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Abstract:    Group decision making plays an important role in various fields of management decision and economics. In this paper, 
we develop two methods for hesitant fuzzy multiple criteria group decision making with group consensus in which all the experts 
use hesitant fuzzy decision matrices (HFDMs) to express their preferences. The aim of this paper is to present two novel consensus 
models applied in different group decision making situations, which are composed of consensus checking processes, consen-
sus-reaching processes, and selection processes. All the experts make their own judgments on each alternative over multiple 
criteria by hesitant fuzzy sets, and then the aggregation of each hesitant fuzzy set under each criterion is calculated by the ag-
gregation operators. Furthermore, we can calculate the distance between any two aggregations of hesitant fuzzy sets, based on 
which the deviation between any two experts is yielded. After introducing the consensus measure, we develop two kinds of  
consensus-reaching procedures and then propose two step-by-step algorithms for hesitant fuzzy multiple criteria group decision 
making. A numerical example concerning the selection of selling ways about ‘Trade-Ins’ for Apple Inc. is provided to illustrate and 
verify the developed approaches. In this example, the methods which aim to reach a high consensus of all the experts before the 
selection process can avoid some experts’ preference values being too high or too low. After modifying the previous preference 
information by using our consensus measures, the result of the selection process is much more reasonable. 
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1  Introduction 
 

Group decision making (GDM), which consists 
of finding the optimal alternative(s) from a set of 
feasible alternatives according to the preferences 
provided by a group of experts, takes place widely in 
various fields of management decision and economics. 
Let A={a1, a2, …, an} be the set of alternatives, C={c1, 
c2, …, cm} the set of different criteria, and E={e1, 
e2, …, es} the set of experts. Decision matrices, which 

are constructed by the mutual relationship of the al-
ternatives and the criteria, can express the preferences 
of experts intuitively. Generally, the values of deci-
sion matrices can be represented in many forms such 
as fuzzy numbers (Zadeh, 1965; Gong and Feng, 
2016), intuitionistic fuzzy numbers (Atanassov, 2012; 
Zhou, 2016), and interval-valued intuitionistic fuzzy 
numbers (Atanassov and Gargov, 1989; Azarnivand 
and Malekian, 2016). However, in some cases the 
experts cannot provide their preferences with a cer-
tain value or some interval values because of the 
experts’ different and uncertain ideas about one al-
ternative from the criteria. Compared with the above 
extended fuzzy sets, the hesitant fuzzy sets (Torra, 
2010), characterized as a set of several possible  
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values, can describe human’s various opinions of 
uncertainty and diversity more reasonably and con-
veniently. The hesitant fuzzy decision matrix 
(HFDM), whose elements are depicted by hesitant 
fuzzy elements (HFEs), can express the information 
more accurately and roundly. 

There is much successful work that has a great 
influence on decision making with hesitant fuzzy 
information. Xia and Xu (2011) and Xia et al. (2013) 
conducted an intensive study on hesitant fuzzy ag-
gregation operators, and proposed two methods to 
determine the weight vectors and aggregation opera-
tors, which aim to reflect the correlations of the ag-
gregation arguments. Liao and Xu (2014; 2015) 
proposed a family of hesitant fuzzy hybrid weighted 
aggregation operators to aggregate hesitant fuzzy 
information, and the properties of these aggregation 
operators were investigated. Based on this, a study on 
their application in decision making was undertaken. 
Considering that the criteria have different priority 
levels in practical decision making problems, Wei 
(2012) developed some prioritized aggregation in-
formation and applied it to develop some models for 
hesitant fuzzy multiple criteria group decision making 
(HFMCGDM). To arrange the values of any two 
HFEs, Xu and Xia (2011a; 2011b) proposed a variety 
of distance and similarity measures for hesitant fuzzy 
sets. Many researchers have studied the correlation 
coefficient since it has been widely used in data 
analysis. Liao et al. (2015b) introduced some novel 
correlation measures between HFSs which are better 
than other correlation measures previously proposed. 
Zhang et al. (2013) defined an improved distance 
measure for a hesitant fuzzy set considering optimis-
tic and pessimistic preference information simulta-
neously, and used the TOPSIS method to handle the 
HFMCGDM problems, which can avoid dealing  
with complex hesitant fuzzy information. To handle 
more complex HFMCGDM problems, Zeng et al. 
(2013) proposed the MULTIMOORA-HF method, 
providing a way related to uncertain and complex 
assessments for HFMCGDM problems to reduce bias 
and subjectivity. 

The experts who are involved in the HFMC-
GDM problems come from a variety of research fields, 
so they may have unique perspectives on an issue 
because of different knowledge, experience, skills, 
and personality. Absolutely, it is important and nec-

essary to let all experts achieve a high level of con-
sensus before the selection processes. Thus, it is 
necessary to develop a consensus-reaching process to 
obtain a more reasonable solution that can be ac-
cepted by all decision makers. Although consensus 
has received much attention in some research, there 
are also several issues to be dealt with, such as those 
proposed by Cabrerizo et al. (2015). Many scholars 
have proposed a series of methods for consensus 
measures, a consensus-reaching process with fuzzy 
preference relations (Herrera-Viedma et al., 2007; 
Cabrerizo et al., 2010) and intuitionistic fuzzy pref-
erence relations (Zhang et al., 2013; Liao et al., 2015a; 
2016; Xu et al., 2016). Herrera-Viedma et al. (2007) 
presented a consensus model that uses two different 
kinds of measures to guide the consensus-reaching 
process for GDM problems with incomplete fuzzy 
preference relations. Cabrerizo et al. (2010) analyzed 
the advantages and drawbacks of the consensus ap-
proach used in fuzzy GDM. Zhang et al. (2013) de-
veloped a different methodology for intuitionistic 
fuzzy GDM with group consensus. To make the result 
more reasonable, Xu et al. (2016) developed a method 
to check the consistency and consensus of intuition-
istic fuzzy preference relations. Furthermore, to better 
understand consensus among the experts with intui-
tionistic fuzzy preference relations in GDM, Liao  
et al. (2015a) used a different consistency checking 
method and a consensus-reaching method to deal with 
the intuitionistic fuzzy GDM problem, in which all 
experts use intuitionistic fuzzy preference relations to 
express their preferences. Recently, Liao et al. (2016) 
enhanced their consensus-reaching process for GDM 
with intuitionistic fuzzy preference relations by re-
moving only some information of the expert(s) as 
alternative(s) to remove the expert from the decision 
group. As the above-mentioned methods include the 
consensus-reaching process before selection, the de-
cision making results are much better than those de-
rived by only the selection process. 

