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Abstract: In this paper, we review recent emerging theoretical and technological advances of artificial intelligence
(AI) in the big data settings. We conclude that integrating data-driven machine learning with human knowledge
(common priors or implicit intuitions) can effectively lead to explainable, robust, and general AI, as follows: from
shallow computation to deep neural reasoning; from merely data-driven model to data-driven with structured logic
rules models; from task-oriented (domain-specific) intelligence (adherence to explicit instructions) to artificial general
intelligence in a general context (the capability to learn from experience). Motivated by such endeavors, the next
generation of AI, namely AI 2.0, is positioned to reinvent computing itself, to transform big data into structured
knowledge, and to enable better decision-making for our society.
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1 Introduction

The idea of inanimate objects coming to life
as intelligent beings has been around for a long
time. Modern artificial intelligence (AI) was for-
mally founded in 1956 at a workshop at Dartmouth
College, where the term ‘artificial intelligence’ was
coined (McCarthy et al., 2006). After advancing over
the last few decades, AI has become one of the most
profound undertakings in science, and one that will
affect every aspect of human life.

We have witnessed the remarkable successes
brought about by AI, such as machine translation,
speech recognition, image classification, and infor-
mation retrieval. However, there are clear dif-
ferences between human-intelligence and machine-
intelligence. For example, although people and
computers can both play chess, it is far from
clear whether they do it the same way. To be
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successful in realistic environments, existing AIs
should identify and implement effective actions,
given the fact of inescapable incompleteness in their
knowledge about the world. That is, the next-
generation AI with regard to big data is an explain-
able, robust, and general AI: it can perform deep
neural reasoning, instead of brute-force shallow com-
putation (e.g., search); it is capable of harnessing
data-driven models with structured logical rules; it
can learn from experience (Fig. 1).

We review the recent advances of AI in terms
of AI platforms, natural language processing (NLP),
multimedia, computer vision, knowledge base pop-
ulation and visualization, as well as the challenges
and opportunities of future AI.

2 Artificial intelligence platforms

The development of the entire AI field may be
considered in three stages as follows: (1) From the
1940s to the 1970s, researchers focused on study-
ing traditional AI problems such as reasoning with
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Fig. 1 Flowchart: from data to knowledge

methodologies, which were based mainly on logic and
heuristic algorithms. (2) After the 1970s, AI prob-
lems were split into many other new fields, such as
natural language processing, multimedia and com-
puter vision, and statistical machine learning, which
turned out to be workable on these problems after
the 1990s. (3) In recent years, the third stage, it is
looking like the key to the AI world is deep learn-
ing. At different stages, engineers and scientists try
to build different AI frameworks and apply them to
specific problems. In this paper, we review three ma-
jor types of AI framework corresponding to the three
different stages of AI field, and how these each con-
tribute to and benefit the design of a new framework
for the AI 2.0 age.

2.1 Traditional artificial intelligence frame-
works

During the first stage, AI researchers worked on
traditional AI problems like game playing, knowl-
edge representation and reasoning, and expert sys-
tems. The frameworks developed are task-specific, in
other words, suitable only for one specific problem.
The methodologies are mostly based on heuristic al-
gorithms. For instance, DeepBlue, the first chess-
playing system to beat a world chess champion, uses
heuristic search (e.g., alpha-beta pruning) to find an
optimized play during the game. However, Deep-
Blue could hardly handle large-scale data (e.g., the
game of Go) due to the high complexity of its heuris-
tic algorithm and its inability to be applied to any
scenarios other than chess.

