namely, the PS module, the resistor,
and the unit should be commonly grounded. This is
because there is high impedance between DC earth
and AC earth, and with the impact of spatial elec-
tromagnetic field, there would be a voltage difference
between the ground of the PS module and the DAQ
unit. Thus, to obtain a correct signal and avoid any
common mode interference, the PS module and the
DAQ unit need to be commonly grounded.

4.2 Feature construction

To effectively distinguish normal signals and ab-
normal signals, it is essential to construct proper fea-
ture sets, including original feature extraction and
feature selection. The measured time-domain sig-
nals are segmented by a window size of 5 s, which
is called a sample. A statistical histogram (Pear-
son, 1901) offers time robustness, and is widely used
for original feature construction in digital image pro-
cessing (Lowe, 2004; Dalal and Triggs, 2005; Wang
et al., 2013). To construct a rich feature space, we
first choose the statistical histogram of a sample as
our feature. Feature fj is defined as follows:

fj =

⎧
⎪⎪⎨

⎪⎪⎩

|{m : m < Hl,m ∈ M}|, j = 1,

|{m : tj−2 < m < tj−1,m ∈ M}|, 1 < j < N,

|{m : m > Hh,m ∈ M}|, j = N.

(1)
Here, M is the set of current measurements in a sam-
ple, N defines the number of features, Hl denotes the
threshold chosen to estimate the global minimum of
the measurements, and Hh denotes the global maxi-
mum of the measurements. We divide the measure-
ments into N blocks by the following threshold:

ti = i
Hh −Hl

N − 2
+Hl.

We choose N as 102, Hl as 0.11 A, and Hh as 0.16 A.
Thus, we obtain 102 original features.

We also use the LibXtract library (Bullock and



526 Xiao et al. / Front Inform Technol Electron Eng 2017 18(4):519-534

Conservatoire, 2007) for feature extraction. This is
a cross-platform software library that can be used
for extracting low-level features of time series. We
extract 17 time-domain features and 14 frequency-
domain features as our original features. Thus, we
have 133 features in total, including 102 histogram
features and 31 features from the LibXtract library.
However, the original features are redundant and
noisy. To reduce over-fitting and shorten the training
time, we need to find a proper feature subset of the
original features by removing the redundant features
and picking out the discriminative features. An opti-
mal feature combination is supposed to differentiate
the programs at the maximum level. A proper solu-
tion is to calculate the contribution of each feature,
and then give them a corresponding weight. How-
ever, it is too time-consuming for so many features.
Another solution is to regard the feature selection
problem as a combinatorial optimization problem,
and sparse coding has proved to be an efficient solu-
tion to this problem.

Sparse coding is applied for learning a set of
over-complete basis vectors to reconstruct a signal
(Xu et al., 2013), and is widely used in image denois-
ing, speech signal processing, and feature selection
(Zhong et al., 2012; Ni et al., 2015). It is one of the
most effective methods for feature selection when the
feature matrix is sparse.

To select an optimal feature subset from the
original feature space with sparse coding, we assume
a linear classifier model, which is used to predict the
label of a sample:

f = wTx+ b, (2)

where f is the predicted label of a sample, x an
N -dimensional feature vector, w the corresponding
coefficients of the classifier, and b a bias.

We assume that y is the actual label of the sam-
ple. For a classifier, the primary goal is to compute
the optimal parameter vector w which minimizes the
loss function between f and y. We choose a simple
yet efficient function from various options of the loss
function, which is the quadratic loss function:

argmin
w,b

M∑

i=1

[
yi − (wTxi + b)

]2
, (3)

where M is the number of samples and the input xi

should be normalized.

The original feature space in our method is rich
yet redundant, and there may be some noise. Ac-
tually, only a small subset of original features are
discriminative. Thus, the original features to some
extent are sparse, which means that we need to min-
imize the amount of nonzero data in w while mini-
mizing the quadratic loss function. We can represent
the goal as follows:

argmin
w,b

{
M∑

i=1

[
yi − (wTxi + b)

]2
+ λ‖w‖0

}

, (4)

where λ is a parameter for adjustment.
It is known that solving the �0-norm problem is

NP-hard, and the �0-norm can be transferred to the
�1-norm, which can be solved with the �1-regularized
least squares method (Candes and Tao, 2006). Thus,
the feature selection problem can be summarized as

argmin
w,b

{
M∑

i=1

[
yi − (wTxi + b)

