
Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 604

An embedded lightweight GUI component library and ergonomics
optimization method for industry process monitoring*

Da-peng TAN1, Shu-ting CHEN†‡2, Guan-jun BAO1, Li-bin ZHANG1

1College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
2Department of Basic Medicine, Hangzhou Medical College, Hangzhou 310053, China

†E-mail: shutinren@163.com
Received Oct. 24, 2016; Revision accepted Jan. 27, 2017; Crosschecked May 10, 2018

Abstract: Developing an efficient and robust lightweight graphic user interface (GUI) for industry process monitoring is always a
challenging task. Current implementation methods for embedded GUI are with the matters of real-time processing and ergonomics
performance. To address the issue, an embedded lightweight GUI component library design method based on quasar technology
embedded (Qt/E) is proposed. First, an entity-relationship (E-R) model for the GUI library is developed to define the functional
framework and data coupling relations. Second, a cross-compilation environment is constructed, and the Qt/E shared library files
are tailored to satisfy the requirements of embedded target systems. Third, by using the signal-slot communication interfaces, a
message mapping mechanism that does not require a call-back pointer is developed, and the context switching performance is
improved. According to the multi-thread method, the parallel task processing capabilities for data collection, calculation, and
display are enhanced, and the real-time performance and robustness are guaranteed. Finally, the human-computer interaction
process is optimized by a scrolling page method, and the ergonomics performance is verified by the industrial psychology
methods. Two numerical cases and five industrial experiments show that the proposed method can increase real-time read-write
correction ratios by more than 26% and 29%, compared with Windows-CE-GUI and Android-GUI, respectively. The component
library can be tailored to 900 KB and supports 12 hardware platforms. The average session switch time can be controlled within
0.6 s and six key indexes for ergonomics are verified by different industrial applications.

Key words: Embedded lightweight graphic user interface (GUI); Quasar technology embedded (Qt/E); Industry process moni-

toring; Multi-thread; Ergonomics performance
https://doi.org/10.1631/FITEE.1601660 CLC number: TP206

1 Introduction

With information technology as the dominant

driving force, traditional industry has been undergo-
ing a high-tech revolution and modern industry is
developing with the inevitable trends of intellectual-
ization, integration, and coordination (Yao et al., 2015;

Liao et al., 2016; Tan et al., 2016c). By the growth and
development of modern industry production, higher
working performance is increasingly required by
industry process monitoring systems (IPMSs). An
IPMS should provide powerful functions, good real-
time performance, and perfect human-computer in-
teractivity. However, a traditional IPMS based on
analogue instruments or microcontroller units (MCUs)
cannot meet the requirements mentioned above.

Owing to the ability to supply sufficient support
for IPMSs, the emerging embedded system (ES) has
become the research hotspot of the industry moni-
toring area. An ES has been making IPMSs enter an
intelligent period, where embedded intelligent in-
struments (EISs) are in the mainstream of modern

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (Nos. 51775501, 51375446, U1509212, and 51405441), the
Zhejiang Provincial Natural Science Foundation, China (No.
LR16E050001), and the Zhejiang Provincial Health Department
Program, China (No. 2015KYA067)

 ORCID: Shu-ting CHEN, http://orcid.org/0000-0002-4101-0649
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2018

http://orcid.org/0000-0002-6574-1542
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601660&domain=pdf

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 605

IPMSs. Apparently, as an indispensable section of EIS,
the lightweight graphic user interface (GUI) adapted
to ES environments should receive much attention
(Wang et al., 2015; Wu et al., 2016).

An ES is a special computer system that is em-
bedded into the host machine and focuses on special
applications, including the industry monitoring area,
as shown in Fig. 1. Therefore, the embedded software
and hardware should be customized, tailored, and
configured dynamically based on different application
requirements, and should meet strict technical re-
quirements in the areas of function, reliability, cost,
volume, and power consumption (Zheng et al., 2015;
Tan et al., 2016b; Chen and Tan, 2018). Compared
with a traditional computer system, an ES has the
following features: high real-time performance, low
power consumption, wide versatility, and adequate
interactivity. Moreover, it can provide stable, quick,
and reliable services under special conditions.
Therefore, an ES has been used in many industrial
areas, such as traffic control (Barrero et al., 2010),
intelligent household appliances (Steblovnik and
Zazula, 2011), intelligent building management sys-
tems (Saponara et al., 2011), point of sale (POS)
networks (Ramos and Penteado, 2008), biological
engineering (Mazzei et al., 2008), advanced manu-
facturing (Tan et al., 2013a, 2016c; Ji et al., 2017; Li
et al., 2017), robot control, and manufacturing process
monitoring (Tan et al., 2010; Li et al., 2014). Many
researchers have studied the industry monitoring
systems, such as data-driven monitoring (Yin et al.,
2015) or sensorless detection (Tan and Zhang, 2014;
Tan et al., 2017b), in which an EIS is an indispensable
physical carrier. An EIS generally consists of an em-
bedded micro-processor, peripheral devices, mul-
ti-channel sensors, an embedded real-time operating
system, and related application software, where the

lightweight GUI belongs to the embedded application
software category (Jin and Wu, 2008). Although the
GUI is not in the kernel section of an EIS, it is the last
executing segment for users, and it directly influences
the interaction efficiency and working performance of
an EIS.

As indicated above, GUI is an indispensable part
of an embedded IPMS. Because an ES has strict
hardware/software demands, it addresses higher
functional requirements for GUI (the so-called em-
bedded lightweight GUI), which can not only adapt to
embedded environments but also provide customized
function interfaces for an IPMS. Therefore, an em-
bedded lightweight GUI should occupy little storage
space, be customized and tailored, and provide high
reliability and robust performance (Drossu et al., 1996;
Zeng et al., 2013). With respect to the requirements
above, there are many types of graphic tool libraries
that can perform the development of an embedded
GUI, such as Micro-windows, GTK, Xfree86,
MiniGUI, Windows-CE-GUI, and quasar technology
embedded (Qt/E).

1. Micro-windows. It is generally adopted on a
small display unit and can be compatible with dif-
ferent embedded platforms (Zhou and Xiang, 2013).
Moreover, it is based on the client/server (C/S) pattern,
with a simple source code and a rapid switching speed,
requiring little system resource. However, its network
transparency needs to be improved and it has fewer
application program instances and introductions than
the other graphic tool libraries considered.

2. GTK/GTK+. It is with platform-independent
performance including microcontrollers and needs
less storage resource. GTK/GTK+ is common for
X-Windows, so it needs to access the X-server, which
might limit the working efficiency (Ahn et al., 2006).

Embedded system

Device-A

Device-B

Device-C EIS

IPMS

Monitoring center

Embedded GUI

Fig. 1 Embedded system and lightweight GUI of a modern IPMS

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 606

3. Xfree86. This is an open-source X-Windows
system that can be distributed freely and repetitively,
support the frame buffer architecture, and possess a
lot of online technical documents and easily extend-
able application program interfaces (APIs). Com-
pared with Micro-windows, however, its normal run-
ning process requires more internal memory space
resource.

4. MiniGUI. Developed by Y. M. Wei, MiniGUI
can support embedded real-time systems. It runs
mainly on a Linux operating system, but it is also
compatible with the portable operating system inter-
face of unix (POSIX) standard framework. It requires
small memory space, and is easy to configure and
transplant according to different embedded platforms
(Zhang et al., 2013).

5. Windows-CE-GUI. It is an embedded edition
of Microsoft Windows, with an open 32-bit architec-
ture. It is actually a simple Windows 95 and is spe-
cially designed for personal digital assistants (PDAs)
and other mobile electronic terminals. Windows-CE
uses the hardware abstraction layer (HAL) to config-
ure hardware resource. Therefore, it can obtain perfect
technical performance, including the lightweight GUI.
Windows-CE-GUI can provide powerful develop-
ment tools, but it is a protected commercial software
project (Rehault, 2010).

6. Qt/E. Qt is a mature GUI tool library, has
perfect cross-platform ability, and can be applied in
presently popular operating systems (OSs), such as
Windows, Linux, Solaris, FreeBSD, QNX, HP-UX,
and Irix. Based on different application environments,
Qt can be divided into two categories: the X11 version
(Qt/X11) for X-Windows and the embedded version
(Qt/E) for ES environments (Riskedal, 2008). Qt/E is
based on the original Qt and takes adequate function
adjustments to adapt to ES environments. Its hierar-
chical structure is shown in Fig. 2.

Qt/E can communicate directly with I/O devices.
Moreover, it has an object-oriented design (OOD)
architecture that makes its code well-organized, re-
usable, and work with a fast switching speed. As an
embedded lightweight GUI development tool, Qt/E
accommodates the frame buffer driver. Therefore, it
can write directly to the frame buffer under the con-
dition of no X-server or X-library. In this way, it saves
memory space and improves the running efficiency of
the GUI effectively (Dalheimer and Hansen, 2002). In

view of these technical advantages of Qt/E, we select
it as a fundamental tool to develop an embedded
lightweight GUI for an IPMS.

There are several types of beautiful and friendly
GUIs such as embedded Wizard, µGFX, android-GUI,
and IOS-GUI. They have been applied to mobile
phones or panel computers, but are rarely used in
embedded instruments or industrial controllers. The
reason is that GUI could influence their normal
workings. Therefore, an embedded GUI development
for an IPMS is always a challenge.