2.2 Statistical machine learning frameworks

Traditional AI frameworks suffer from the re-
quirement of designing precise rules, which cost

human resources. After the 1970s, researchers paid
more attention to extracting the ‘rule’ automatically
from observed data, using machine learning tech-
nologies like Perceptron, the first successful model
designed in 1969. From then on, AI research has
made machine learning its focus. Many statistical
learning algorithms have been designed and pub-
lished, such as support vector machine, Bayesian
networks, and conditional random fields. However,
there is no single model that works best on all given
problems. Determining a suitable model for a given
problem is still more an art than a science. Re-
searchers therefore tried to uniform these models
into a framework. For instance, GraphLab (Low
et al., 2014), an open source project started by Car-
los Guestrin of Carnegie Mellon University in 2009,
provides great features including multicore and dis-
tributed application programming interface (API).
More specifically, GraphLab contains topic models,
graph analytical algorithms, graphical models, clus-
tering algorithms, collaborative filtering algorithms,
etc. Frameworks like GraphLab make it easier to
apply statistical machine learning models to specific
AI problems. However, it requires a large amount of
data to drive statistical machine learning algorithms.
Besides, it turns out that supervised algorithms per-
form better than unsupervised ones at many tasks.
How to learn from a small set of observed data with-
out label information, just like the way human beings
learn things, is still an open direction for the entire
AI field.

2.3 Deep learning frameworks

Statistical machine learning methodologies re-
quire precise domain knowledge from scientists and
engineers to design the features. This limits the
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application of statistical machine learning in large-
scale data. For instance, imagine that we were ex-
pected to design a feature engineering based version
of AlphaGo, what kind of features should we propose
to extract from the game of Go? One of the best ex-
perts to give guidance on feature extraction is Lee
Se-dol, who might use some of his gaming experience
and feed it into a machine learning model. How-
ever, by this method, AlphaGo could hardly beat
Lee Se-dol as his ‘student’, since human-designed
features are in most cases considering the large-scale
data limitedly. Instead, deep learning has the ability
to acquire feature hierarchies from data automati-
cally. Then, these features are encoded within mul-
tiple non-linear neural networks.

In recent years, several deep learning frame-
works have been released. Table 1 illustrates the
comparisons of the major aspects of several main-
stream frameworks. For example, Google developed
TensorFlow (Abadi et al., 2016), a deep learning
framework that uses data flow graphs, where nodes
represent a computation and edges indicate the flow
of information from one node to another. Tensor-
Flow also has the advantage of being able to do
partial subgraph computation, which facilitates the
distributed training.

Other state-of-the-art deep learning frameworks
include: Caffe (Jia et al., 2014), which was devel-
oped at the Berkeley Vision and Learning Center
and is used widely by the Facebook deep learning
research team led by Yann LeCun; Torch (Collobert
et al., 2002), which was originally developed at NYU
and then featured a large number of community-
contributed packages; Theano (Bergstra et al., 2010),
which was developed at the University of Montreal,
to perform symbolic differentiation or integration on
complicated non-linear functions, and has been com-
petitive on execution speed with Torch; and Neon,
which was open-sourced by Nervana Systems, and
has recently been ranked as the fastest framework
across several performance categories.

The aforementioned frameworks offer the solu-
tion to the acquirement of software and hardware to
apply neural networks to specific problems across a
wide range of disciplines. However, the major lim-
itation of deep learning still remains unsolved: the
results of the computations are unexplained. More
specifically, the features acquired by deep learn-
ing are just continuous values with less semantic

information. We have no idea about the reason why
AlphaGo rated a specific move as a good play. Thus,
human players could hardly learn from AlphaGo to
improve their skills.

To conclude this section, we review three types
of AI frameworks with their major advantages and
disadvantages. We see that none of them could
achieve the fundamental goal of AI, which is the
claim that human intelligence “can be so precisely
described that a machine can be made to simulate
it”. Thus, in the age of AI 2.0, we are expecting a new
framework, which is explainable at the human logical
level, computationally powerful to handle large-scale
data, and also workable on a small set of labeling
data.

3 Artificial intelligence for big data

3.1 Natural language processing

NLP is a field of computer science, AI, and com-
putational linguistics, concerning the interactions
between computers and human natural languages. It
aims to discover effective theories and methods that
enable humans to communicate better with comput-
ers using natural language. The ‘natural language’ in
this research field is the language that we commonly
use in our daily life. Thus, NLP is closely related to
the study of linguistics, but there are some impor-
tant differences between them. NLP is not a general
study of natural language. NLP focuses on develop-
ing a computer system which can actualize natural
language communication.