]2
+ λ‖w‖1

}

. (5)

To estimate the optimal feature subset, we need
Mp positive samples and Mn negative samples, and
each sample is N -dimensional. Namely, xi repre-
sents the ith sample which consists of N features,
and yi is the actual label of the ith sample. We
use ‘+1’ to label positive samples and ‘−1’ for neg-
ative samples. The solution of Eq. (5) is a sparse
vector w, and the nonzero elements in it correspond
to discriminative features which are selected from
the original N -dimensional feature space. We may
choose a proper feature dimensionality by adjusting
λ.

We finally choose 12 discriminative features
from the original feature space with the sparse coding
algorithm. The features are mean, sum, skewness,
spectral_mean, rms_amplitude, and seven features
from Eq. (1). The definitions of these features are as
follows:

mean : x =
1

N

N∑

k=1

xk, (6)

sum :

N∑

k=1

xk, (7)

skewness :
1

N

N∑

k=1

(
xk − x

σ

)3

, (8)

spectral_mean :

∑N
k=1 fkak

∑N
k=1 ak

, (9)
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rms_amplitude :

√
√
√
√ 1

N

N−1∑

k=0

a2k. (10)

Here, N is the number of power data in a sample,
xk the power value of the kth data, σ the standard
deviation, fk the kth frequency after frequency trans-
formation, and ak the energy of fk.

4.3 Anomaly detection

Since the abnormal (or attack) events occur
rarely and we cannot conduct an attack on a real
control system, detecting unknown attacks is a
must, which means that we are supposed to detect
the abnormal programs without any negative sam-
ple. There are various anomaly detection methods,
among which the correlation-based method and the
one-class SVM based method are two of the most
widely used methods. LSTM networks have recently
proved to be a useful method for anomaly detec-
tion in time series (Malhotra et al., 2015). We use
LSTM networks for anomaly detection, and prove
that LSTM networks work better than one-class
SVM and the correlation-based method for time se-
ries through experiments, as shown in Section 5.

An LSTM network is an artificial neural network
that contains LSTM blocks which overcome the van-
ishing gradient problem by employing multiplicative
gates that enforce constant error flow through the
internal state. An LSTM network is well-suited for
capturing the structure of time series and predict-
ing time series at different time scales. For a time
series X = [x(1),x(2), . . . ,x(n)], where x(t) is an m-
dimensional vector [x

(t)
1 , x

(t)
2 , . . . , x

(t)
m ] which repre-

sents the features of a sample, we train a prediction
model learning from the former n samples to pre-
dict the next sample of m features. That is, we take
n × m units in the input layer and m units in the
output layer. The LSTM units consist of two hidden
layers, and each unit in a lower LSTM hidden layer
is fully connected to each unit in the LSTM hid-
den layer above it through feedforward connections.
For each of the m features, there is an error e(t)i be-
tween x

(t)
i and its value is as predicted. Thus, we

compute an error vector e(t) = [e
(t)
1 , e

(t)
2 , . . . , e

(t)
m ] for

each sample x(t). We then consider an observation
x(t) as anomaly when the error vector e(t) meets the
requirement of Eq. (11). We can improve the detec-

tion performance through adjusting threshold τ :

m∑

i=1

e
(t)
i

x
(t)
i

> τ. (11)

5 Evaluation

To demonstrate the efficiency of NIPAD, we
build a testbed which simulates the liquid control
process in a real factory. In addition, we conduct
three trojan attacks that correspond to three kinds
of attacks mentioned in Section 2. The attacks pre-
tend to be the normal programs that cannot be dis-
covered as abnormalities from the HMI monitoring
picture. This section describes our experiments and
results on the testbed.

5.1 Evaluation metrics

In this study, we use two metrics to evaluate
our method, which are accuracy and equal error rate
(EER). Accuracy is the percentage of the number of
correctly labeled samples out of the total number of
samples, and a higher accuracy means a better clas-
sification performance. EER is the false acceptance
rate (FAR) where it equals the false rejection rate
(FRR). EER is an evaluation metric of a classifica-
tion algorithm and a smaller EER means a better
performance. We label samples as normal (positive)
or abnormal (negative). Accuracy, FAR, and FRR
are defined below:

Accuracy =
Number of correctly labeled samples

Total number of samples
,

FAR =
Number of false positive samples

Number of negative samples
,

FRR =
Number of false negative samples

Number of positive samples
.