However, up to now, there is little research on 
the consensus-reaching process for multiple criteria 
group decision making (MCGDM) problems with 
hesitant fuzzy information. Zhang et al. (2014; 2015a; 
2015b) presented a consensus support model and a 
decision making model, composed of a consensus- 
reaching process and a selection process for MCGDM 
with hesitant fuzzy information. Their method has 



Ding et al. / Front Inform Technol Electron Eng   2017 18(11):1679-1692 1681

some drawbacks as it focuses only on how to measure 
the consensus of a group and uses a feedback mech-
anism to interact with the experts, which wastes much 
time and is very complicated in practical applications. 
In addition, the method cannot help the group check 
what are the real factors resulting in the low level of 
consensus. To avoid these drawbacks, in this research 
we develop two methods for HFMCGDM with group 
consensus, in which all experts use HFDMs to ex-
press their preferences. We introduce two novel 
methods to measure, check, and reach the consensus 
of a group and give two complete algorithms for 
GDM with HFDMs, which are quite flexible and 
reasonable, and thus can match the practical GDM 
situations well. 
 
 
2  Preliminaries 

 
In this section, some basic concepts related to 

HFSs and HFDMs are introduced which will be used 
in the following analyses. 

2.1  Hesitant fuzzy set 

Let X be a fixed set. A hesitant fuzzy set (HFS) 
(Torra, 2010) on X permits the membership of an 
element to a set of several possible values between 0 
and 1. To be easily understood, Xia and Xu (2011) 
expressed an HFS mathematically as 

 

 , ( ) ,AH x h x x X                    (1) 

 
where hA(x) is a set of values in [0, 1], denoting the 
possible membership degrees of the element xX to 
the set H. h=hA(x) is a hesitant fuzzy element (HFE) 
and H is the set of all HFEs. 

Xu and Xia (2011a) defined a simplified hesitant 
normalized Hamming distance to reflect relationship 
and difference between two variables as follows: 
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Hamming distance satisfies 0≤d(A1, A2)≤1. There are 
many other different forms of distance measures for 
HFEs (refer to Torra and Narukawa (2009) and Xu 
(2014) for details). In this study, we use the hesitant 
normalized Hamming distance as a representation. 

For an HFE h, 
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denotes the score of h, where lh is the number of the 
elements in h. For two HFEs h1 and h2, if s(h1)>s(h2), 
then h1 is superior to h2, denoted as h1>h2; if 
s(h1)=s(h2), then h1 is the same as h2, denoted as h1~h2. 
Chen et al. (2013) defined the concept of deviation 
degree to better compare the superiority between two 
HFEs when h1 and h2 have the same scores. Here we 
do not review it. Interested readers may refer to Chen 
et al. (2013). 

2.2  MCGDM problem with hesitant fuzzy infor-
mation 

We consider the case where a group of experts 
provide their preference information in the form of 
matrices and express their possible preference values 
by HFEs when evaluating several existing alterna-
tives. For an HFMCGDM problem with a discrete set 
of n alternatives A={a1, a2, …, an}, a finite set of m 
criteria C={c1, c2, …, cm}, and a set of experts ek (k=1, 
2, …, v, r, …, s), where s is the number of experts, and 
v and r are two positive integers between 1 and s, the 
weight vector of all criteria, determined by the experts 
according to the importance of each criterion, is de-
noted as ω=[ω1, ω2, …, ωm]T, where 0≤ωj≤1, j=1, 

2, …, m, and 
1

1
m

jj



 . The weight vector of ex-

perts ek (k=1, 2, …, v, r, …, s) is λ=[λ1, λ2, …, λν, λr, …, 

λs]
T, where λk>0 (k=1, 2, …, s) and 

1
1,

s

kk



  

which can be determined according to how deep and 
important the experts’ professional knowledge, ex-
perience, status, and impact are. In this study, we 
assume that the weights of the experts are the same 
and focus on the different weights of the criteria. If all 
the experts use HFEs to express their assessments, we 
can construct an HFDM Hk as follows: 
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          (4) 

2.3  Aggregation operators for HFEs 

Xia and Xu (2011) developed many kinds of 
aggregation operators for HFEs. Then, Liao et al. 
(2014) proposed some adjusted aggregation operators 
for HFEs, which simplify the computation process 
due to the decreasing dimension of HFEs. According 
to the constructed HFDM Hk, we can obtain the form 
of presentation for the adjusted hesitant fuzzy 
weighted averaging (AHFWA) operator as follows: 
Definition 1 (Liao et al., 2014)    Let hj (j=1, 2, …, z) 
be a collection of HFEs. An AHFWA operator is a 
mapping Pn→P such that 
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where ( )q
jh  is the qth largest value in hj, l is the 

number of elements in the HFE, and =[1, 2, …, 
z]

T is the weight vector of hj (j=1, 2, …, z) with 

j[0, 1] and 
1
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z
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
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Remark 1    There are many different forms of ag-
gregation operators for HFEs (Xia and Xu, 2011; Xia 
et al., 2013; Liao et al., 2014; Liao and Xu, 2014; 
2015). Generally, we should select the appropriate 
aggregation operator according to different practical 
issues. Here we just use the aggregation operator in 
Eq. (5) as a representation. The numbers of values in 
the HFEs are always different so that we should ex-
tend the shorter one until they have the same length 
when we aggregate them. We can extend the shorter 
HFE by adding the minimum value in it if the experts 
are considered pessimistic as in an example here. 
 