3.1.1 Traditional natural language processing

Harris (1954) proposed the bag-of-words
(BOW) model to represent human language. The
BOW model is a simplified representation used in
natural language processing and information re-
trieval (IR). In this model, a text (such as a sentence
or a document) is represented as a bag (multi-set)
of its words, ignoring grammar and even the syn-
tactic order but keeping multiplicity. In practice,
the BOW model is used mainly as a tool of fea-
ture generation. After transforming the text into
a ‘bag of words’, we can calculate various measures
to characterize the text. The BOW model now
has many successful applications, e.g., document
classification, feature extraction, and spam filtering.
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Table 1 Comparison of several deep learning frameworks

Framework Language Multi-GPU Speed∗ Applicability

TensorFlow Python and C++ Yes � General
Torch Lua Yes �� General
Caffe C++ Yes � Image

Theano Python No �� General
Neon Python Yes ��� General

∗Speed is based on benchmarks published at ConvNet-benchmarks on GitHub. GPU: graphics processing unit

Part-of-speech tagging is one of the achieve-
ments in the traditional NLP field, used by a large
number of language processing systems for pre-
processing. The tagger assigns a (unique or am-
biguous) part-of-speech tag to each token in the in-
put, and passes its output to the next processing
level, i.e., usually a parser. Furthermore, there is
a large interest in part-of-speech tagging for corpus
annotation projects, which create valuable linguis-
tic resources by a combination of automatic pro-
cessing and human correction. One promising so-
lution for this task uses statistical approaches, e.g.,
the maximum entropy framework and Markov mod-
els. Stochastic taggers have obtained a high degree
of accuracy without performing any syntactic anal-
ysis on the input. Later, Brill (1992) presented a
simple rule-based part-of-speech tagger, which has
many advantages over stochastic taggers as follows:
a vast reduction in the stored information required,
the perspicuity of a small set of meaningful rules as
opposed to the large tables of statistics needed for
stochastic taggers, ease of finding and implementing
improvements to the tagger, and better portability
from one tag set or corpus genre to another.

3.1.2 Natural language processing with deep
learning

The earlier approaches in NLP research were
based mainly on hand-crafted rules or features, but
ignored a lot of information during data processing.
The rise of deep learning makes it possible to extract
more information from a large scale of raw data.

One outstanding result lies in the lat-
est proposed model for representing words in
corpus, namely Word vector (Mikolov et al., 2013).
Word2vec is a group of related models used to pro-
duce word embedding. These models are shallow
two-layer neural networks that are trained to recon-
struct linguistic contexts of words. Word2vec takes
a large corpus of text as its input, and produces a

high-dimensional space (typically of several hundred
dimensions), with each unique word in the corpus
corresponding to one vector in the space. Word vec-
tors are positioned in the vector space such that
words that share common contexts in the corpus
are located in close proximity to one another in the
space. Word2vec can use either of the two model
architectures, continuous bag-of-words (CBOW) or
continuous skip-gram, to produce a distributed rep-
resentation of words. By CBOW, the model predicts
the current word by using a window of surround-
ing context words. The order of the context words
does not affect the prediction (bag-of-words assump-
tion). By the continuous skip-gram architecture, the
model uses the current word to predict the surround-
ing window of context words. The skip-gram archi-
tecture weights nearby context words more heavily
than more distant context words. According to the
authors’ note, CBOW is faster while skip-gram is
slower, but the latter does a better job for infrequent
words.