5.2 Evaluation systems

We build a testbed and implement three differ-
ent trojan programs to evaluate the performance of
our method.

5.2.1 Testbed

The testbed is a liquid control system that sim-
ulates the real control process in factories. It consists
of WinCC monitoring software, a Siemens PLC S7-
300, and the controlled objects. The control flow of
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our testbed is shown in Fig. 6. The liquid control sys-
tem, which contains an I/O control and a proportion-
integration-differentiation (PID) control, is a typical
control system that is widely used in ICSs. Since
we have no room for a water tank in our laboratory,
we use Simulink in MATLAB to simulate a water
tank. The sensor data and control data are com-
municated between the PLC and MATLAB through
an Advantech PCI-1710 data acquisition card. The
control device is Siemens S7-300, which sends the
data of liquid level, pipeline pressure, and valve sta-
tus to WinCC, and thus we are able to monitor the
status of the water tank. Once there is an abnormal
situation, WinCC will raise an alert.

Monitoring
system

WinCC

Control system

PLC
Input

Water tank system

Sensors

Actuators
Controlled

objectOutput

Fig. 6 Control flow of our testbed

5.2.2 Trojan attacks

According to the three aforementioned types of
attack, we implement three trojan attacks to vali-
date the efficiency of NIPAD. Since we focus on the
destructiveness and concealment of the attack, we
assume that the intrusion process is done and trojan
programs can be downloaded.

1. Trojan A

A relay is a typical controlled object for a PLC,
and it tends to have a limited service life. Trojan A

will open and close a relay frequently to reduce its
service life. In addition, attackers have the abil-
ity to control the PLC and send false information
to WinCC, and thus the operators may hardly ever
recognize the attack. Stuxnet is able to delay the Ira-
nian nuclear program through this kind of extremely
concealed attack. WinCC displays the relay status
through reading the data of a register which stores
the real relay status. To deceive the WinCC under
our attack, we cut off the relation between the regis-
ter and the status of the relay, and give the register
a fake relay status. Furthermore, we trigger only the
operation at midnight to enhance its concealment.

2. Trojan B

Another attack is to damage the pipe through
over-pressurizing it. WinCC will raise an alert when

the pipe pressure is above its upper limit, which is an
important security mechanism in an ICS. To perform
the attack secretly, we first change the upper limit of
pipe pressure to disable the over-pressure alarm, and
turn the pipe valve at the extreme at every midnight.
Meanwhile, we send fake valve status to WinCC.

3. Trojan C

One more attack is to change the liquid level
of the water tank. Since the target liquid level of
the system is P0, the upper line of the system is P0.
We first change the upper line to a larger one P1

and then set a temporary line P2. When the liquid is
below P2, we do nothing; when the liquid is above P2,
we change the liquid to a smaller one and save it to
the register. Thus, the liquid will keep rising when
it equals P0, and be maintained at P1 eventually.
Similarly, we send fake information to WinCC. If the
controlled object is not water, but a key component
of an important product, an inaccurate proportion
may cause a disaster.

5.3 Evaluation results

Our experiments are classified into normal sce-
narios and attack scenarios, which are designed to
answer the following questions:

1. If we monitor a PLC for a long time, and
the PLC is running the same normal program, is the
false alarm rate low enough? If we download a trojan
program to it, can we detect the abnormality?

2. What is the detection sensitivity of our
method? What is the minimum amount of program
difference between the original one and the trojans
that can be detected by NIPAD?

3. What affects the anomaly detection al-
gorithm? How do they affect the detection
performance?

For both normal scenarios and attack scenar-
ios, we collect 18-h power consumption data of the
normal program for training an LSTM network, and
segment the signals by a window size of 5 s. We
choose the same τ in Eq. (11) as 0.02 to differentiate
normal samples and abnormal samples.