As indicated above, the embedded lightweight
GUI is of great significance for IPMSs, and there are
dozens of development tools with different features.
However, according to the descriptions in references
(Drossu et al., 1996; Riskedal, 2008; Rehault, 2010; Ji
et al., 2010, 2012; Zeng et al., 2013; Zhang et al., 2013;
Zhou and Xiang, 2013; Cecotti, 2016; Tan et al.,
2017a), there are some problems for practical industry
applications, such as occupying a large space, low
stability, poor configurability and cross-platform ca-
pability, and poor real-time performance. Moreover,
the above existing methods for embedded
IPMS-GUIs are with the matters of session switching
and ergonomics performance. Therefore, to address
the matters, we propose a novel Qt/E-based embedded
lightweight IPMS-GUI component library design
method and an ergonomics optimization method.

To reach the above research target, the main
scientific/technical contributions of this study are as
follows: (1) An entity-relationship (E-R) model
oriented to the IPMS-GUI component library is

Operating system kernel

Frame buffer

X-server

Qt-XLib

Qt-X11

Qt- APIs

Qt/E

Computer-human interface

Fig. 2 System hierarchical structure of Qt/E

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 607

developed to define the functional modules’ frame-
work and data coupling relations; (2) To provide
support for different embedded computer architec-
tures, a cross-compilation environment platform that
can adapt to multiple embedded targets is constructed,
and the Qt/E library files are tailored to satisfy the
running requirements of the embedded target envi-
ronments; (3) Using the Qt/E-based signal-slot
communication interfaces, a message mapping
mechanism that will not require a call-back pointer is
realized, and the context switching speed is improved;
(4) Using a multi-thread method, a status transmission
model for distributed real-time tasks is established,
the parallel digital signal processing abilities of the
IPMS-GUI are enhanced, and its real-time perfor-
mance and robustness are guaranteed; (5) Based on
the modularization principle, combined with the
self-designed monitoring signal processing algo-
rithms, a universal embedded IPMS-GUI shared
component library is developed, which can improve
the cross-platform applicability of the lightweight
GUI, and is capable of being configured and tailored
for different monitoring objects; (6) The human sys-
tem interactive process is optimized by a scrolling
page method, and the ergonomics performance is
improved.

2 Embedded lightweight GUI framework and
cross-compilation environment

2.1 Embedded lightweight GUI framework

It is well known that OOD and modularization
are kernel facets of modern software development.
Therefore, the key issue of lightweight GUI compo-
nent library design is how to construct a framework.

A component is regarded as a special software
entity that is of specific structure and that functions in
accordance with related industrial standards, can
perform different services in response to different user
requests, and can be independently assigned and en-
capsulated. The software production pattern that
adopts the component technology is similar to the
mechanical workpieces assembly process, which
introduces the standard workpieces, production
streamlining, and systematic assembly definitions
into software area, and breaks the manual workshop
software development pattern. By the component-
based design method, software is apt to be reused,

refined, optimized, and has good configurability
(Wulf et al., 2008; Xu et al., 2012; Zeng et al., 2016).

As mentioned above, a component is a software
entity, and the data coupling of different components
can be regarded as the relationship. Therefore, the
E-R model can effectively express the topological
structure of a component cluster. The corresponding
structural optimization method will then be used to
improve the working performance of the component
library. Subsequently, according to the fundamental
requirements of an IPMS, combined with the com-
ponent principles, an E-R model oriented to the em-
bedded IPMS-GUI component library is set up as in
Fig. 3. Considering the task requirements of an IPMS,
besides the functions of graphic display and control
information interaction, the GUI component library
requires the abilities of real-time data calculation and
management to finish the monitoring tasks, which are
a kernel characteristic different from other general-
purpose GUIs. Therefore, the component library can
be divided into the following software modules: data
management module (DMM), analysis calculation
module (ACM), graphic show module (GSM), and
system control module (SCM).

DMM receives real-time data packets that en-
capsulate a series of physical signals from target de-
vices and are uploaded by the data acquisition module
(DAQM). Then DMM unpacks the data packets into
different data elements according to the self-defined
data transfer protocol, and distributes the data ele-
ments to ACM. DMM can provide the interface his-
tory data playback needed to perform the correlation
analysis between real-time data and history data,
which is an effective measure of the working status of
the target device. Moreover, DMM can supply the file
management interfaces, such as storage, query, addi-
tion, combination, comparison, and deletion.

After receiving the real-time monitoring data,
ACM executes the digital signal preprocessing tasks,
including software filtering, fast Fourier transform
(FFT), and power spectrum analysis, and then trans-
fers the preprocessed signal to GSM. GSM possesses
the core modules of the GUI component library and
provides the following six types of graphic interfaces:
time-domain figure (TDF), frequency domain figure
(FDF), stick shape figure (SSF), axes track figure
(ATF), battery power figure (BPF), and static param-
eter figure (SPF). GSM depends on the calculation

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 608

results of ACM and receives control instructions from
SCM to finish the interface switching. SCM provides
a system control dashboard, monitoring demand con-
firmation, target device configuration, and other
function interfaces for different user sessions.

Based on the above GUI framework, using the
OOD method, all the software modules are encapsu-
lated by universal parameter interfaces. Therefore, the
data coupling between different modules is reduced,
the cohesion performance is increased, and the de-
velopment efficiency of the GUI component library
will be guaranteed. Accordingly, users can customize
the function interfaces based on different industry
monitoring requirements and do not need to know the
internal structure or processing procedures. In this
way, the flexible graphics services for industry mon-
itoring are realized, and the applicable performance of
the IPMS will be improved.

2.2 Cross-compilation development environment

Because this study is oriented to the ES envi-
ronment, the provision of an embedded cross-
compilation development environment for the Qt/E-
based GUI library is an indispensable task. Therefore,
after defining the E-R framework of GUI, the fol-
lowing operation shows how to construct a Qt/E
cross-compilation development environment that can
adapt to different embedded architecture platforms.
As Fig. 4 shows, the cross-compilation environment
is a code generating tool-chain in the host computer
(local PC system). It can construct the hardware/

software conditions of embedded target systems,
build a local compiler based on the source code and
embedded library files, and generate the correspond-
ing application software and user drivers. Subse-
quently, the software and drivers are downloaded into
the embedded target system to execute various in-
dustry monitoring tasks.

As mentioned above, the executable files of an

embedded program developed by the cross-
compilation environment cannot run on the host
computer directly; therefore, it should be transmitted
to the target embedded system to check that the re-
sulting system runs correctly. If mistakes occur, one
must revise the source code, and compile and down-
load the executable files again, until the destination is

DMM

File
management

Query Storage Deletion

History data
review

DAQM

ACM

FilteringFFT

Power
spectrum
analysis

Correlation

Cepstrum Statistic Sensitivity

GSMFDF

SSF ATF BPF

TDF SPF

SCM

System
configuration

Start / stop Date Pattern

Parameter
configuration

Target
devices

Channel Sample Number Attribution

Fig. 3 Entity composition and data coupling of the embedded GUI component library

Cross-compilation
environment

Shell

Code Library

Local compiler

Build

Application User driver

Generate

Local PC
system

Embedded
environment

Shell

Library

RTOS kernel

Application System
driver

User driver

Embedded computer
system

Download

Fig. 4 Embedded cross-compilation development en-
vironment (RTOS: real-time operating system)

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 609

satisfied. Considering the above method, the devel-
opment and tests are two absolute processes; thus, it is
inconvenient to develop and maintain the embedded
application software, especially for the user test
procedures.

To solve this problem, we propose a virtual
embedded target platform in the local PC system that
can simulate the working conditions of the target
system and accomplish online programming and de-
bugging. In this circumstance, only after all expected
functions satisfy the design requirements, are the
executable files permitted to be downloaded into the
target system. This method can effectively improve
the development efficiency of the embedded software,
and the establishment procedures are described in
Fig. 5.

2.2.1 Local virtual environment

It is complex to simulate the hardware/software
conditions of the embedded target on the local PC
system. In allusion to the problem, Qt/E offers a
convenient simulation tool, the console of the Qt
virtual frame buffer (QVFB) (Figs. 5 and 6). It can
simulate most of the popular ES frameworks by con-
figurations of geometry, size, and color depth.

First, a Qt/E image file is extracted to the Qt root
directory ($QTDIR), the environment variables
should be set, and the -qvfb option should be ap-
pended when the configuration is executed to generate
a complication guide file (Makefile). Then after
compiling the Qt/E image file, a QVFB executable
file can be found in the related directory. If an appli-
cation program has been implemented, the running
results can be verified in the QVFB console with the
Qt/E Windows server (QWS) (Li et al., 2015; Lin et al.,

2015; Tan et al., 2016a). Therefore, QVFB can per-
form on-line programming and debugging for em-
bedded application software, and improve the em-
bedded software development efficiency. Moreover, it
can solve the competitive conflicts for software/
hardware resources and realize parallel development
for dependent modules of the embedded GUI com-
ponent library.

2.2.2 Embedded cross-compilation environment

An embedded cross-compilation environment is
decided by different embedded platforms. This study
takes the PXA-988 advanced RISC machine (ARM)
processor and real-time Linux (RT-Linux) as an in-
stance to indicate the establishment procedures.

First, the ARM-Linux cross-compilation tool
chain, including arm-linux-binuitls, arm-linux-glibc,
arm-linux-gcc, and arm-linux-knl, is downloaded and
installed into the designated directory, and the envi-
ronment variables need to be appended and revised.