Based on the power of Word vector, convolu-
tional neural networks (CNNs) are leveraged in NLP
like semantic parsing, information retrieval, sentence
modeling, and other traditional NLP tasks. These
methods simply use the CNN models that were orig-
inally invented for computer vision. However, sev-
eral disadvantages emerged when directly applying
CNN to NLP tasks such as sentence modeling, as
the boundary information of a sentence is more im-
portant than that of an image. To overcome this
defect, Kalchbrenner et al. (2014) introduced the
‘wide convolution’ method into CNN. Moreover, the
model using k-max pooling over a linear sequence
of values returns the subsequence of k maximum
values in the sequence, instead of the single maxi-
mum value. Secondly, the pooling parameter k can
be dynamically chosen by making k a function of
other aspects of the network or the input.
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Another successful application of deep learning
in NLP is machine translation. However, CNN can-
not be used to map sequences to sequences, although
it works well whenever large labeled training sets
are available. Sutskever et al. (2014) used a gen-
eral end-to-end approach to sequence learning, which
makes minimal assumptions on the sequence struc-
ture. This approach uses a multi-layered long short-
term memory (LSTM) to map the input sequence to
a vector of a fixed dimensionality, and then another
hierarchical LSTM, to decode the target sequence
from the vector. The model showed its effectiveness
even on long sentence translation, which indicated
that LSTM does not have any difficulty handling
long sentences. Meanwhile, LSTM learned sensible
phrase and sentence representations that are sensi-
tive to word order and are relatively invariant to the
active and the passive voice. The obtained experi-
mental results are close to the state-of-the-art per-
formance of the conventional phrase-based machine
translation system on an English-to-French transla-
tion task.

STM also shows certain promise in dialogue gen-
eration, but this method tends to be short-sighted
since it predicts utterances one at a time, while ig-
noring the influence on future outcomes. Modeling
the future direction of a dialogue is crucial to the gen-
eration of coherent and interesting dialogues. Rein-
forcement learning is therefore employed in dialogue
generation. Li et al. (2016) integrated reinforcement
learning with deep learning to model future reward in
chatbot dialogue. The model simulates dialogues be-
tween two virtual agents, using policy gradient meth-
ods to reward sequences that display three useful
conversational properties: informativity, coherence,
and ease of answering (related to the forward-looking
function).

3.1.3 Attention and memory in natural language
processing

Recently, the rise of attention mechanisms in
computer vision (CV) has inspired some work in
NLP. Neural machine translation is a typical ex-
ample, as the performance is greatly boosted when
taking the attention mechanism into consideration.
The models previously proposed for neural machine
translation often belong to a family of encoder-
decoders; i.e., they encode a source sentence into a
fixed-length vector, from which a decoder generates a

translation. Bahdanau et al. (2014) conjectured that
the use of a fixed-length vector was a bottleneck pre-
venting improvement of the performance of this basic
encoder-decoder architecture. They proposed to cir-
cumvent this by allowing a model to automatically
search for parts of a source sentence that are rele-
vant to predicting a target word, without having to
form these parts as a hard segment explicitly. With
this new approach, they achieved a translation per-
formance comparable to those of the state-of-the-art
methods.

The aforementioned applications in NLP have
already been the benchmarks in the corresponding
research field of NLP. However, one drawback of
the current methods is that the model lacks rea-
soning ability. To overcome this shortcoming, We-
ston et al. (2014) described a new class of learning
models called memory networks. Memory networks
reason with inference components combined with a
long-term memory component, in which they learn
how to use these mechanisms jointly. The long-term
memory can be read and written to, with the goal
of using it for prediction. The authors investigated
their approach in the context of question answering
(QA), where the long-term memory effectively acts
as a (dynamic) knowledge base, and the output is a
textual response, demonstrating the reasoning power
of such models by chaining multiple supporting sen-
tences to answer questions that require understand-
ing the intention of the verbs.

3.2 Multimedia

Conventional multimedia computing is built on
top of hand-crafted features, e.g., scale-invariant fea-
ture transform (SIFT), bag of visual words, bag of
latent topics, and sparse representation (Wu et al.,
2014; 2015). However, hand-crafted features are in
general restrictive in capturing complex semantics
in multimedia (image, audio, speech, and text). In
recent years, we have witnessed the unprecedented
advance in deep learning in various multimedia ap-
plications, such as image and video classification,
content-based multimedia retrieval, and cross-media
analysis (Cho et al., 2015).