5.3.1 Normal scenarios

An effective monitoring system is supposed to
have a low false alarm rate, namely a low false rejec-
tion rate. It is unacceptable that a monitoring sys-
tem gives false alarms frequently. When monitoring
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the testbed for a long time, will NIPAD give a high
false alarm rate? Will the false alarm rate increase
with time? To verify the effectiveness of NIPAD, we
monitor the PLC in a normal scenario for over 48 h
to see whether the system has a low false rejection
rate. The PLC runs the same normal program for
48 h and we calculate the false alarm rate every 2 h to
see the variation. To demonstrate the effectiveness of
LSTM, we also use one-class SVM and a correlation-
based algorithm for anomaly detection. The results
are shown in Fig. 7.
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Fig. 7 Performance of continuous monitoring with
time. It illustrates the change of the false rejection
rate (FRR)

From Fig. 7 we see that for the first 2 h, all
three algorithms show good performance, and the
FRRs are less than 2.60%. As the monitoring time
goes on, the FRR of LSTM increases slightly, but it
is always less than 0.95%. For one-class SVM and
the correlation-based algorithm, the FRR runs up
to 55.58% as time goes by. It indicates that most
of the normal samples tend to be classified as ab-
normal samples after a period of time. The reason
that LSTM outperforms both one-class SVM and the
correlation-based algorithm is as follows. An attack
that modified a few lines of the PLC program is likely
to cause small changes from the original normal pro-
gram in terms of their power consumption. We have
to choose a small threshold to distinguish abnormal
(attack) samples from the normal ones. However,
the power consumption of a PLC is time-varying,
and we observed that the base power consumption

of a normal program changes slowly over time. As a
result, the difference of the normal power consump-
tion over a few days may exceed the threshold. Both
one-class SVM and the correlation-based algorithm
are static algorithms for anomaly detection. They
do not adapt over time, and tend to misclassify the
normal samples as abnormal ones after the system
has run for a while. However, LSTM is a dynamic
algorithm that has the ability of predicting the next
time step, and it is able to learn the time-varying
characteristic. Thus, it exhibits promising results.

5.3.2 Attack scenarios

With a low false rejection rate in normal sce-
narios, an effective monitoring system should have
a low false acceptance rate for attack scenarios. To
verify the detection performance in attack scenar-
ios, we monitor the PLC for 8 h. The PLC first
runs the normal program, followed by trojans A, B,
and C. The PLC runs each of the four programs
for 2 h. The sizes of the normal program and three
trojan programs are shown in Table 1. We calcu-
late the classification result of each sample. Then we
count the number of falsely classified samples every
10 min, and thus we have 12 time periods. Since we
segment the samples with a window size of 5 s, we
have 120 samples in every time period.

Table 1 Sizes of the normal program and three trojan
programs

Program Normal Trojan A Trojan B Trojan C

Size (B) 5860 5897 5944 6078

Fig. 8 shows the results of falsely labeled sam-
ples. The FRR is nearly 0.28% for normal situations
while the FAR is 0.89% for trojan A, 0.28% for tro-
jan B, and 0 for trojan C. Although there are only
four falsely rejected samples, it is still undesirable to
have four false alarms within 2 h. For all the abnor-
mal detection situations, we will confirm the attack
and raise an alert after three continuous abnormal
samples. Thus, we are able to reduce the false alarm
rate to nearly 0. In addition, we can confirm the
attack within 1 min, which is an acceptable delay for
an ICS because the ICS attacks usually take a longer
time to cause damage.

For a trojan program, sometimes it is complex
to cause damage, but sometimes it is easy to achieve
the attack goal, such as trojans A, B, and C. What
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is the detection sensitivity of our algorithm? How
much of the change can we detect? To find the
answer, we modify the liquid control program for
our experiment. We delete or modify the original
program line by line and consider the modified pro-
grams as abnormalities, and the sizes of the modified
programs are shown in Table 2. For each modified
program, we collect 1-h data for testing. In this set of
experiments, we use LSTM, one-class SVM, and the
correlation-based algorithm for anomaly detection.