Second, according to the PXA-988 platform
characteristics, Qt/E is configured by the command
with the following parameters: /configure -xplatform
arm-linux-gcc -shared -noxft -noqvfb -libpng -libjpeg
-zlib -vnc. These parameters stand for the configura-
tion attributes for the embedded target and provide
technical support as follows: multi-platform, ARM
architecture, shared library, and graphic figure.

Finally, after system configuration, the Makefile
is generated to compile Qt/E and create corresponding
embedded shared library files and other executable
programs.

Based on the above method, a simulated PDA
software is generated (Fig. 6) that can simulate the
working conditions of PDA and provide integral
support for Qt/E.

Qt/E image

Compile

Libqte.so

Qt/E app.

Cross-compile

QVFB

?
?

Satisfied Download

ES env.

ARM-Linux tool-chain

Embedded
target system

Fig. 5 Cross-compilation environment establishment flow for Qt/E-based IPMS-GUI

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 610

3 Qt/E component library tailoring and mon-
itoring processing algorithms

3.1 Qt/E library tailoring

Owing to the strict requirements of the ES en-
vironment, the Qt/E library files need to be tailored to

reduce their storage and running space. Therefore, the
tailoring of the Qt/E library is a critical step for the
development of the GUI component library. It deter-
mines whether the component library can meet the
fundamental requirements of an embedded IPMS
and will have significant influence on subsequent
monitoring processing algorithms’ loading.

Qt/E provides abundant widgets and APIs, of
which the embedded GUI requires only a few. With
the design tasks for the GUI component library done,
the classes that may be called should be confirmed
according to the E-R framework shown in Fig. 3, and
the other classes will be tailored to save memory
space and improve the program’s working efficiency.
The functional requirements of IPMS-GUI are of a
relatively low level that needs only the basic frame-
work of Qt/E: common widgets, graphic frame,
drawing components, event mechanism, network
protocol, multi-thread, and database. Therefore,
enough memory space for the digital signal pro-
cessing algorithms can be saved. The structure of the
classes of the tailored Qt/E is shown in Fig. 7.

Considering the tailoring process, the widgets
that will be deleted should be confirmed first and
defined by the shutdown macro. The header file

Qt

QBrush

QCursor

QPainter

QPen

QTab

QThread

QListViewItem

QEvent

QTimerEvent

QMouseEvent

QKeyEvent

QFocusEvent

QPaintEvent

QMoveEvent

QCloseEvent

QShowEvent

QHideEvent

QDropEvent

QWheelEvent

QPaintDevice

QPixmap

QTextCodec

QGb18030Codec

QColor QFont QSize

QObject

QSocket

QSignal

QApplication

QTimer

QNetwork

QLayout

QSound

QSqlDatabase

QStyle

QCanvas

QImage

QPoint

QWidget

QButton

QComboBox

QSlider

QMainWindow

QDialog

QFrame

QWizard

QLabel

QLCDNumber

QLineEdit

QPopMenu

QMenuBar

Fig. 7 Class structure of the tailored Qt/E for an IPMS

Tab-
widget

App.

QVFB

StateTool

Fig. 6 Virtual embedded platform for lightweight GUI
development: geometry size 240 px×320 px and color depth
16

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 611

‘$(QTDIR)/src/tools/qfeatures.h’ contains all macro
definitions and their affiliated relationship. Because
of the OOD ability of Qt/E, if a macro is selected, all
of its child macros will be activated. Therefore, the
affiliated relationships of different macros need to be
confirmed. The header file ‘$(QTDIR)/include/
qconfig.h’ is the tailoring configuration file, where it
is defined whether the related widgets are to join in
the compilation.

Since the macro format is with the scheme of
QT_NO_DIR, if it is defined and opened in ‘qcon-
fig.h’, the corresponding widget will be tailored, i.e.,
not permitting the widget to be compiled. The default
Qt/E library is the maximum compilation image file
(7 MB), and it can be reduced to 640 KB at least.
When compiling the Qt/E tailored, one must override
the original ‘qconfig.h’ with a new, modified one
(Dalheimer and Hansen, 2002; Lin et al., 2015). We
choose Qt/E-2.3.7 as the tailoring object, whose
shared library files (including network, multi-thread,
and fonts) occupy only 900 KB of the internal
memory space. Qt/E-2.3.7 can run well on the ARM
platforms of the PXA-988 (533 MB memory) and the
S3C6410 (64 MB memory), and it match the demands
of the current ES platforms.

3.2 Library file loading of Qt/E classes and mon-
itoring algorithms

3.2.1 Qt/E library file loading

When the Qt/E compilation is finished, a shared
library file ‘libqte.so.2.3.7’ will be created. In addition,
there are three soft links: ‘libqte.so.2.3’, ‘libqte.so.2’,
and ‘libqte.so’. The three links are very important.
They have the same source file ‘libqte.so.2.3.7’.
Considering the keywords conflict of different Qt/E
versions, they are the indispensable searching objects
during the course of program linkage and execution.
When an embedded application program is executed,
it will call the shared library files that should be
downloaded into the embedded target system and
generate the above three links.

To prevent conflicts between the user library
files and system library files, it is necessary to create a
new directory to store the user library files. In refer-
ence to the above operations, a shared library guide
file ‘ld.so.conf’ should be appended, containing the
library file guide information for the execution of the
application programs. Subsequently, the ‘ldconfig’

command should be executed, which can update the
contents of ‘ld.so.conf’ and make the new user library
files effective. Similarly, the library files of the mon-
itoring algorithms can be loaded in the same way
(Fig. 8), which generates the shared library ‘libdig.so’
without soft links that are described in the next
subsection.

3.2.2 Algorithm encapsulation and loading

Considering the fundamental requirements of an
IPMS, the monitoring algorithms are indispensable,
taking responsibility for status monitoring and default
diagnosis. The monitoring algorithms provide a series
of data resources for different graphic interfaces;
therefore, they are the kernel background programs of
an IPMS.

The IPMS-GUI component library includes the
following monitoring algorithms: (1) six digital signal
pre-processing methods including infinite impulse
response (IIR) filter, finite impulse response (FIR)
filter, average value filter, removal zero drift, Ham-
ming window, and interpolating coding; (2) six time-
domain analysis methods including time sequence
analysis, status transmission analysis, self correlation,

Qt/E basic
classes

Tailoring

Compiling
(libqte.so)

Satisfied?

Loading

Called by
function interface

classes

Monitoring
algorithms

Encapsulating

Compiling
(libdig.so)

Optimizing &
appending

Tailoring
again

NN

Y

Fig. 8 Library files loading of Qt/E classes and monitoring
algorithms

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 612

interactive correlation, axes track, and sliding motion
calculation; (3) seven frequency domain methods
including FFT, short-time Fourier transform (STFT),
power spectrum density (PSD), discrete wavelet
transform (DWT), wavelet packet (WP), Hilbert-
Huang transform (HHT) (Veltcheva and Soares, 2012),
and three-dimensional frequency spectrum analysis.

Moreover, the embedded GUI library can pro-
vide 12 single-value signature algorithms, which
characterize the statistic symbols of the real-time
signal sequence and have the advantages of deep
impression, high effectiveness, and strong real-time
performance (Tan et al., 2013b). The 12 single-value
signatures contain maximum (S1), minimum (S2),
peak-to-peak (S3), mathematical expectation (S4), root
mean square (S5), standard deviation (S6), skewness
(S7), kurtosis (S8), frequency center (S9), mean square
frequency (S10), frequency variance (S11), and signal
intensity (S12).

S1 is the maximum value of the discrete sampling
sequence and contains a local maximum and a global
maximum (Eq. (1)). The first one is for the present
sampling sequence and the other considers the whole
sampling time segment. S2 represents the minimum of
the sampling sequence, consisting of a local value and
a global value. S3 is the difference of S1 and S2; it
characterizes the absolute value variation of the sam-
pling sequence. S4 is the average value of the sam-
pling sequence, and can act as a basic variable for
calculating other signatures.

1
1

max(, ,...,), 0 ,

max(), 0 ,
i i j

i

x x x i j N
S

x i N
+ ≤ < ≤=

≤ ≤
 (1)

1
2

min(, ,...,), 0 ,

min(), 0 ,
i i j

i

x x x i j N
S

x i N
+ ≤ < ≤=

≤ ≤
 (2)

3 2 1,S S S= − (3)
1

4
0

1 ,
N

i
i

S x x
N

−

=

= = ∑ (4)

where N is the length of the sampling sequence, xi is
the amplitude of one discrete sampling point, and x
is the average of the sequence.

S5 represents the root mean square (RMS), and
can reflect the intensity and effective value of the
physical signal. S6 is the standard deviation, and can
characterize the dispersion degree of the discrete

sampling sequence. S7 represents a skewness coeffi-
cient, which is a profile parameter and describes the
dissymmetry degree of the probability distribution.

1

2
5

0

1 ,
1

N

i
i

S x
N

−

=

=
− ∑ (5)

1
2

6
0

1 () ,
1

N

i
i

S x x
N

−

=

= −
− ∑ (6)

1
3

0
7 3

6

1
3

0
3

1 2
2

0

()

(1)(2)

()
.