Unlike the conventional machine learning meth-
ods that often use ‘shallow’ architectures, deep
learning mimics the human brain, which is orga-
nized in a deep architecture and processes informa-
tion through multiple stages of transformation and
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representation. By exploring deep architectures to
employ the feature learning at multiple levels of ab-
stractions from raw data, deep learning approaches
can learn complex nonlinear functions via multiple
layers, and transform the input data (whether im-
ages, speech, or text) into some output. This is use-
ful for making decisions (e.g., whether an attentional
object in a camera image, or inferring context from
text), without relying on human-crafted features us-
ing domain-specific knowledge.

In the multimedia field, the heterogeneity-gap
among multimodal data is a fundamental barrier.
Nowadays, more and more applications tend to in-
volve multimodal data, where information inherently
consists of data with different modalities, such as a
Web image with loosely related narrative text de-
scriptions, or a news article with paired texts and
images. Data in different modalities can be used to
discover the underlying latent correlation between
data objects in single or multiple modalities. Much
work has been done to map the data from one modal-
ity to another. In general, there are mainly three
kinds of approaches to boost multimodal embed-
ding, i.e., cross-media embedding for cross-media re-
trieval, such as Zhuang et al. (2016). The first one
is canonical correlation analysis (CCA) and its vari-
ants, which map the multimodal data into a common
space, such that the distance between two similar
samples is minimized. The second kind of approach
is latent Dirichlet allocation (LDA) and its exten-
sions. The LDA-based approaches attempt to model
correlations among multimodal data in terms of a
latent semantic level. Motivated by the recent re-
markable advance of deep learning, several deep ar-
chitectures of the third kind of approach have been
claimed to learn the joint multimodal representation.
For example, Karpathy et al. (2014) broke down im-
ages into objects and sentences into fragments, and
then evaluated their alignments in a latent common
space.

Deep neural networks take a feed-forward hi-
erarchical approach to learn features, and do clas-
sification simultaneously via a backpropagation er-
ror strategy. From a cognitive science perspective,
human knowledge can be used to enhance or sup-
press the middle relevant or irrelevant neurons since
the features learned at hidden layers are not always
transparent in their delivering cues.

It is well known that semantics in multimedia
is governed by concepts via common sense knowl-
edge (e.g., bird is a hypernym of both penguin and
canary). Although deep learning has achieved re-
markable progress in its renaissance, learning models
merely trained by an amount of data without recog-
nizing the inherent knowledge (e.g., the latent struc-
ture, the uncertainty, and implicit priors) in multi-
media may not be the most efficient strategy (Neal,
2012). Given the existence and availability of rich
knowledge stored in different forms, such as WordNet
and ImageNet, or even implicit knowledge extracted
from click-through logs from search engines and so-
cial media (e.g., the individual’s preference), we be-
lieve that deep learning frameworks can benefit sub-
stantially from leveraging such knowledge to further
advance the state-of-the-art of various multimedia
computing tasks. For example, deeply-supervised
nets (DSNs) (Lee et al., 2015) introduced direct su-
pervision to the hidden layers, rather than the stan-
dard approach of providing supervision at only the
output layer, and propagating this supervision back
to earlier layers.

As a result, how to appropriately integrate the
power of data-driven deep learning and the subtlety
of knowledge-guided frameworks together is one at-
tractive direction in the future multimedia comput-
ing (Pan, 2016).

3.3 Computer vision

Computer vision aims at simulating human per-
ception capability with the power of computational
modeling of the visual domain. Therefore, it theoret-
ically lies in an extremely interdisciplinary field that
effectively involves the comprehensive factors derived
from multiple research areas such as image process-
ing and statistical learning. In principle, the core of
computer vision is how to set up an effective visual
computing pipeline that is able to carry out a variety
of visual tasks ranging from low level (e.g., image fea-
ture analysis) to high level (e.g., visual recognition),
resulting in the realization of image understanding
in a human-like way.