Fig. 9 illustrates the detection sensitivity of dif-
ferent anomaly detection algorithms. As we increase
the number of modified lines, the detection perfor-
mance improves for all three detection algorithms,
and they will eventually detect an abnormality with
an accuracy above 99.30% when the modification is
more than 15 lines. We find that LSTM outper-
forms one-class SVM and correlation-based anomaly
detection in all situations. When we change four
lines, i.e., the change of program size reaches 0.44%,
LSTM is able to detect an abnormality with an ac-
curacy of above 97.56%. For one-class SVM and
the correlation-based algorithm, they may reach the
same accuracy when we change 13 lines, which means
a program change of 1.57%. In a real factory, the
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Fig. 8 Detection performance under attack scenarios:
(a) falsely rejected samples for the normal program;
(b) falsely accepted samples for trojans A, B, and C.
There are 120 samples during each time period

user program size tends to be less than 10 KB for
a medium- or small-scale control system. If attack-
ers plan to destroy the control system secretly, they
will usually modify more than one line. For a large
control system, the attackers may modify more to
achieve a complicated end. As for LSTM, we can
detect an abnormality with an accuracy of around
90.33% when we modify only one line of the original
program. Thus, we believe our method works for
most sophisticated attacks.

5.3.3 Influencing factors on the algorithm

We discuss how window size, training time, and
sampling rate affect the detection performance. We
try to find the trade-off between window size, train-
ing time, sampling rate, and performance.

We first test the relationship between window
size and detection performance. We collect the power
signal of the normal program with a sampling rate of
250 kSa/s for 18 h for training. Then we collect 1-h
normal program and 3-h trojan programs with the
same sampling rate for testing. Specifically, we test
the three trojan programs mentioned above, each for
1 h. We segment the signals by a window size of 2,
3, 5, 9, or 17 s. When we calculate the frequency-
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Fig. 9 Detection sensitivity of different anomaly de-
tection algorithms: (a) detection accuracy at different
numbers of modified lines; (b) equal error rate (EER)
at different numbers of modified lines

Table 2 Sizes of the modified programs∗

Modified (lines) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Size (B) 5856 5850 5842 5834 5824 5818 5810 5806 5794 5786 5778 5770 5768 5750 5744 5736 5726 5720 5704 5696
∗ The size of the original normal program is 5860 B
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domain features, the number of points in a sample
should be the nth power of two. Thus, we cannot seg-
ment the samples with evenly spaced window sizes,
so we use the above window sizes. The results are
shown in Fig. 10. It illustrates that when the window
size is less than 9 s, we are able to achieve an accu-
racy of 97.97% for trojan A, 98.80% for trojan B,
and 99.95% for trojan C.

The performance of LSTM depends greatly on
the training time, and a longer training time usu-
ally results in a better LSTM model. We collect
the power signal of a normal program with a sam-
pling rate of 250 kSa/s for different times for train-
ing. Then we collect the power signal of the three
trojan programs with the same sampling rate, each
for 1 h. We segment all the signals by a window size
of 5 s. From Fig. 11, we observe that the detection
accuracy grows quickly from 6 h to 18 h, while the
rate reduces after 18 h. Generally speaking, the de-
tection accuracy improves with the increase of the
training time. If detection performance is the most
important factor, we can lengthen the training time
to meet the requirement. If the training time is also
an important factor, we can slightly reduce the train-
ing time and 18 h strikes a balance between training
time and detection performance. The detection ac-
curacy achieved is 99.83% for trojan A, 99.97% for
trojan B, and 99.99% for trojan C.

To find the relationship between the sampling
rate and detection performance, we collect the power
signal with a sampling rate of 250, 225, 200, 175, 150,
125, or 100 kSa/s for the normal program and the
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Fig. 10 Detection accuracy under different window
sizes. The trojan programs are the three attacks men-
tioned in the text

three trojan programs. We collect 18-h normal data
for training and 3-h trojan data for testing in each
situation. We segment all the signals by a window
size of 5 s. Fig. 12 shows the results. We can see
that a higher sampling rate gives a better detection
performance. The detection accuracy of 175 kSa/s is
close to that of 250 kSa/s. However, when the sam-
pling rate is less than 175 kSa/s, the detection accu-
racy drops a lot. Thus, a sampling rate of 175 kSa/s
can be chosen.

6 Related work

As early as 2008, Cárdenas et al. (2008) have an-
alyzed the vulnerabilities and threats against control
systems, and they also raised some attack models.
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Fig. 11 Detection accuracy with different training
times. The trojan programs are the three attacks
mentioned in the text
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Stuxnet opened the eyes of security researchers and
ICS related staff to the fact that an ICS is vulnera-
ble against various attacks. From then on, a num-
ber of researchers devoted themselves to ICS security
studies and there is much work on the vulnerabili-
ties and threats against ICS (Alcaraz and Zeadally,
2013; Krotofil and Gollmann, 2013; Piggin, 2015).
Although these works focus on high-level security re-
quirements and rarely address the implementation
of specific protection measures, they have guiding
significance for augmenting ICS security.