)

(1)(2) 1 (

1

N

i
i

N

i
i

N

i
i

N x x
S

x

N N S

x x
N

N N
x

N

−

=

−

=

−

=

−
=

− −

−
= ⋅

− −
− −

∑

∑

∑

 (7)

S8 is a dimensionless signature that describes the

normalized fourth-order central distance of the dis-
crete sequence. It can express the distortion of prob-
ability density, and is apt to be influenced by the in-
stant shock ingredients. Therefore, it can be used to
filter out the shock signal with distortion characteris-
tics. S9–S11 are the signatures in the frequency domain,
representing the centroid, mean square, and variance,
respectively. They can reflect the profile variations of
power spectrum of the discrete sequence. Regarding
the real-time signal sequence of the target device, if
any frequency ingredient change is caused by external
factors, the frequency geometric center will corre-
spondingly shift from the original position. Subse-
quently, if the number of total frequency components
is increasing, the density profile of power spectrum
will take on a dispersing phenomenon. Accordingly,
S9, S10, and S11 can express the structure profile vari-
ation of the frequency domain of the sampling se-
quence. Assuming the sampling frequency is fs, ρ1 and
ρ2 are the coefficients of autocorrelation.

()

41

8
0 2

21 1
4 2

0 0

1 () ,

N
i

i

N N

i i
i i

x xS N
S

x x x x
N

−

=

−− −

= =

 −
=

= − −

∑

∑ ∑
 (8)

1
9

s

π / 2 4 / π ,
2π

S
f
ρ−

= (9)

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 613

1 2
10 2 2

s

π / 3 4 ,
4π

S
f
ρ ρ− +

= (10)

2 2 2
2 1 2

11 10 9 2 2
s

π / 12 16 / π ,
4π

S S S
f
ρ ρ− +

= − = (11)

where
11 1

2
1 1

1 0
,

N N

i i i
i i

x x xρ
−− −

−
= =

= ⋅

∑ ∑ (12)

11 1
2

2 2
2 0

.
N N

i i i
i i

x x xρ
−− −

−
= =

= ⋅

∑ ∑ (13)

S12 is the intensity coefficient, which is not apt to

be controlled by frequency and directly characterizes
the energy strength of the physical signal. It has an
inherent relationship with the signal power:

1 2

12
0

1 () .
N

i
S V i V

N

−

=

 = − ∑ (14)

In Eq. (14), V(i) is the velocity function of the

sampling sequence and V is the average value of the
equivalent velocity. For example, if the sensor of an
IPMS is a vibration acceleration sensor, the physical
signal collected will be a continuous sequence with
piezoelectric pulses. The physical signal is trans-
formed to a digital velocity signal (to be mentioned in
Section 4).

0 s

() () ,
i

j

gV i A j
fΦ=

= ⋅∑ (15)

1

0 0 s

1 () ,
N i

i j

gV A j
N fΦ

−

= =

∴ = ⋅

∑ ∑ (16)

1 2

12
0

2
1 1

0 0 0 0s s

1 ()

1 () 1 () ,

N

i

N i N i

i j i j

S V i V
N

g A j A j
N f N fΦ

−

=

− −

= = = =

 ∴ = −

 = −

∑

∑ ∑ ∑ ∑
 (17)

where g is the gravitational acceleration, Φ is a quan-
tization coefficient (Φ=204.7 m/s2), and A(j) is the
discrete acceleration sequence processed by an A/D
converter. With respect to the four groups of moni-
toring algorithms, the monitoring algorithms can be
defined into four classes, in which every algorithm is
encapsulated with a particular manual introduction

and unified parameter interface. The algorithms are
programmed by only fundamental C/C++, saved as
pure text files. Therefore, after compiling the source
files, the shared library file ‘libdig.so’ requires less
than 200 KB of memory space, and can adapt to the
currently popular ES platform environments well.

4 Multi-thread task scheduling and signal-
slot communication mechanism

4.1 Multi-thread task scheduling method

As mentioned above, real-time data acquisition,
A/D transformation, digital signal processing, and
graphic display are indispensable functions for an
embedded IPMS; therefore, each module interface is
required to have the switching ability without a long
interrupt time. Moreover, the correlation analysis,
comparative analysis, history data playback, and real-
time data storage need to be synchronously performed.
So, an IPMS should have parallel transaction pro-
cessing capability to satisfy the practical requirements
of industry production.

Concerning the factual operation of process
monitoring, parallel task scheduling is commonly
implemented by the approach of multiple parallel. In
the hypothesis of the UNIX framework, if a process is
to perform a task that might occupy the same data
resources of itself, it will generate a child process by
the so-called fork method.

Generally, fork makes an integral process image
copied from the parent process to the child process. In
the circumstance with a large number of tasks, the
system’s overhead cost tends to be higher. This is not
suitable for embedded programs. When a child pro-
cess is forked, the inter process communication (IPC)
method is commonly adopted to transmit the internal
data between the parent and child processes (Li et al.,
2012). The transmitting operation from parent to child
is easy to realize. While the reverse operation is hard
to perform, it is easy to create zombie processes that
have a possibility to cause system resource loss.

To solve the above problems, a multi-thread
method is put forward to separate the source-owning
property and utilization authority, and to perform
parallel task processing under the condition of process
resource conflicts. Therefore, thread will have better
processing efficiency than the fork (Zhuo et al., 2002;
Zhang and Kang, 2011; Su et al., 2014). For this study,

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 614

multi-thread operations can be implemented by the
QThread class.

With respect to the basic requirements of an
IPMS, a complete GUI library should offer the fol-
lowing functional interfaces: system management,
task configuration, TDF, FDF, SPF, histogram, system
power management, and file management. During file
management, real-time data acquiring/processing,
graphic drawing, and data storing require multi-thread
operations. If a main thread is started, the sampling
parameters and monitoring symbols are configured
for a specific target device, and the graphic drawing
thread is evoked by internal variables (Fig. 9).

4.2 Signal-slot communication mechanism

The signal-slot internal communication method
is the key feature of Qt/E. For the recall operation of
message mapping, it adopts integral encapsulation to
substitute complex function pointers and builds up a
transparent communication mechanism. That is to say,
users do not need to know the internal variables and
the message mapping between visual objects could be
performed automatically. As the basic member func-
tions of all Qt/E classes, signals and slots are con-
nected by a static function connect().

Accordingly, a message mapping mechanism for
industry monitoring is proposed using the signal-slot
communication interfaces. It does not require a

call-back pointer, and the real-time processing and
data storage tasks can be called by an awakened
drawing thread. By this way, if required to switch, an
executing thread task can exit freely, and then a new
thread will be started. The above method can make the
objects own their special message transition channel,
so the processing efficiency for multiple task opera-
tions will be improved.

Taking the time-domain task as an instance, as
illustrated in Fig. 10, the state transition procedures
can be described as follows: (1) If the time-domain
task is selected, it enters the initial state and performs
operation to set values for member variables and to
obtain the required memory space, referring to current
sampling parameters. (2) If the task receives the ready
signal, it enters the data processing state to generate
the discrete data sequence and display the data curves.
If the task receives the unselected signal (e.g., the
frequency task is evoked), the current task will exit
and start the frequency task. If it receives the ready
signal continuously, it will continue performing the
time-domain task until receiving another signal. (3)
When the task is finished, it receives the unselected
signal, and then goes back to the start state. (4) If the
current data sequence needs to be stored, the data
storage task will be executed. The data sequence will
be stored, and the storage task will wait for the next
signal.

Start Parameter
configurationMain_thread

StaicPra
thread

TimeFld
thread

FreqFld
thread

Stick
thread

Power
thread

DataSav
thread End

Signal message State transition

Fig. 9 Sketch map of the multi-thread task scheduling method

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 615

Since the proposed signal-slot communication

method does not require a call-back pointer, it can
construct the complete OOD encapsulation for a
message signal and improve the security and intelli-
gent performance of signal transmission. Therefore,
the context switching speed and stability of the em-
bedded lightweight GUI are increased and the human-
computer interaction efficiency is improved.

Based on the above scheme, the mechanism can
send signals directly to the ‘this’ pointer of the current
mainframe, which can dynamically trace the instance
variation and realize a seamless combination of OOD
and process-oriented design (POD), such as the hy-
brid coding for C and C++. Moreover, it can provide
the multiple signal mechanism priority for any object;
therefore, users can define their own signals and slots
according to specific monitoring requirements.

5 Ergonomics optimization method and
multi-language environment

5.1 Human-computer interaction performance
optimization method

Ergonomics performance is one of the most
important technical indexes of an embedded light-
weight IPMS-GUI. It determines the working effec-
tiveness and friendliness grade and considers mainly
the following factors: visual object placement, inter-
face operating sequence, and data coupling relation-
ship between different columns (Chevalier and Kicka,
2006; Acciani et al., 2011).

Related to the habitual operations of users, visual
object placement is a key matter to influence the

ergonomics performance of embedded GUIs. Ac-
cordingly, we take visual object placement as an in-
stance to illustrate the optimization process of ergo-
nomics performance. First, the embedded IPMS main
interface that adopts the traditional menu-style object
placement scheme is developed by the GUI library
(Fig. 11a), where all program interfaces are working
with a menu pattern and are placed in the proper order
according to their importance. If a user wants to set
the sampling frequency, she/he should select the pa-
rameter configuration menu (Para.) and enter the
menu, where there are five settable items: monitoring
device number (Dev No.), sampling parameters
(Smp_P), working pattern (Pattern), sampling preci-
sion (Precision), and sampling date (Date). Then
she/he should select the item Smp_P, and the
sub-level menu will pop up, where there are five set-
table items: sampling frequency (Freq.), sampling
points (Point), original phase (Phase), physical signal
channel number (Chan.), and sampling begin/end
time (Time). Finally, she/he should select the item
Freq. to finish the operation of setting the sampling
frequency. Obviously, the menu scheme possesses a
clear hierarchical structure, which is the commonest
software operating method in PC environments.
However, it requires the operator to be familiar with
every interface location. This cannot provide adequate
operating efficiency, especially under the limited
resource conditions of ES environments.