 
3  Consensus-reaching process for HFMC-
GDM 

 

In MCGDM situations, most researchers always 
rank the alternatives according to the overall scores of 

these alternatives, which are calculated by some ag-
gregation operators. However, if the aggregation 
process does not involve the consensus or reach the 
expected consensus degree δ among the experts, the 
decision result may be unreasonable. Consensus is a 
basic idea in GDM, expected to occur after the experts 
exchange opinions (Ben-Arieh and Chen, 2006). In 
this section, we give a detailed algorithm for 
HFMCGDM with a consensus-reaching process. An 
extensional consensus-reaching process will be pre-
sented in Section 4. 

3.1  Consensus-reaching process 

Let h(ai) (i=1, 2, …, n) be the aggregated values 
of alternatives ai (i=1, 2, …, n) over all criteria cj (j=1, 
2, …, m) by the AHFWA operator. Then we can give a 
distance measure between experts eν and er as 
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where ( ) ( )
v

q
e ih a  is the qth largest value in h(ai) of 

expert eν, 
( ) ( )

r

q
e ih a  is the qth largest value in h(ai) of 

expert er, and l denotes the number of all the different 
membership degrees. 

Note that the larger the distance measured be-
tween two experts, the smaller the consensus degree 
between the two experts. Based on the distance 
measure between any two experts shown in Eq. (6), a 
consensus degree between any two experts can be 
defined mathematically as 

 

, 1 , , 1,  2,( )  ( ), ,  .r re e d e e r s         (7) 
 

It is important to maximize the group consensus 
in GDM, which can ensure that the final result is more 
reliable and more reasonable. We can find the mini-
mum consensus degree Δ by Eq. (7). Since 0d(eν, 
er)1, the consensus degree Δ[0, 1]. We know the 
expected consensus degree δ that the decision maker 
expects to reach was given previously. Thus, if Δ>δ, 
we can say the group reaches consensus; if Δ<δ, then 
there is at least one expert who should be advised to 
modify his/her preference values to reach consensus.  

When Δ<δ, we should provide a procedure to 
reach a higher consensus degree which is at least 
equal to δ in the end. In this situation, the experts 
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should usually have some discussions and the expert 
who does not want to change his/her own preference 
information may persuade others to adopt his/her 
opinion. If no preference information is changed or if 
the final consensus degree which we obtain from the 
modification preference values changed by some 
experts is still Δ<δ after discussions, then we should 
develop a consensus-reaching procedure to reach a 
higher consensus effectively. The method is described 
as follows:  

1. Through a series of effective computing 
methods, we first should find and pick out the expert 
who should change his/her preference information to 
reach a higher consensus. This is the key and the most 
difficult step of this consensus-reaching process. 

We define that the two experts who have the 
largest distance between each other should be picked 
out, which can be depicted as 

 

    . 1,2,...,
, ( , ) max ( , ) .k v r v r v r

v r s
e e e d e e d e e


    (8) 

 

Suppose that the two experts eν and er who have 
a distance d(eν, er) from each other satisfy ek{eν, 
er}, where {eν, er} expresses any two experts. The 
next important job is to judge whether eν or er should 
be selected to change his/her assessments. We should 
pick out the expert 

k
e   according to  

 

    min , \ , \ , .k v v r k r v rk
e e d e e e e e E e e       

  (9) 
 

If there are several experts satisfying Eqs. (8) 
and (9) simultaneously, it is permissible for anyone to 
adjust his/her preference values. However, this hardly 
ever occurs because it is so special and unusual. 
Generally, there is always only one expert who satis-
fies Eqs. (8) and (9) simultaneously. 

2. Then we ask the expert 
k

e   who is selected 

whether he/she agrees to change his/her preference 
values. If the expert agrees, then we calculate a new 
consensus degree and compare the size between the 
calculation consensus degree and the expected con-
sensus degree. If Δ≥δ, then we can say that the group 
reaches consensus. If Δ<δ, then we repeat the process 
from the beginning. 

3. If the expert does not agree to change his/her 
preference values, we will exclude him/her from the 

group because his/her preference information is dif-
ferent from that of other experts. Then, we calculate a 
new consensus degree and compare the size between 
the calculation consensus degree and the expected 
consensus degree. If Δ≥δ, then we can say the group 
reaches consensus. If Δ<δ, then we repeat the process 
from the beginning. 

Here, we also introduce a variable  representing 
the expected majority degree which should be de-
termined according to the demand of decision in ad-
vance. Suppose that there are s* experts ek (k=1, 2, …, 
s*) who reach the final consensus Δ*≥δ. Then, the 
majority degree of the final group can be defined as 
T*=s*/s. If some experts are not willing to change their 
minds or are excluded from the group which results in 
a final T*<τ, then this GDM is not meaningful.  

4. Finally, we can calculate the overall scores of 
the alternatives ai (i=1, 2, …, n) and make a ranking 
of them. The overall score ( )is h  is described as 
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Furthermore, we can obtain ( )is h  by Eqs. (11a) 

and (11b) if we assume that each expert has the same 
weight: 
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where s(hik) is the score of alternative ai about expert 

ek, and ( )q
ikh  is the qth smallest value in hik. 

Also, we introduce the deviation degree ( )ih  

as follows: 
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Usually, the overall scores ( )is h  are different 

from each other, and we can just compare the size 
through the overall scores. If there are several overall 
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scores which are equal, we should compare alterna-

tive ai further through the deviation degree ( )ih . In 

the end, we can choose the best alternative a*. 
The consensus-reaching process introduced 

above has the following three advantages: 
1. It is much closer to a practical decision mak-

ing process as it takes the experts’ feedbacks into 
account.  