One of the most important problems in com-
puter vision is how to model the semantic structural
properties of an image space. In this area, the pio-
neering work by David Marr seeks to establish a com-
putational theory of vision (Kitcher, 1988), which
aims to form an effective symbolic description of the
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image world from 2D to 3D. This vision theory is
based on a structured computational pipeline for ob-
ject recognition, which follows the stages of primal
sketch, 2.5D sketch, and 3D model. In theory, these
stages are supposed to cope with a set of challenging
3D geometry problems (e.g., feature representation,
camera calibration, and 3D reconstruction), which
are heuristic and highly dependent on expertise and
experience. As a result, such a visual computing
pipeline is often restricted in many practical scenar-
ios, such as the drastic appearance changes and com-
plicated environmental conditions.

Motivated by the above observations, which at-
tempt to automatically build the feature represen-
tation machine in terms of supervised deep learn-
ing over massive visual data, a data-driven learning
strategy is introduced to the visual computing pro-
cess. The benefit of such a strategy is in taking
an end-to-end learning architecture (Gordo et al.,
2016), which is formulated as deep neural networks
that can learn informative features across multiple
levels (e.g., edge, object shape, and object atten-
tion). Such a deep learning architecture is optimized
in a GPU-driven parallel computing framework. In
this way, the process of feature representation is gov-
erned by deep learning machines, which adaptively
produce a set of visual task-specific features, instead
of heuristically hand-crafted features, e.g., local bi-
nary pattern (LBP), histogram of oriented gradient
(HOG), and Gist. Following this trend, a large body
of deep learning approaches have been proposed to
improve the power of feature representation, such as
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan
and Zisserman, 2014), GoogleNet (Szegedy et al.,
2015), and ResNet (He et al., 2015). These ap-
proaches focus on designing more feasible network
architectures to model the visual computing process
from sparse connections to dense links. For the sake
of video applications, the aforementioned learning
machines are further extended to introduce spatio-
temporal memory constraints into the deep learn-
ing process, e.g., recurrent neural network (RNN),
LSTM (Liu et al., 2016), and gated recurrent units
(GRUs), which leads to the higher-order feature
representation, taking into account the long-range
dependency among visual elements in either the spa-
tial or temporal dimensions.

More recently, many vision researchers have
devoted their efforts to exploiting unsupervised

learning for the ease of image sample annotation in
deep learning. One of the most representative ap-
proaches is based on generative adversarial networks,
which take an adversarial learning strategy to effec-
tively balance the learning power of a discriminator
and a generator network until convergence. As a re-
sult, they use the generator network to generate the
synthesized samples, and let the discriminator net-
work distinguish the differences between real sam-
ples and synthesized ones. By solving a joint min-
max optimization problem iteratively, both of the
networks are mutually reinforced until the discrimi-
nator network cannot distinguish the differences be-
tween the synthesized and real samples. In this case,
the learned generator network can serve as the sam-
ple generator that can produce a set of high-quality
training samples to improve the quality of deep
learning.

Some vision learning methodologies (Shojaee
and Baghshah, 2016; Rezende et al., 2016) have
started to focus on how to recognize the unseen
object classes, without training data, on the ba-
sis of seen-class samples. Therefore, zero/one shot
learning emerges to model the following two aspects:
(1) modeling the semantic interactions between the
image feature space and the label class space; (2)
capturing the domain distribution connections be-
tween seen-class and unseen-class data. Many vision
works rely on deep reinforcement learning, which
aims to set up an interactive learning mechanism
between learning agents and environments by adap-
tively learning reward and policy functions.

Of course, the ultimate goal of visual comput-
ing is to truly understand the semantics of visual
data, and provide knowledge service to human be-
ings. To that end, some recent vision works have
made an attempt to incorporate prior knowledge
into the process of visual computing, resulting in
knowledge-guided visual computation. As a result, a
number of knowledge representation techniques (Shi-
jia et al., 2016) (e.g., knowledge graphs) were intro-
duced to improve the semantic understanding power
of visual computing (e.g., knowledge-guided image
captioning).