To address this matter, according to the investi-
gation results of industrial monitoring demands and
user operating habits, we propose a scrolling page
method to optimize visual object placement and im-
prove the operating performance of IPMS-GUI. As

Start
state

Initial
state

Process
state

Timefld_ thread
selected

Timefld_ thread
unselected

Timefld_ thread
dataReady

Save
state

End
state

Fig. 10 Sate transform of the time-domain task by the signal-slot mapping mechanism

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 616

shown in Fig. 11b, all program interfaces are divided
into several categories. Every category performs as a
scrolling page and can be switched by the red triangle
button at the right-upper corner. The scrolling pages
are realized by the class QTabwidget. The scrolling
page structure contains more transversal space and
can reduce the longitudinal depth of the menu’s hier-
archical structure, to improve the operating perfor-
mance. In the figure, if a user selects the Para. page, a
push-pull style functional interface layer tree will be
shown, which can be switched by the two bilateral red
triangle buttons. The user then selects the corre-
sponding node (Freq.) of the tree to complete the task
operation planned, where the interface tree is realized
by the class QListview. Moreover, in the affecting
frames of QTabwidget and QListview, GUI focus can
respond to the coordinate variation of the touch screen,
and the querying efficiency for application interfaces
will be improved.

5.2 Chinese information show

It is well known that displaying clear and regular
fonts with pictographic characters, such as original
complex Chinese, simplified Chinese, Japanese, or
Korean, is difficult on the embedded platforms. Con-
sidering Chinese users, showing Chinese information
is an indispensable function of the embedded light-
weight IPMS-GUI. It is well known that Chinese is an
old picture-writing language that contains more than
27 000 words in the Chinese GB-18030-2000 char-
acter set and dozens of fonts. In this study, Chinese is
expressed by a series of independent dot arrays. A
complete Chinese library including words and fonts
can occupy 10 MB or more of memory space.
Therefore, it is not adaptable to ES environments.

To solve this problem, we develop a compact
Chinese library. An IPMS and its log-file require only
a few words that can be changed for different moni-
toring objects. Therefore, the compact Chinese library
can be divided into 10 specialty segments: mechanic,
electronic, information, computer, transport, chemis-
try, medicine, metallurgy, optic, and construction.
The library provides only one type of Chinese font.
The average number of words of the 10 segments is
less than 300, i.e., only 1/10 of a mobile phone’s word
library. If the monitoring object is confirmed, the
corresponding segment will be selected to undergo
the compilation process based on the pre-compile
variables.

Qt/E supports Chinese words and can provide
Unicode characters with 16 bits. Therefore, Chinese
information can be shown in ES environments. The
realization process is described in Algorithm 1.

First, a pre-compiled header file that contains the

segment variable definition of the compact Chinese
library is created. The kernel codes are shown.

Embedded IPMS
Para. F_domainT_domain

Phase frequency wave
Static Exit

Wave display Para. configure Data storage

Date

Dev No.
Smp_P

Pattern
Precision

Time

Freq.
Point
Phase
Chan.

Para.

Tab-
widget

List-
view

(b)

Fig. 11 Embedded IPMS interface with different object
placement styles: (a) traditional menu-style object
placement scheme; (b) optimized page placement scheme
by the proposed scrolling page method
References to color refer to the online version of this figure

(a)

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 617

Algorithm 1 Chinese information show
1 #ifdef QTE_VERSION /*Define version*/
2 #include <qtextcodec.h>
3 #define GB(s) /*Define Chinese internal code*/
4 (QTextCodec::codecForName("GBK")->

toUnicode(s));
5 #define AGB(s)
6 (QTextCodec::codecForName("GBK")->

fromUnicode(s));
7 #else
8 #include <qgb18030codec.h>;
9 #define GB(s) /*Define standard Chinese character*/
10 (QGb18030Codec::codecForName("GB18030")->

toUnicode(s))
11 #define AGB(s)
12 (QGb18030Codec::codecForName("GB18030")->

fromUnicode(s))
13 #define SEG(MECH) /*Define the mechanic device*/
14 #endif

Then if the header file is cited in an embedded
application program, the Chinese information will be
shown in the embedded GUI. For example, the code
to realize a radio-button named ‘停止采集系统’ (stop
the real-time data collection system) is as shown
below:

showRadioButton1=new QRadioButton(GB(tr(“停止

采 集 系 统 ”)), setButtonGroup1, “showRadio-
Button1”).

Of course, to show Chinese information in the

embedded target system, the corresponding word
library file should be downloaded into the flash
memory of the target system. After compilation of
Qt/E, there are large numbers of font files with the
extended name of .qpf in the directory qte/lib/fonts.
As far as the font files are concerned, it is not required
to download all files into the target system. Only the
file with the name unifont_160_50.qpf, i.e., the
Unicode font library file that contains the compact
Chinese library segment, needs to be downloaded into
the target system. This method reduces the memory
space of the Chinese library effectively and can
satisfy the requirements of the embedded IPMS-GUI
well (Fig. 12). Moreover, the method supports the
transformation from GBK to Unicode. Accordingly,
the Qt/E-based IMMS-GUI can also display the
compact font libraries of original complex Chinese,
Japanese, or Korean.

6 Embedded GUI application instance and
simulated/industrial experiments

6.1 Embedded fixed instrument platform and
cross-platform performance

The ES environment test is the indispensable
work to verify the performance of the lightweight
GUI library. As indicated in Section 1, an embedded
IPMS acts commonly as a fixed EIS for one or several
devices. To perform the test for a fixed EIS, we es-
tablished an embedded fixed instrument experimental
platform with a dual advanced RISC machine (ARM)
architecture (Fig. 13).

The fixed instrument experimental platform

consists of two independent embedded computer

Fig. 12 Chinese information interface in embedded sys-
tem environments

 GUI in RT-Linux

 UPC

UPC (PXA-
988)

LPC
(C t M3)

GUI in
RT-Linux

LPC
(Cortex-M3)

Fig. 13 Embedded fixed instrument platform with
dual-ARM architecture

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 618

systems: an upper position computer (UPC) and a
lower position computer (LPC). A UPC is a real-time
data processing and management system based on
PXA-988; an LPC is an embedded real-time data
collection and pre-processing system based on
TI-Cortex-M3. Referring to the self-designed data
communication protocols, the monitoring data com-
munication and control command interactions be-
tween a UPC and an LPC were performed over a
universal serial bus (USB) port (Li et al., 2013).

For the experimental procedures, an embedded
OS (RT-Linux) compatible with Qt/E was ported into
a UPC, and then the shared library files of IPMS-GUI
and the executable files of the embedded program
were transmitted to the UPC. Then the testing ex-
periments for interface switching speed and data al-
gorithm processing time were iteratively executed.
The results proved that the embedded IPMS applica-
tion program runs stably, can display the real-time
data graphics fluently, and performs the following
tasks: parameter configuration, real-time data display,
historical data playback, data storage, data query, file
management, and power management.

Cross-platform performance is an important
technical index for the embedded lightweight GUI
component library. Accordingly, the cross-platform
testing experiments that consider the transplantation
and porting capacity of the functional components
were executed on two classical ES environments:
RT-Linux and Windows-CE. Under RT-Linux, an
automatic coding tool (qmake) provided by Qt/E was
adopted to create the compilation guide file (Makefile)
for embedded program compilation. Because manual
Makefile editing is complex and prone to cause errors,
the qmake can directly create the Makefile for dif-
ferent platforms and compilers by a simple Qt/E
project file (Dalheimer and Hansen, 2002).

In the Windows-CE framework, GUI compo-
nents can be regarded as a part of the Qt/E plug-ins of
embedded visual C++ (EVC++). In this way, it re-
duces the difficulty of application program develop-
ment effectively. Application instance interfaces with
640×480 pixels of embedded IPMS in RT-Linux and
Windows-CE are shown in Figs. 13 and 14. It can be
stated that this component library has good cross-
platform performance.

6.2 Handheld mobile environments appraisal

With the development of modern industrial
technologies, ubiquitous computing and wearable
electronic appliances become the research hotspots in
the information electronics area (Zheng et al., 2010a,
2010b; Park and Lee, 2011). Accordingly, embedded
handheld mobile instruments are an important de-
veloping direction for IPMSs because of their flexi-
bility and instantaneous performance. To address this
question, we set up the corresponding handheld ES
experimental platform oriented to the lightweight
GUI component library (Fig. 15). The platform also
adopts a dual-CPU architecture, where the UPC is a
PDA (PocketPC) and the LPC is a real-time physical
signal collection card based on TI-MSP430. Accord-
ing to the fundamental requirements of handheld ES
environments, real-time data transformation and
control information interaction were realized between
UPC and LPC by the three-line zero-modem method.