2. It not only measures the consensus of a group, 
but also introduces some procedures to improve the 
consensus of a group. 

3. It makes the result of GDM more reasonable 
as each expert’s preference information is accepted by 
other experts even when they have different view-
points due to different knowledge and experience. 

3.2  Algorithm for HFMCGDM with consensus- 
reaching process 

Based on the above analysis, we assume that 
there are s* experts ek (k=1, 2, …, s) who reach the 
final consensus Δ*≥δ and also the majority degree is 
finally T*=s*/s≥τ after the consensus-reaching process. 
A step-by-step process for HFMCGDM can be given 
as Algorithm 1. 

 

Algorithm 1  Step-by-step process for HFMCGDM 
1. A group of experts ek (k=1, 2, …, v, r, …, s) is invited to 

evaluate the alternatives ai (i=1, 2, …, n), and each expert ek 

expresses his or her opinions by each HFDM ( )k k
ij n mh H  in 

the form of Eq. (4). In addition, the weights j (j=1, 2, …, m) 
of the criteria cj (j=1, 2, …, m) are completely known. To find a 
consensus solution, the two parameters on the expected con-
sensus degree of group δ and the expected majority degree τ 
are established in advance by the group of experts. Then go to 
the next step. 

2. Use Eq. (5) to obtain the aggregation values of each 
alternative ai over all criteria cj (j=1, 2, …, m) with weights ωj 
(j=1, 2, …, m), and calculate the distance d(eν, er) between any 
pair of experts (eν, er), ν, r=1, 2, …, s according to Eq. (6). We 
obtain the consensus degree Δ of the group through Eq. (7). 
Then go to the next step. 

3. Compare the values between the consensus degree of 
the group Δ and the expected consensus degree δ. If Δ≥δ, then 
go to step 5; otherwise, go to the next step. 

4. Find 
k

e   who should be required to adjust his or her 

preference in order to reach a higher group consensus ac-
cording to Eqs. (8) and (9). If expert 

k
e   agrees to change 

his/her opinions and provides new information in the HFDM 

( ) ,k k
ij n mh

 

H  then we let ( )k k k
ij n mh

 

 H H  and go back 

to step 2. If expert 
k

e   refuses to change his/her opinions, then 

we exclude him/her from the group and let s*=s*1 (s*=s rep-
resents the number of experts which are at first considered in 
the decision making). After that, we calculate the majority 
degree of the group T=s*/s (s* is the number of experts after the 
final iteration). If T<τ, then the algorithm ends and there is not 
a consensus solution for this group decision making problem; 
otherwise, go back to step 3. 

5. Calculate the overall scores and deviation degrees for 
the alternatives according to Eqs. (10) and (12), and compare 
all the scores and find the best alternative a*. 

6. End. 

 
According to the Algorithm 1 and the consesus- 

reaching procedure introduced before, we can solve 
the GDM problem with consensus easily. 

 
 

4  Extensional consensus-reaching method 
for HFMCGDM 
 

In this section, an extensional consensus- 
reaching method using the removal of inappropriate 
alternatives for HFMCGDM is proposed which is a 
little different from the method in Section 3. 

4.1  Extensional consensus-reaching process 

It is recognized that removing the expert from 
the group may result in the loss of useful information 
from this expert. To avoid losing any useful infor-
mation, we do more detailed research on the  
consensus-reaching process. Liao et al. (2015a) pro-
posed the idea for removing the alternative(s) where 
the opinion of expert 

k
e   is far from the other experts 

from the group in intuitionistic fuzzy group decision 
making. In our study, we will introduce this idea and 
apply it to HFMCGDM. 

After finding the expert 
k

e   who should modify 

his/her preference in Section 3, we try to find the 

alternative(s) where expert 
k

e  ’s opinion is far away 

from those of the other experts who reach the lowest 
degree of consensus. Generally, there may be not only 
one alternative that leads to the furthest distance be-

tween 
k

e   and the other experts who reach the lowest 

consensus degree. A set of such alternatives A={a1, 
a2, …, an} can be selected by computing 
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1,2,..., { , }
{ max max ( , )},

r v r
i rki n e e e

a A d e e
 

           (13) 

 
where ( , )rk

d e e  is the distance of HFEs between 

experts 
k

e   and er according to Eq. (5). 

After picking out alternative ai in set A, we ask 

expert 
k

e   whether he/she is willing to change his/her 

assessment about any alternative in A. If yes, the new 
assessment(s) will replace the old ones and we will 

obtain a new decision matrix from expert 
k

e   and 

make a decision again about new information; if not, 

we will remove the alternative * * ( )
i i

a a A  from 

expert 
k

e   as follows: 

 

* *
*1,2,..., ;

min max ( , ),
ii

a ri ka A r s r k
a d e e

  
          (14) 

 

where *( , )
i

a rk
d e e


 is the revised distance measure 

between experts *k
e  and er by removing alternative 

* * ( )
i i

a a A  from expert *k
e , that is, 

 

*

11,

1 1
( , ) ( ) ( ) .

1 ri k

n l
t t

a r e i e ik
ti i i

d e e h a h a
n l

 
 

  

 
    

  （） （）  

   (15) 
 

Here we just remove alternative *i
a  from expert 

k
e  . 

That is to say, we delete HFEs 
i j

h   from expert 
k

e  . 

Then, we should know how to calculate the distance 
measure and the overall scores after deleting HFE 

i j
h   from expert 

k
e  . Here we just ignore HFE 

i j
h  , 

which means the distance measure between HFEs 

i j
h   and ( )ijh i i   is not computed in the following 

procedure, and then calculate the distance measures 
and the overall scores for the rest of the HFEs. 