4 From data to knowledge

The rapid development of information technol-
ogy has generated massive amounts of data globally,
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80% of which is unstructured. The idea of convert-
ing unstructured data into formalized knowledge is
so appealing that its practices can be traced back to
classic AI research in the 1980s (Russell et al., 2003).
The major challenge of this task is to build up knowl-
edge bases (or knowledge graphs) that can enable
and contribute to intelligent applications, such as se-
mantic search, question answering, or even reasoning
and large-scale machine reading.

The construction of knowledge bases is a long-
term studied area, and there are various ways of
building one. The Cyc (Sarjant et al., 2009) is one
of the earliest attempts to create a universal knowl-
edge base. The goal of Cyc is to enable AI appli-
cations to perform human-like reasoning by assem-
bling a comprehensive knowledge base of everyday
common sense knowledge. Cyc is fully created and
refined by human exports through curation. How-
ever, after more than 10 years of hard endeavor in-
cluding more than 900 person years, Cyc is still far
from its ultimate goal, because the creation of a uni-
versal knowledge base by pure curation is infeasible
and unsustainable.

Instead of relying on a small group of experts,
modern knowledge bases are usually constructed in
different ways. One way is to use the idea of crowd-
sourcing to share the workload, i.e., using a crowd
of workers from the Internet to collaboratively edit
a knowledge base. Typical examples of this kind are
Freebase (Bollacker et al., 2008) and Wikidata (Vran-
dečić and Krötzsch, 2014). Another way is to use
automatic knowledge extraction methods to harvest
knowledge from semi-structured data. For example,
DBpedia (Auer et al., 2007) is a knowledge base that
is extracted from semi-structured data in Wikipedia.
The main source for DBpedia is the key-value pairs
in the Wikipedia infoboxes. The tasks needed for
creating automatic tools to map infoboxes to the
DBpedia ontology and corresponding properties are
released and distributed in a crowd-sourced way.

The aforementioned two approaches have
achieved great success in constructing general knowl-
edge bases; however, extending or refining an exist-
ing knowledge base, or creating a domain specific
knowledge base from scratch using unstructured text
data sources, is still challenging, especially when con-
fronted with large-scale unstructured data. A pro-
posed solution to this challenge is to construct data-
driven knowledge bases by using machine learning

approaches. Its process can usually be divided into
three sequential steps. The first step is mention de-
tection, which aims to recognize mentions (proper
noun phrases) from the text by their surface names,
locate their span in the text, and classify them into
a predefined set of categories (typing). The task of
mention detection can be treated as a classification
or sequence-labeling problem. The major challenge
of this task is that an entity mention may have many
surface names, and can be associated with multiple
types. Identified mentions of the first step can be
highly ambiguous, and therefore the second step, en-
tity linking (EL), tends to link an identified mention
to a specific entity in a predetermined knowledge
base. The main information used to address such
inherent ambiguity is the candidate entity popular-
ity, context and topic similarities, as well as other
mentions in the context. Learning methods such as
regression and ranking are often applied in this sce-
nario. As a disambiguation tool, EL can improve
the performance of a retrieval system. The mentions
that cannot link to the knowledge base will be clus-
tered for further investigation. Therefore, EL can
also be used to refine a knowledge base. Finally,
the third step of this process is relation extraction
(RE). RE extracts properties of linked or clustered
mentions, and finds their relations from plain text
documents. The subtask of property extraction is
also called slot-filling, which aims to fill in values for
specific slots (attributes) with reference to specific
entities. Since it is not feasible to annotate large-
scale documents with sentences that contain candi-
date entity-value pairs, distant supervision assump-
tion, as well as multi-instance, multi-label learning
is often applied to this task. Another subtask in
this step, which aims to extract the relation between
entities, is called open information extraction (IE).
In open IE, relations are represented as subject–
relation–object triples. Schemas for these relations
do not need to be specified in advance. NLP tools
such as chunker and dependency parser are used to
provide features to segment sentences into relation
arguments and relation names.