 LPC (MSP430)

 UPC (PocketPC) UPC（PocketPC）

LPC（TI-MSP430）

Fig. 15 Handheld ES environments platform

Fig. 14 Embedded IPMS interface developed by the
component library in Windows-CE

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 619

With regard to the embedded software envi-
ronments, the open palmtop integrated environment
(OPIE), a special handheld operating system based on
the familiar-Linux kernel which can be compatible
with Qt/E-2.3.7 or higher versions, was transplanted
into PDA (UPC) first. Second, the lightweight GUI
shared library files designed for handheld environ-
ments and the application program executable files
were downloaded into the UPC using the serial or
Ethernet port.

Subsequently, the performance test considering
the interface switching speed and monitoring algo-
rithm efficiency for handheld mobile environments
was completed. The results proved that the mobile
IPMS instance runs stably and can complete the
functions of parameter configuration, device man-
agement, data storage, data query, and file manage-
ment; i.e., parallel multi-channel real-time data pro-
cessing can be realized.

Similarly, the handheld cross-platform perfor-
mance of the embedded GUI library was checked
against OPIE (Qtopia) and Windows-CE (PocketPC-
2003). Qtopia is a special Qt/E version designed for
handheld ES platforms. It possesses a more compact
architecture and smaller memory storage space, and
can provide a lightweight GUI framework with
240×320 pixels.

Based on the embedded GUI library, two mobile
IPMS instances were developed on Qtopia and
PocketPC-2003 (Figs. 16 and 17). Results proved that
the embedded GUI library is adequate for handheld
intelligent instruments and has better transplantation
performance, compared with Micro-Windows, Xfree86,
MiniGUI, Windows-CE-GUI, and Android-GUI.

6.3 Simulations and discussion

6.3.1 Case study of the signal-slot communication
mechanism

To verify the effectiveness of the proposed
signal-slot communication mechanism for industry
monitoring, we provided a numerical case in which
four object instances are included. The message
connection relationship is shown in Fig. 18. The four
instances contain six signals and seven slots. The
corresponding connection arrangement list is shown
in Table 1, where the signals and slots of one object
cannot be allowed to connect to each other. There are
31 types of connections; for example, C1143 stands

for the connection (Object-1, Signal-1, Object-4,
Slot-3).

With regard to the case in Fig. 18, the compara-
tive experiments with the message mapping mecha-
nism of Windows-CE-GUI and Android-GUI have
been performed. The experiment is oriented to a
large-quantity data read-write process on an embed-
ded flash memory, which has a high possibility to
create errors, especially for audio/video data. The
experimental route is described as follows: (1) Two
groups of audio/video data sequences were randomly
created, of which each group includes 10 data packets;
(2) The data packets were written into the memory,
and then read to the user buffer based on the pointer of
the starting address; (3) The signal (message) was a
single-click event, and the slot (mapping) functions of

Fig. 17 Handheld mobile IPMS interface on PocketPC-
2003 (Windows-CE)

Fig. 16 Handheld IPMS interface on Qtopia (OPIE)

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 620

the 31 types of connections executed the read-write
process of 20 data packets; (4) Experiments were
performed 1000 times. If all the read-write processes
were finished, the number of correct read-write times
was recorded as the result and the numbers of correct
ratios of the three GUIs were obtained.

The comparative experiment results for audio
data sequences are shown in Fig. 19. From the figure,
the following conclusions can be obtained: (1) With
the increase in data quantity, the read-write correct
ratio decreases accordingly. The average correct ratios
of the proposed method, Windows-CE-GUI, and An-
droid-GUI are 92.1%, 78.2%, and 73.5%, respectively.
(2) The proposed signal-slot mechanism has better
security performance than Windows-CE-GUI and
Android-GUI, and Android-GUI is with the worst
correct ratio. (3) The proposed method is subjected to
lower influences caused by the variations of data
quantity, and the average correct ratio can be higher

than 92%. However, the ratios of the other two
methods decrease apparently by the increment of data
quantity; for the data packets of 1000 KB, their cor-
rect ratios have decreased to less than 60%.

The comparative experiment results for video
data sequences are shown in Fig. 20, where the data
quantity increases to 100 times the audio data quantity.
We can obtain the variation regulars as follows: (1)
With the remarkable increment of data quantity, the
read-write correct ratios of the three methods decline
continuously. The average correct ratios of the pro-
posed method, Windows-CE-GUI, and Android-GUI
are 82.4%, 61.2%, and 61.8%, respectively. (2) The
proposed method has still the highest correct ratio of
more than 82%. (3) For the video data packets, the
total performance of Android-GUI is better than

Table 1 Connection arrangement list of the four objects

Slot
Object-1 Object-2 Object-3 Object-4

Signal-1 Signal-2 Signal-1 Signal-1 Signal-1 Signal-2
Object-1 Slot-1 – – C2111 C3111 C4111 C4211
Object-2 Slot-1 C1121 C1221 – C3121 C4121 C4221

Slot-2 C1122 C1222 – C3122 C4122 C4222
Object-3 Slot-1 C1131 C1231 C2131 – C4131 C4231
Object-4 Slot-1 C1141 C1241 C2141 C3141 – –

Slot-2 C1142 C1242 C2142 C3142 – –
Slot-3 C1143 C1243 C2143 C3143 – –

Object-1

Signal-1

Signal-2

Slot-1

Object-2

Signal-1

Slot-1

Slot-2

Object-3

Signal-1

Slot-1

Object-4

Signal-1

Signal-2

Slot-1

Slot-2

Slot-3

Fig. 18 Signal-slot communication connection of four
simulated objects

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000
Data quantity (kB)

Proposed method
Windows -CE-GUI
Android-GUI

(%
)

Fig. 19 Audio data read-write experiment results

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

C
or

re
ct

 ra
tio

(%
)

Data quantity (MB)

Proposed method

Windows -CE-GUI

Android -GUI

Fig. 20 Video data read-write experiment results

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 621

that of Windows-CE-GUI. (4) When the data quantity
is larger than 50 MB, the read-write correct ratios of
the two methods are about 60% and hard to match the
practical requirements of industry monitoring.

6.3.2 Case study of the proposed ergonomics opti-
mization method

To check the advantages of the proposed ergo-
nomics optimization method, an operational test was
carried out by the industrial psychological method, in
which 100 users (20 teachers and 80 students) were
selected as the test objects.

The involved ergonomics indexes are described
as follows (Du, 2008): (1) The total evaluation score
(TES) is the sum of the order values of questionnaire
items. It is a subjective data index, which can repre-
sent the total impression of users and reflect the
friendliness of the GUI. (2) System study time (SST)
is the time period from the moment at which users
begin to contact the GUI to the moment at which they
are familiar with all the functional interfaces. SST can
characterize the performance of visual object place-
ment. (3) Specified task operating time (STOT) is a
special data index for an IPMS, recording the time
length to perform a monitoring task, such as the
time-domain task, the frequency-domain task, and the
data storage task. It can characterize the availability of
GUI. (4) Normalized searching performance (NSP)
records the time scores to search a functional interface
or a configurable dialog. It can represent the accessi-
bility performance. (5) Normalized adapting perfor-
mance (NAP) describes the adaptation time for users
with different educational backgrounds and can
characterize the applicability performance. (6) Nor-
malized understanding performance (NUP) is related
to the understanding process for the labels of all in-
terfaces and parameters. It can characterize the suita-
bility for different users. (7) Normalized consistency
of display and operation (NCDO) is also a special data
index for an IPMS, describing the switching con-
sistency of different sessions.

All the users should touch GUI at the first time
and complete the operation of setting the sampling
frequency. The technical factors that can affect the
operating performance of the GUI are first defined.
Then the fuzzy evaluation method is adopted to obtain
the experimental results (Table 2).

The following results can be obtained. Compared
with the menu style, the scrolling page method can
increase the TES by 26.8%. This illustrates that the
proposed method can make GUI friendly and apt to
form an evolving relation between users and com-
puters. SST, STOT, and NSP are improved apparently,
proving that the proposed method is with better visual
performance, availability, and accessibility, respec-
tively. NAP and NUP increase by more than 20.8%
and 26.7%, respectively, illustrating that the proposed
method is conducive to the combination of human and
computer. The applicability performances for users
with different educational levels are optimized. Re-
garding the embedded IPMS-GUI, NCDO is one of
the most important indexes for industry monitoring, in
which NCDO is increased by 42.2% and the switch-
ing consistency of different sessions is improved. The
above operation is performed by the multi-thread task
scheduling method indicated in Section 4.2.

6.4 Industrial experiments and discussion

6.4.1 Fundamental performance comparison

To check the working performance of the im-
proved Qt/E-based IPMS-GUI, we performed the
comparative experiments with Mini-GUI and Win-
dows-CE-GUI. The experimental results are shown in
Table 3. From the table, the following conclusions can
be obtained: (1) Compared with Mini-GUI and Win-
dows-CE-GUI, the proposed GUI library is with ap-
parent superiority for memory space. Containing the
monitoring algorithms and Chinese fonts, the memory
space can be tailored to 900 KB. (2) By the multi-
thread scheduling method, IPMS-GUI has the same
parallel task processing ability as Windows-CE-GUI
and better ability than Mini-GUI obviously. (3) Ow-
ing to the signal-slot communication mechanism,
IPMS-GUI can obtain the best session switching
performance, compared with the other two GUIs.
Moreover, all the library files are with pure text for-
mat and are coded by the basic C/C++. In combina-
tion with the merit on transportability, IPMS-GUI can
have the best cross-platform performance.