4.2  New algorithm for HFMCGDM 

Based on the above analysis, we remove an ex-
pert’s assessment on just one or several alternatives 
instead of all of his/her assessments to revise the 
consensus degree. Thus, a new step-by-step process 
for HFMCGDM is as given in Algorithm 2. 

Algorithm 2 New step-by-step process for HFMC-
GDM 

1. Same as step 1 in Algorithm 1. 
2. Same as step 2 in Algorithm 1. 
3. Compare the values between the consensus degree of 

group Δ and the expected consensus degree δ. If Δ≥δ, then go 
to step 8; otherwise, go to the next step. 

4. If expert ek is persuaded by other experts through 
communication to modify his/her HFMADM matrix Hk into a 
new one Hk′, then let Hk=Hk′ and go back to step 2; if no expert 
agrees to change the preferences at this time, then go to the 
next step. 

5. Find the 
k

e   who should be required to adjust his/her 

preference to reach a higher group consensus according to Eqs. 
(8) and (9) as in Algorithm 1. Go to the next step. 

6. Find the alternative(s) where expert 
k

e  ’s opinions are 

the most far away from those of the other experts who reach 
the lowest consensus degree by Eq. (13). If expert 

k
e   is 

willing to change his/her assessment on any alternatives in A, 
then the old assessment(s) from expert 

k
e   is (are) replaced by 

the new ones, and go back to step 1; otherwise, go to the next 
step. 

7. Exclude * *( )
i i

a a A  from the expert 
k

e   that satisfies 

Eqs. (14) and (15) simultaneously, and go to step 2. 
8. Same as step 5 in Algorithm 1. 
9. End. 

 
The idea of Algorithm 2 is a little different from 

that of Algorithm 1. Algorithm 2 aims at removing 
alternative(s) to reach consensus. However, Algo-
rithm 1 aims at removing the expert(s) to reach con-
sensus. These two ideas are applied to different situ-
ations according to the practical issue. 

Comparing Algorithm 1 with Algorithm 2, we 
can see that the consensus measures are a little dif-
ferent. These two methods can be used in different 
decision making situations. For example, if we want 
to find the experts who result in the low level of 
consensus in a decision making problem, we can use 
Algorithm 1 to address this issue which is relatively 
easy and straightforward. However, if we want to find 
the alternatives that result in the low level of con-
sensus in a decision making problem, we can use 
Algorithm 2 to address this issue because it retains the 
partial information of the experts, and the parameter τ 
(expected majority degree) does not need to be con-
sidered. Thus, how we apply the two methods is 
usually related to the practical decision making  
situations. 
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5  Numerical example and discussion 

5.1  Numerical example 

In what follows, we present a numerical example 
on selecting selling ways for ‘Trade-ins’ for Apple Inc. 
to illustrate the proposed decision analysis process 
and validate the proposed algorithms in aiding group 
decision making. 
Example 1    The ‘Trade-Ins’ policy is researched and 
pushed by government and many enterprises. In May 
2009, the CPC Central Committee and the State 
Council introduced a ‘Trade-Ins’ policy for cars and 
appliances, which is aimed to promote consumption 
through fiscal subsidies. ‘Trade-Ins’ refers to the po-
sition that if you can give the same old goods to the 
store when you are buying new goods, you can obtain 
discount coupons. Kong (2010) proposed the 
Trade-Ins of appliances, which can not only promote 
the economic effect of consumption, but also promote 
the environmental effect of electronic waste man-
agement. Wu et al. (2014) indicated that the influence 
of Trade-Ins on sales and profits depends on the en-
terprise’s cost structure, the difference values between 
old and new products, and the proportion of different 
consumers in the market. 

Apple Inc. has carried out a ‘Trade-Ins’ plan for 
the iPhone in the United States market since 2013. In 
2015, the company officially launched the reusing 
and recycling program in China. ‘Trade-Ins’ activity 
has a variety of formats, including: 

a1: no Trade-Ins;  
a2: Trade-Ins on only Apple products;  
a3: Trade-Ins on the same products like Apple;  
a4: Trade-Ins on both Apple products and com-

peting products.  
There are four experts who are asked to choose 

which alternative is the best to be carried out. Con-
sidering two sides, enterprise benefit and social re-
sponsibility, several criteria are established according 
to the two sides in Fig. 1, involving:  

c1: unit benefit (unit selling priceunit cost 
value of recycling productcost of recycling);  

c2: number of customers (new customersold 
customers);  

c3: benefit of customers (comparing the demand 
of changing old products and the use of discount 
coupons with the value of old products);  

c4: environmental protection (reducing envi-
ronmental pollution by uniform recycling);  

c5: fewer security risks (old products may not be 
good for health because of higher radiation and being 
more highly combustible). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For an enterprise, each criterion has a different 

weight, and the enterprise benefit is the most im-
portant. So, the weight vector ωj=[ω1, ω2, ω3, ω4, ω5]

T 
is considered as ωj=[0.3, 0.3, 0.2, 0.1, 0.1]T. Since 
there is no significant difference among the experts, 
the weights of them can be set to be equal. The ex-
pected majority degree τ is assumed to be 3/4, which 
means at least three out of four experts in the com-
mittee are needed to make a decision. Since the al-
ternatives are important for the development of Apple 
Inc., the group of experts wants to be unanimous in 
choosing the selling ways and requires the expected 
consensus degree to be δ=0.9. 

We assume that senior managers, acting as a 
decision organization, provide preferences over the 
alternatives ai (i=1, 2, 3, 4) under each criterion C={c1, 
c2, …, cm} when they make decisions about selling 
ways about ‘Trade-Ins’ for Apple Inc. These senior 
managers may provide different preferences over the 
alternatives under each criterion. For example, when 
the members of the decision organization discuss the 
degree which should be over a1 under c1, some 

Fig. 1  The relative factors about the total value of 
Apple Inc. 