One of the main sources of ICS vulnerability is
the lack of security mechanisms. As a result, some
efforts focus on high priority protection areas such as
security management, secure network architectures,
and self-healing (Alcaraz and Zeadally, 2015). How-
ever, these approaches rely on redesigning or replac-
ing parts of the system, which is infeasible because
most ICSs of critical infrastructures cannot afford a
shutdown. Besides, the redesign of an ICS structure
could be prohibitively costly. As a result, counter-
measures based on changing the schematic of existing
ICSs are impractical.

The signature-based intrusion detection system
(IDS) which learns from the IT system is a widely re-
searched security mechanism for an ICS. Snort rules
can detect and prevent intrusions including denial-of-
service, command injection, response injection, and
system reconnaissance (Morris et al., 2012). How-
ever, more and more cyber attacks against ICSs are a
combination of different vulnerabilities and technolo-
gies, which renders signature-based IDS with limited
success.

Another similar approach is the anomaly-based
network intrusion detection system. Its core con-
cept is to distinguish abnormal behaviors from the
normal ones (García-Teodoro et al., 2009). Peng
et al. (2015) suggested a fingerprinting methodology
which can be used to differentiate abnormal behav-
iors from normal through analyzing industrial con-
trol protocols and extracting their characteristics.
There is much work on anomaly-based intrusion de-
tection for ICSs, including statistical, machine learn-
ing, and knowledge-based techniques (Mantere et al.,
2012; Coletta and Armando, 2015; Ponomarev and
Atkison, 2016; Shang et al., 2016). Although these
methods work well and have low false positive rates,
they are not suited for ICSs since they consume net-
work resources and may affect the effectiveness of the

ICS.
Considering the unique characteristics of an

ICS, side-channel based anomaly detection meth-
ods have been proposed. Time fingerprinting for
detecting malicious controlled objects like relays
was presented to augment the security of an ICS
(Formby et al., 2016). Nevertheless, it is effective
only for some attacks against those controlled de-
vices. Power fingerprinting was proposed to detect
malicious software execution in PLCs (Gonzalez and
Hinton, 2014). However, it collects power finger-
printing with a near-field sensor and the CPU of the
PLC is exposed to the sensor, which is not feasible
for real-time monitoring. The EMI-based anomaly
detection method (Stone et al., 2015) has the same is-
sues. In addition, both methods use a high-frequency
data acquisition unit whose sampling rate is up to
several million samples per second. There is prelimi-
nary work on real-time monitoring of PLCs based on
power consumption (Clark et al., 2013). However,
it achieves only 94.20% accuracy for known attacks
and 84.90% accuracy for unknown attacks.

Inspired by the above work, we have presented
our monitoring system which aims at overcoming
those limitations and achieving real-time monitoring
of PLC attacks. Since the PLC is the core compo-
nent in an ICS, detecting malicious programs in the
PLC is a necessary method to augment ICS security.

7 Conclusions

In this study, we have proposed a non-invasive
power-based anomaly detection scheme for detect-
ing attacks on PLCs. We were able to implement a
real-time monitoring system for anomaly detection
with a real-time data acquisition module. We have
detected the attacks which we implemented with an
accuracy as high as 99.83% in our lab experiments.
We have also discussed the detection sensitivity of
our method. Even when the modification of the
original program is as little as 0.07%, we are able to
detect the change with an accuracy of 90.33%. We
demonstrated that our scheme is able to detect an
anomaly in a PLC and thus augmented the security
of the ICS.

We focused on detecting the logic modification
of PLC programs. As a direction for future work, it
is promising to detect other types of malicious mod-
ification of PLC programs, e.g., attacks that modify
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only the parameters. In addition, other types of
side-channel signals, such as EMI, acoustic, and ther-
mal signals, may be an important supplement to our
power-based method. We relied on a resistor to col-
lect power consumption traces, and it is worth exam-
ining the feasibility of collecting power consumption
data without inserting a resistor and thus letting the
monitoring system be completely isolated from the
original ICS.
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