6.4.2 Industrial field experiments and user appraisals

With regard to IPMS-GUI, the industrial field
experiments are indispensable procedures and the
final targets. To address the issue, five groups of in-
dustrial experiments have been performed in four

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 622

large-scale enterprises: Wuhan Iron and Steel Cor-
poration (WISCO), Bao Steel Group (BSG), Shengli
Oil Field (SLOF), and Shenyang Pump Factory (SPF).
The experimental scenarios are shown in Fig. 21.

The experiments were divided into five groups:

three fixed IPMS experiments in WISCO, SLOF, and
BSG, and two handheld IPMS experiments in SLOF
and SPF (Fig. 21). From the user appraisement results
shown in Table 4, the following conclusions can be
obtained:

1. The embedded IPMS-GUI achieves good user
appraisals from the four enterprises. The average
satisfaction ratio can be higher than 90%.

2. The effects of the handheld GUI are better
than those of the fixed one, and the handheld exper-
iment in SPF obtains the best scores, where the TES
value is 3.83.

3. The average value of the four indexes of er-
gonomics can be higher than 0.85, which proves that
the proposed method can satisfy the practical human-
machine requirements for industry monitoring.

7 Conclusions

The development of an embedded lightweight
GUI has become an indispensable technology of
modern industry monitoring. To solve the problems of
current GUI implementation methods, such as large
use of memory space, bad configurability, and poor
real-time performance, an embedded lightweight
IPMS-GUI component library design method based
on Qt/E has been proposed. For the above research
target, the corresponding research has been performed.
The main conclusions of this study are as follows.

1. An E-R model oriented to an embedded
IPMS-GUI component library has been built up to
define the functional modules’ framework and data
coupling relations, which can provide modularization
rules for the development of the embedded IPMS-
GUI.

Table 4 User appraisement results of industrial field experiments

Index SPF-handheld SLOF-handheld WISCO-fixed SLOF-fixed BSG-fixed
NSP 0.94 0.92 0.85 0.88 0.87
NAP 0.94 0.90 0.90 0.82 0.80
NUP 0.98 0.96 0.95 0.93 0.90

NCDO 0.97 0.91 0.88 0.90 0.85
TES 3.83 3.69 3.58 3.53 3.42

Satisfaction ratio 95% 97% 90% 93% 87%

Qt/E-based
IPMS-GUI

VSD2000 －－CRMSVSD2000 －－CRMS

所有设备

设置（S） 帮助（H）添加连铸生产线

传感器状态：

正常

下渣告警：

下渣

目标系统名称：

三厂2号线

10.10.1.49

目标VSD2000系统信息

目标系统地址：

目标系统状态

二厂

一厂

三厂

1号线
2号线
3号线
4号线

目标系统实时信号

控制柜温度：

正常

系统供电：

正常

正常

Fan Tray：

SPF-handheld

SLOF-handheld

WISCO-fixed

SLOF-fixed

BSG-fixed

Fig. 21 Industrial field experiment scenarios in four
large-scale enterprises

Table 2 Operating performance comparative experiment results of menu-style and list-tab style
Style TES SST (s) STOT (s) NSP NAP NUP NCDO

Menu style 2.87 178 5 0.68 0.77 0.75 0.67
The proposed method 3.64 125 3 0.82 0.93 0.95 0.94

Table 3 Working performance comparative experiment results with Mini-GUI and Windows-CE-GUI

GUI Least library
space (KB)

Maximum
parallel process

number

Average ses-
sion switch

time (s)

Number of com-
patible software

platforms

Number of com-
patible hardware

platforms
Mini-GUI 1024 8 0.82 12 8

Windows-CE-GUI >1024 32 0.53 1 8
IPMS-GUI 900 32 0.55 18 12

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 623

2. To adapt to different embedded computer ar-
chitectures, a cross-compilation environment plat-
form that can hold multiple embedded targets has
been constructed. A virtual QVFB platform was
developed to improve the efficiency of GUI
development.

3. The Qt/E shared library files have been tai-
lored to 640 KB. The self-designed monitoring algo-
rithms were embedded into the GUI library and could
be compressed to 200 KB. The total memory use of
the GUI library, including the Chinese fonts, was
less than 900 KB and could satisfy the running re-
quirements of currently popular embedded target
environments.

4. Using a multi-thread method, a status trans-
mission model for distributed real-time tasks was set
up. Based on the model, the parallel digital signal
processing capabilities of IPMS-GUI were enhanced,
NCDO was improved, and the real-time performance
and robustness were guaranteed.

5. By using the Qt/E-based signal-slot commu-
nication interfaces, a message mapping mechanism
that does not require a call-back pointer has been
realized, and the context switching speed was im-
proved. A case study proved that the signal-slot
mechanism can increase real-time read-write correc-
tion ratios by more than 26% and 29%, compared with
Windows-CE-GUI and Android-GUI, respectively.

6. The human-computer interaction process has
been optimized by a scrolling page method and the
ergonomics performance has been strengthened. A
compact Chinese library with 10 specialty segments
has been proposed and the display of Chinese infor-
mation on the embedded IPMS-GUI was realized.

7. A universal embedded GUI shared component
library oriented to IPMSs has been developed. The
IPMS-GUI instance testing on a fixed instrument
platform and a handheld instrument platform proved
that the embedded GUI library can satisfy the fun-
damental requirements of an IPMS and has better
cross-platform performance, compared with Micro-
Windows, Xfree86, MiniGUI, Windows-CE-GUI,
and Android-GUI.

8. The performance of comparative experiments
with Mini-GUI and Windows-CE-GUI proved that
the improved Qt/E-based IPMS-GUI has better
working performance compared with Mini-GUI, and
the session switching time is close to that of
Windows-CE-GUI.

9. Industrial field experiments in four large-scale
enterprises proved that the embedded IPMS-GUI
achieves good user appraisals. The average satisfac-
tion ratio can be more than 90% and the effects of the
handheld GUI are better than those of the fixed GUI.

Generally, we have proposed an embedded
lightweight GUI library design method oriented to
IPMSs. We hope our study can provide useful refer-
ences to embedded human-computer interface theo-
ries and industrial practices, and supply experience
evidence and technical supports for the engineering
areas of component-based software design, embedded
application software development, condition-based
monitoring technologies, handheld inspection in-
struments, and system ergonomics optimization. Fu-
ture research will be executed around the facets of the
hardware layer control method, real-time perfor-
mance of monitoring algorithms, and ergonomics
performance optimization.

References
Acciani G, Fornarelli G, Giaquinto A, 2011. A fuzzy method for

global quality index evaluation of solder joints in surface
mount technology. IEEE Trans Ind Inform, 7(1):115-124.
https://doi.org/10.1109/TII.2010.2076292

Ahn SH, Sul D, Choi SH, et al., 2006. Implementation of
lightweight graphic library builder for embedded system.
IEEE Int Conf on Advanced Communication Technology,
p.166-168. https://doi.org/10.1109/ICACT.2006.205944

Barrero F, Toral S, Vargas M, et al., 2010. Internet in the de-
velopment of future road-traffic control systems. Internet
Res, 20(2):154-168.
https://doi.org/10.1108/10662241011032227

Cecotti H, 2016. A multimodal gaze-controlled virtual key-
board. IEEE Trans Hum-Mach Syst, 46(4):601-606.
https://doi.org/10.1109/THMS.2016.2537749

Chen ST, Tan DP, 2018. A SA-ANN-based modeling method
for human cognition mechanism and the PSACO cogni-
tion algorithm. Complexity, 2018:6264124.
https://doi.org/10.1155/2018/6264124

Chevalier A, Kicka M, 2006. Web designers and web users:
influence of the ergonomic quality of the web site on the
information search. Int J Hum-Comput Stud, 64(10):
1031-1048. https://doi.org/10.1016/j.ijhcs.2006.06.002

Dalheimer MK, Hansen S, 2002. Embedded systems: embedded
development with qt/embedded. Dr Dobbs J, 27(3):48-54.

Drossu R, Obradovic Z, Fletcher J, 1996. A flexible graphical
user interface for embedding heterogeneous neural net-
work simulators. IEEE Trans Edu, 39(3):367-374.
https://doi.org/10.1109/13.538760

Du F, 2008. GUI Design Based on Ergonomics. MS Thesis,
Nanjing University of Aeronautics and Astronautics,
Nanjing, China (in Chinese).

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 624

Ji SM, Xiao FQ, Tan DP, 2010. Analytical method for softness
abrasive flow field based on discrete phase model. Sci
China Technol Sci, 53(10):2867-2877.
https://doi.org/10.1007/s11431-010-4046-9

Ji SM, Weng XX, Tan DP, 2012. Analytical method of softness
abrasive two-phase flow field based on 2D model of LSM.
Acta Phys Sin, 61(1):010205.