Total value
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members may provide several values like 0.9, 0.8, and 
0.7. The preference information can be contained in 
an HFE, which is expressed as h11={0.9, 0.8, 0.7}. So, 
the results evaluated by the experts are contained in 
an HFDM (Tables 1–4). 

We could use Algorithm 1 to solve this problem. 
Step 1 has been performed above, so we begin the 
calculation process from step 2. 

Step 2: We consider that the experts are pessi-
mistic, and change the hesitant fuzzy data by adding 
the minimum values, and then use Eq. (5) to obtain 
the aggregation operators (Tables 5–8). Then, calcu-
late the distance d(eν, er) between any pair of experts 
(eν, er), ν, r=1, 2, 3, 4 according to Eq. (6). We obtain 
the consensus degree Δ of the group through Eq. (7). 
Then go to the next step. 

We can calculate the distance between any pair 
of experts and obtain the consensus degree Δ of the 
group as follows: 

 

1 2 1 3

1 4 2 3

2 4 3 4

, 0.0279, , 0.0615,

, 0.0754, ,

( ) ( )

( ) ( )

( )

0.0649,

, 0.0816, , 0.1332,

0.866

( )

8.

d e e d e e

d e e d e e

d e e d e e



 
 
 



 

 
Table 1  Hesitant fuzzy decision matrix e1 

 c1 c2 c3 c4 c5

a1 {0.9, 0.8} {0.8} {0.7, 0.5} {0.7, 0.6} {0.5} 

a2 {0.8, 0.7} {0.8, 0.6} {0.8, 0.6} {0.6} {0.7} 

a3 {0.6} {0.9, 0.8} {0.8} {0.8, 0.7} {0.9, 0.7}

a4 {0.5} {0.9} {0.7, 0.6} {0.8} {0.9, 0.8}

 
Table 2  Hesitant fuzzy decision matrix e2 

 c1 c2 c3 c4 c5

a1 {0.9, 0.8} {0.7} {0.8, 0.6} {0.6} {0.7, 0.5}

a2 {0.8} {0.8, 0.6} {0.7} {0.6} {0.7, 0.6}

a3 {0.9} {0.9} {0.6, 0.5} {0.7, 0.5} {0.4} 

a4 {0.6} {0.9} {0.7, 0.6} {0.8} {0.6, 0.5}

 
Table 3  Hesitant fuzzy decision matrix e3 

 c1 c2 c3 c4 c5

a1 {0.7, 0.5} {0.8} {0.7} {0.7, 0.6} {0.5} 

a2 {0.5} {0.6} {0.8, 0.6} {0.8, 0.7} {0.7} 

a3 {0.7} {0.9, 0.8} {0.8} {0.7} {0.9, 0.7}

a4 {0.8} {0.9} {0.8, 0.7} {0.8} {0.9} 

Table 4  Hesitant fuzzy decision matrix e4 

 c1 c2 c3 c4 c5

a1 {0.9} {0.8} {0.7, 0.5} {0.7} {0.6, 0.5}

a2 {0.8, 0.7} {0.9} {0.8, 0.6} {0.7} {0.5} 

a3 {0.6} {0.6} {0.9} {0.8, 0.7} {0.9, 0.8}

a4 {0.5} {0.6} {0.7, 0.6} {0.7} {0.5} 

 
Step 3: Since Δ<δ=0.9, go to step 4. 
Step 4: We suppose that no expert agrees to 

change his/her mind without any tip. Since d(e3, e4) is 
the furthest distance, then one of them should be 
asked to change his/her preferences. Removing e3 and 
e4 from the group respectively, we obtain the corre-
sponding maximum distance of the remaining group 
as d(e2, e4)=0.0816 and d(e2, e3)=0.0649. Since d(e2, 
e3)<d(e2, e4), the fourth expert should be asked to 
change his/her preferences. If expert e4 refuses to 
change his/her opinions, then we should exclude him/ 
her from the group and let s*=3, and calculate the 
majority degree of the group T=3/4≥τ. In this case, 
d(e2, e3)=0.0649 turns out to be the furthest distance 
and Δ=0.9351>δ, which implies that the new group 
reaches an acceptable consensus. Then, go to the next 
step. 

Step 5: Calculate the overall scores as follows:  
 

1 2

3 4

( ) 0.7320 ( ) 0.6884,

( ) 0.7884 ( ) 0.7896.

s h s h

s h s h

 
 

 
 

，

，
 

 
So, the best alternative is a4. That is to say, the 

best way of selling is Trade-Ins on both Apple prod-
ucts and competing products. 

We will use Algorithm 2 to solve this problem. 
Steps 1–5 have been carried out above, so we begin 
the calculation process from step 6. 

Step 6: Find the alternative(s) where expert e4’s 
opinions are the most far away from those of the other 
experts. Then, we calculate the distances: 

 

1 2

3 4

3 4 3 4

3 4 3 4

( , ) 0.0979, ( , ) 0.1577,

( , ) 0.0489, ( , ) 0.2283.

a a

a a

d e e d e e

d e e d e e

 

 
 

 
Thus, * {4}

i
a  . Then, we ask expert e4 whether 

he/she is willing to change his/her assessment for the 
fourth alternative. As it is assumed that expert e4 does 
not want to change his/her mind, go to the next step. 
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Step 7: Since there is only one alternative in A, 
expert e4 on the fourth alternative is unreliable com-
pared to the other experts’ evaluations, and thus it 
needs to be removed. Then go back to step 2. We can 
calculate the distance between any pair of the experts 
and obtain the consensus degree Δ of the group as 
follows: 

 

1

1 2 1 3

4 2 3

2 4 3 4

, 0.0279, , 0.0615,

, 0.0487, ,

( ) ( )

( ) ( )

( )

0.0649,

, 0.0607, , 0.1015,

0.898

( )

5.

d e e d e e

d e e d e e

d e e d e e



 
 
 



 

 
Because Δ<δ=0.9 and d(e2, e4)<d(e2, e3), the 

third expert should be asked to change his/her pref-
erences. Finding the alternative(s) where expert e3’s 
opinions are the most far away from expert e4’s, we 
can calculate the distances: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2

3

3 4 3 4

3 4

( , ) 0.0979, ( , ) 0.1577,

( , ) 0.0489.

a a

a

d e e d e e

d e e

 


 

 
Thus, * {2}

i
a  . Then, we ask expert e3 whether 

he/she is willing to change his/her assessment for the 
second alternative. As it is assumed that expert e3 
does not want to change his/her mind, expert e3 on the 
second alternative is unreliable compared to the other 
experts’ evaluations and needs to be removed. Then 
go back to step 2. 

We can calculate the distance between any pair 
of experts and obtain the consensus degree Δ of the 
group as follows: 
 

1 2 1 3

1 4 2 3

2 4 3 4

, 0.0279, , 0.0551,

, 0.0487, , 0.0545,

, 0.0607, , 0.0734,

0.9266 .

( ) ( )

( ) ( )

( ) ( )

d e e d e e

d e e d e e
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 
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 

 

Table 5  Hesitant fuzzy decision matrix e1 

 c1 c2 c3 c4 c5 AHFWA 

a1 {0.9, 0.8} {0.8, 0.8} {0.7, 0.5} {0.7, 0.6} {0.5, 0.5} {0.7989, 0.7178}

a2 {0.8, 0.7} {0.8, 0.6} {0.8, 0.6} {0.6, 0.6} {0.7, 0.7} {0.7768, 0.6435}

a3 {0.6, 0.6} {0.9, 0.8} {0.8, 0.7} {0.8, 0.7} {0.9, 0.7} {0.8134, 0.7104}

a4 {0.5, 0.5} {0.9, 0.9} {0.7, 0.6} {0.8, 0.8} {0.9, 0.8} {0.7836, 0.7544}
 
 

Table 6  Hesitant fuzzy decision matrix e2 

  c1  c2  c3 c4 c5 AHFWA

a1  {0.9, 0.8}  {0.7, 0.7}  {0.8, 0.6}  {0.6, 0.6}  {0.7, 0.5}  {0.7952, 0.6952}

a2  {0.8, 0.8}  {0.8, 0.6}  {0.7, 0.7}  {0.6, 0.6}  {0.7, 0.6}  {0.7579, 0.6933}

a3  {0.9, 0.9}  {0.9, 0.9}  {0.6, 0.5}  {0.7, 0.5}  {0.4, 0.4}  {0.8238, 0.8061}

a4  {0.6, 0.6}  {0.9, 0.9}  {0.7, 0.6}  {0.8, 0.8}  {0.6, 0.5}  {0.7675, 0.7482}
 
 

Table 7  Hesitant fuzzy decision matrix e3 

  c1  c2  c3  c4  c5  AHFWA 

a1  {0.7, 0.5}  {0.8, 0.8}  {0.7, 0.7}  {0.8, 0.8}  {0.5, 0.5}  {0.7204, 0.6646}

a2  {0.5, 0.7}  {0.6, 0.6}  {0.8, 0.6}  {0.8, 0.7}  {0.7, 0.7}  {0.6625, 0.5962}

a3  {0.7, 0.7}  {0.9, 0.8}  {0.8, 0.8}  {0.7, 0.7}  {0.9, 0.7}  {0.8217, 0.7551}

a4  {0.8, 0.8}  {0.9, 0.9}  {0.8, 0.7}  {0.8, 0.8}  {0.9, 0.9}  {0.8484, 0.8356}
 
 

Table 8  Hesitant fuzzy decision matrix e4 

  c1  c2  c3  c4  c5  AHFWA 

a1  {0.9, 0.9}  {0.8, 0.8}  {0.7, 0.5}  {0.7, 0.7}  {0.6, 0.5}  {0.8034, 0.7773}

a2  {0.8, 0.7}  {0.9, 0.9}  {0.8, 0.6}  {0.7, 0.7}  {0.5, 0.5}  {0.8146, 0.7595}

a3  {0.6, 0.6}  {0.6, 0.6}  {0.9, 0.9}  {0.8, 0.7}  {0.9, 0.8}  {0.7538, 0.7252}

a4  {0.6, 0.6}  {0.6, 0.6}  {0.7, 0.6}  {0.7, 0.7}  {0.5, 0.5}  {0.6248, 0.6026}
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The results aggregated using the AHFWA oper-
ators for each alternative under four experts are 
shown in Table 9. Then, go to the next step. 

Step 8: Calculate the overall scores as follows: 
 

1 2

3 4

( ) 0.7461, ( ) 0.7409,

( ) 0.7762, ( ) 0.7896.

s h s h

s h s h

 
 

 
 

 

 
So, the best alternative is a4. That is to say, the 

best way of selling is Trade-Ins on both Apple prod-
ucts and competing products. 

In this example, we obtain the same results from 
Algorithms 1 and 2. However, sometimes we may 
obtain different results through the two methods of 
excluding experts and removing the alternative from 
the expert. 

5.2  Comparison analysis 

In this part, we give some in-depth comparison 
analyses between our new algorithms and the existing 
algorithm for hesitant fuzzy group decision making 
with the consensus method. 