Ji SM, Ge JQ, Tan DP, 2017. Wall contact effects of particle-
wall collision process in a two-phase particle fluid. J
Zhejiang Univ-Sci A (Appl Phys & Eng), 18(12):958-973.
https://doi.org/10.1631/jzus.A1700039

Jin F, Wu ZH, 2008. Lightweight graphics device driver and
graphical user interface based on embedded Linux. Trans
Beijing Inst Technol, 28(3):233-236.
https://doi.org/10.15918/j.tbit1001-0645.2008.03.018

Li C, Ji SM, Tan DP, 2012. Study on machinability and the wall
region of solid-liquid two phase softness abrasive flow.
Int J Adv Manuf Technol, 61(9-12):975-987.
https://doi.org/10.1007/s00170-011-3621-y

Li C, Ji SM, Tan DP, 2013. Multiple-loop digital control
method for 400Hz inverter system based on phase feed-
back. IEEE Trans Power Electron, 28(1):408-417.
https://doi.org/10.1109/TPEL.2012.2188043

Li J, Ji SM, Tan DP, 2017. Improved soft abrasive flow fin-
ishing method based on turbulent kinetic energy enhanc-
ing. Chin J Mech Eng, 30(2):301-309.
https://doi.org/10.1007/s10033-017-0071-y

Li X, Horie M, Kagawa T, 2014. Pressure-distribution methods
for estimating lifting force of a swirl gripper. IEEE/ASME
Trans Mechatron, 19(2):707-718.
https://doi.org/10.1109/TMECH.2013.2256793

Li X, Li N, Tao GL, 2015. Experimental comparison of Ber-
noulli gripper and vortex gripper. Int J Prec Eng Manuf,
16(10):2081-2090.
https://doi.org/10.1007/s12541-015-0270-3

Liao YX, Li X, Zhong W, et al., 2016. Study of pressure drop-
flow rate and flow resistance characteristics of heated
porous materials under local thermal non-equilibrium
conditions. Int J Heat Mass Transf, 102:528-543.

 https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.101
Lin ZS, Yu SM, Lu JH, 2015. Design and ARM-embedded

implementation of a chaotic map-based real-time secure
video communication system. IEEE Trans Circ Syst Video
Technol, 25(7):1203-1216.
https://doi.org/10.1109/TCSVT.2014.2369711

Mazzei D, Vozzi F, Cisternino A, et al., 2008. A high-
throughput bioreactor system for simulating physiological
environments. IEEE Trans Ind Electron, 55(9):3273-
3280. https://doi.org/10.1109/TIE.2008.928122

Park J, Lee J, 2011. A beacon color code scheduling for the
localization of multiple robots. IEEE Trans Ind Inform,
7(3):467-475. https://doi.org/10.1109/TII.2011.2158833

Ramos MA, Penteado RAD, 2008. Embedded software revi-
talization through component mining and software prod-
uct line techniques. J Univ Comput Sci, 14(8):1207-1227.
https://doi.org/10.3217/jucs-014-08-1211

Rehault F, 2010. Windows mobile advanced forensics: an
alternative to existing tools. Dig Invest, 7(1-2):38-47.
https://doi.org/10.1016/j.diin.2010.08.003

Riskedal E, 2008. Qt and Windows CE. Dr Dobbs J, 33(6):
30-45.

Saponara S, Petri E, Fanucci L, et al., 2011. Sensor modeling,
low-complexity fusion algorithms, and mixed-signal IC
prototyping for gas measures in low-emission vehicles.
IEEE Trans Instrum Meas, 60(2):372-384.
https://doi.org/10.1109/TIM.2010.2084230

Steblovnik K, Zazula D, 2011. A novel agent-based concept of
household appliances. J Intell Manuf, 22(1):73-88.
https://doi.org/10.1007/s10845-009-0279-5

Su LJ, Zheng NG, Yao M, et al., 2014. A computational model
of the hybrid bio-machine MPMS for ratbots navigation.
IEEE Intell Syst, 29(6):5-13.
https://doi.org/10.1109/MIS.2014.91

Tan DP, Zhang LB, 2014. A WP-based nonlinear vibration
sensing method for invisible liquid steel slag detection.
Sensor Actuat B Chem, 202:1257-1269.
https://doi.org/10.1016/j.snb.2014.06.014

Tan DP, Ji SM, Li PY, et al., 2010. Development of vibration
style ladle slag detection method and the key technologies.
Sci China Technol Sci, 53(9):2378-2387.
https://doi.org/10.1007/s11431-010-4073-6

Tan DP, Ji SM, Jin MS, 2013a. Intelligent computer-aided
instruction modeling and a method to optimize study
strategies for parallel robot instruction. IEEE Trans Edu,
56(3):268-273. https://doi.org/10.1109/TE.2012.2212707

Tan DP, Li PY, Ji YX, et al., 2013b. SA-ANN-based slag
carry-over detection method and the embedded WME
platform. IEEE Trans Ind Electron, 60(10):4702-4713.
https://doi.org/10.1109/TIE.2012.2213559

Tan DP, Ji SM, Fu YZ, 2016a. An improved soft abrasive flow
finishing method based on fluid collision theory. Int J Adv
Manuf Technol, 85(5-8):1261-1274.
https://doi.org/10.1007/s00170-015-8044-8

Tan DP, Yang T, Zhao J, et al., 2016b. Free sink vortex Ekman
suction-extraction evolution mechanism. Acta Phys Sin,
65(5):054701. https://doi.org/10.7498/aps.65.054701

Tan DP, Zhang LB, Ai QL, 2016c. An embedded self-adapting
network service framework for networked manufacturing
system. J Intell Manuf, in press.
https://doi.org/10.1007/s10845-016-1265-3

Tan DP, Li L, Zhu YL, et al., 2017a. An embedded cloud da-
tabase service method for distributed industry monitoring.
IEEE Trans Ind Inform, in press.
https:// doi.org/10.1109/TII.2017.2773644

Tan DP, Ni YS, Zhang LB, 2017b. Two-phase sink vortex
suction mechanism and penetration dynamic characteris-
tics in ladle teeming process. J Iron Steel Res Int, 24(7):
669-677. https://doi.org/10.1016/S1006-706X(17)30101-2

Veltcheva AD, Soares CG, 2012. Analysis of abnormal wave
groups in Hurricane Camille by the Hilbert Huang trans-
form method. Ocean Eng, 42:102-111.
https://doi.org/10.1016/j.oceaneng.2011.12.013

Tan et al. / Front Inform Technol Electron Eng 2018 19(5):604-625 625

Wang J, Li DJ, Yang CJ, et al., 2015. Developing a power
monitoring and protection system for the junction boxes
of an experimental seafloor observatory network. Front
Inform Technol Electron Eng, 16(12):1034-1045.
https://doi.org/10.1631/FITEE.1500099

Wu ZH, Zheng NG, Zhang SW, et al., 2016. Maze learning by a
hybrid brain-computer system. Sci Rep, 6:31746.
https://doi.org/10.1038/srep31746

Wulf V, Pipek V, Won M, 2008. Component-based tailorability:
enabling highly flexible software applications. Int J Hum
Comput Stud, 66(1):1-22.
https://doi.org/10.1016/j.ijhcs.2007.08.007

Xu LD, Viriyasitavat W, Ruchikachorn P, et al., 2012. Using
propositional logic for requirements verification of ser-
vice workflow. IEEE Trans Ind Inform, 8(3):639-646.
https://doi.org/10.1109/TII.2012.2187908

Yao MQ, Yang K, Xu CY, et al., 2015. Design of a novel
RTD-based three-variable universal logic gate. Front In-
form Technol Electron Eng, 16(8):694-699.
https://doi.org/10.1631/FITEE.1500102

Yin S, Wang G, Gao H, 2015. Data-driven process monitoring
based on modified orthogonal projections to latent struc-
tures. IEEE Trans Contr Syst Technol, 24(4):1480-1487.
https://doi.org/10.1109/TCST.2015.2481318

Zeng X, Ji SM, Tan DP, et al., 2013. Softness consolidation
abrasives material removal characteristic oriented to laser
hardening surface. Int J Adv Manuf Technol, 69(9-12):
2323-2332. https://doi.org/10.1007/s00170-013-4985-y

Zeng X, Ji SM, Jin MS, et al., 2016. Research on dynamic
characteristic of softness consolidation abrasives in ma-

chining process. Int J Adv Manuf Technol, 82(5-8):1115-
1125. https://doi.org/10.1007/s00170-015-7392-8

Zhang K, Kang JU, 2011. Real-time numerical dispersion
compensation using graphics processing unit for Fourier-
domain optical coherence tomography. Electron Lett,
47(5):309-310. https://doi.org/10.1049/el.2011.0065

Zhang M, Jiang JZ, Liu CH, 2013. Development of a multi-
function gateway node oriented environment monitoring
in greenhouse. Sens Lett, 11(6-7):1236-1239.
https://doi.org/10.1166/sl.2013.2852

Zheng NG, Wu Z, Lin M, et al., 2010a. Enhancing battery
efficiency for pervasive health-monitoring systems based
on electronic textiles. IEEE Trans Inform Technol Biomed,
14(2):350-359.
https://doi.org/10.1109/TITB.2009.2034972

Zheng NG, Wu ZH, Lin M, et al., 2010b. Infrastructure and
reliability analysis of electric networks for E-textiles.
IEEE Trans Syst Man Cybern Part C, 40(1):36-51.

 https://doi.org/10.1109/TSMCC.2009.2031497
Zheng NG, Su LJ, Zhang DQ, et al., 2015. A computational

model for ratbot locomotion based on cyborg intelligence.
Neurocomputing, 170(C):92-97.
https://doi.org/10.1016/j.neucom.2014.12.115

Zhou HJ, Xiang R, 2013. MicroWindows-based multi-device
support intelligent Chinese input system. J Comput Appl,
33(7):2067-2070.
https://doi.org/10.11772/j.issn.1001-9081.2013.07.2067

Zhuo XF, Fan JB, Chen B, 2002. Application of Linux multi-
lineality in GUI programming. J Southwest Univ Sci
Technol, 17(3):21-24.

	Da-peng TAN1, Shu-ting CHEN†‡2, Guan-jun BAO1, Li-bin ZHANG1