The method of Zhang et al. (2015a) is as follows: 
Step 1: Use the additive aggregation operator to 

obtain the group decision matrix ( ) :ij n mh  H  

 

1

1
,  1, 2, .   .., ,    1, 2, ..., .  

s
k

ij ijh h i n j m
s

      (16) 

 

Step 2: Compute the consensus measure by the 
distance measure: 

 

1 1 1

1
( , ) .

n m s
k k

ij ij
i j k

d Η H h h
nms   

          (17) 

 
Step 3: Control the consensus degree by the 

following formula: 
 

( , ) 1 .kd  Η H                    (18) 

 
 
 
 
 
 
 
 

Step 4: Identify the preference values which are 
calculated as follows: 

 

 

1
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1
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s
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ij ij

k

i j d h h
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          (19) 

 

The preference values k
ij ijh h   that should be 

changed are calculated by 
 

 IJK ( , , ) ( , ) IJ ( , ) 1 .k
ij iji j k i j d h h        (20) 

 
Step 5: Experts receive the recommendation. 

Then we obtain the new group decision matrix and 
rank the alternatives by 

 

1

.
m

i j ij
j

a h


                             (21) 

 
Here we use the additive aggregation operator  

to obtain the group decision matrix ( )ij n mh Η    

(Table 10). 
 
 
 
 
 
 
 
 
 
We obtain the following results from the method 

of Zhang et al. (2015a) according to the above  
algorithm: 
 

1 2

3 4

( ) 0.763, ( ) 0.742,

( ) 0.768, ( ) 0.735.

s h s h

s h s h
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Table 10  The group decision matrix H  

 c1 c2 c3 c4 c5 
a1 {0.85} {0.78} {0.73} {0.7} {0.58}
a2 {0.73} {0.78} {0.78} {0.68} {0.65}

a3 {0.7} {0.83} {0.78} {0.75} {0.78}

a4 {0.63} {0.83} {0.73} {0.78} {0.73}

Table 9  The AHFWA operators for each alternative under five experts 

 e1 e2 e3 e4 

a1 {0.7989, 0.7178} {0.7952, 0.6952} {0.7204, 0.6646} {0.8034, 0.7773} 

a2 {0.7768, 0.6435} {0.7579, 0.6933} – {0.8146, 0.7595} 

a3 {0.8134, 0.7014} {0.8238, 0.8061} {0.8217, 0.7551} {0.7538, 0.7252} 

a4 {0.7836, 0.7544} {0.7675, 0.7482} {0.8484, 0.8356} – 
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So, the best alternative is a3. That is to say, the 
best way of selling is Trade-Ins on the same products 
like Apple. 

All the results derived by different methods are 
listed in Table 11. 

 
 
 
 
 
 
 
 
From Table 11, we know that the three methods 

have derived different optimal alternatives and there 
are slight differences in the ranking order among the 
alternatives. In a method proposed by Zhang et al. 
(2015a), we can see that there are some drawbacks. 
For example, the step which generates suggestions to 
help the experts change their preferences wastes 
much time and sometimes the preferences are inef-
fective. In addition, the authors did not consider that 
the experts are unwilling to modify their preferences. 
In contrast, our two methods consider all the factors 
above, and thus are more comprehensive, reasonable, 
and practical. Based on the analyses, our methods 
have many advantages compared with the method 
proposed by Zhang et al. (2015a), which can be fur-
ther summarized as follows: 

1. More preference information is considered. 
We consider the situation in which each expert’s 
preference information of alternatives ai (i=1, 2, 3, 4) 
under attributes cj (j=1, 2, …, 5) may be expressed as 
several possible values, which can be widely applied 
in many GDM problems without losing any expert’s 
information. For example, expert e1 provided two 
values 0.9 and 0.8 of alternative a1 under attribute c1 
because of uncertainty and hesitancy. However, in 
this case, the values provided by expert e1 are not 
taken into account in the method of Zhang et al. 
(2015a). 

2. The consensus checking and reaching pro-
cesses are more specific and flexible because of the 
following steps: We first ask the experts to discuss 
and adjust their preferences. If no one changes his/her 
preference information, then we use our consensus 
approaches whose computing processes are simpler 
and more accurate to find the experts who should 

modify their judgments or find the alternatives where 
the experts’ opinions should be modified. If they are 
still not willing to do this, then we exclude their 
preference information, which is done over the ex-
perts one by one. The two methods consider all the 
possible situations whether the experts are willing to 
change their opinions or not, and we have a series of 
corresponding methods for these situations, which are 
reliable in a practical decision making process. 

3. The preference information that needs to be 
modified is picked up reasonably. We ask the expert 
to change his/her preference information according to 
his/her own opinions, rather than following the fixed 
recommendations, which is more flexible and rea-
sonable in a decision making process. 

 
 

6  Conclusions 

 
We have developed two consensus methods to 

solve the HFMCGDM problems with aggregation 
information. After giving the consensus measure,  
two interesting consensus-reaching processes have 
been established with step-by-step algorithms for 
HFMCGDM and have been given for applications. A 
numerical example concerning selecting selling ways 
about ‘Trade-Ins’ for Apple Inc. has been provided to 
illustrate and validate the developed approaches. 
Finally, we have made a comparison analysis to show 
the advantages of our two methods. Based on a nu-
merical analysis between our methods and the exist-
ing hesitant fuzzy group decision making methodol-
ogies with a consensus method in the literature, we 
find that our methods are more comprehensive and 
convincing because we have considered the situation 
where each expert’s preference information of alter-
natives ai (i=1, 2, 3, 4) under criteria cj (j=1, 2, …, 5) 
may be expressed as several possible values. In addi-
tion, we have proposed the consensus checking and 
reaching processes to find the experts who should 
modify their judgments. These processes can be done 
over the experts one by one. Thus, our methods allow 
to achieve consensus solutions before the selection 
process and can avoid some experts’ preference val-
ues being too high or too low. In the future, we will 
apply our proposed consensus approaches to GDM 
using R language, linguistic term sets, etc. 

Table 11  The results derived by different methods 

Method Ranking 

Our method 1 A4>A3>A1>A2 
Our method 2 A4>A3>A1>A2 

Zhang et al. (2015a) A3>A1>A2>A4 
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