Data-driven knowledge base construction has
received considerable attention recently. The U.S.
National Institute of Standards and Technology
(NIST) organizes the Annual Text Analysis Con-
ference Knowledge Base Population (KBP) Work-
shop to promote research in automated data-driven
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Fig. 2 Knowledge computation engine in KS-Studio
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systems that discover information about the entities
as found in a large unstructured text corpus, and
incorporate this information to enrich a knowledge
base. In other domains, such as biology, a series of
BioCreAtIvE (a critical assessment of text mining
methods in molecular biology) workshops have been
organized with similar challenges such as biologi-
cal entity extraction and gene name normalization
(linking).

However, knowledge bases constructed by data-
driven methods also suffer from several problems
such as inaccurate entity recognition and unreliable
property/relation discovery due to insufficient train-
ing data. One possible solution to these problems is
to refine the knowledge that is learned by machines
by human corrections. One of the earliest approaches
that employs such human-machine collaboration is
the never ending language learning (NELL) project
(Carlson et al., 2010). The project firstly extracts
relation assertions by learning algorithms, and then
sends them to anonymous online reviewers for cor-
rection. Finally, the corrected results are fed back to
the learning algorithms as training examples. This
process can be carried out iteratively to gradually im-
prove the system performance. This kind of human-
machine interaction can be viewed as a combination
of crowdsourcing and data-driven methods. We be-
lieve that such human-machine collaboration has a
great potential to improve the method of knowledge
collection from unstructured data.

Fig. 2 illustrates the architecture of KS-Studio,
a knowledge computation engine developed at Zhe-
jiang University. KS-Studio is a knowledge com-
puting engine consisting of a set of APIs and tools
that convert unstructured data into structured one,

covering the whole ‘from data to knowledge’ process.
For example, it includes entity discovery, entity link-
ing, slot filling, event extraction, image recognition,
and cross-media analysis. KS-Studio can provide
knowledge services with the help of knowledge deep
understanding.

5 Visual analysis and visualization

The design of visualization and visual analysis
has gone through three stages: visualization (visual
representation), interactive visualization, and visual
reasoning. The progress implicitly involves more and
more human intelligence in the data process.

In the information visualization field, the pio-
neering visualization research is in statistical charts,
which have been applied to various fields: sociology,
economics, geography, medical sciences, astronomy,
etc. To transform data into an effective statistical
chart (visualization) is nontrivial. That is probably
the reason why the visualization enterprise Tableau
became so successful more than a hundred years af-
ter the statistical charts were first invented. The
‘show me’ feature (Mackinlay et al., 2007) automat-
ically suggests a proper visual representation and a
color scheme, according to the underlying data. In
the scientific data visualization field, visualization is
generally about the design of the transfer function.
The most representative scientific data visualization
work is the visualization toolkit (VTK) (Schroeder
et al., 2004), which supports visualization algorithms
including scalar, vector, tensor, texture, volumet-
ric methods, as well as the advanced modeling tech-
niques such as implicit modeling, polygon reduction,
mesh smoothing, cutting, contouring, and Delaunay
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triangulation. Visualization in the sense of visual
representation implies the design of visual channels
(color, shape, size, etc.) that facilitate human per-
ception and cognition of the latent patterns in data.

With the increase of information collection
and social connections, it became clear that
visual representations alone could not satisfy
the dynamic requirements of information under-
standing and communication. Interaction tech-
niques such as focus+ context (Baudisch et al.,
2002), overview+ details (Shneiderman, 1996), and
saliency-aware navigation (Kim and Varshney, 2006)
were proposed to provide multiple perspectives of
data patterns according to the users’ demand. In the
exploration of large-scale landscape images (gigapix-
els), saliency-guided navigation (Ip and Varshney,
2011) seems to be a reasonable solution to rapid iden-
tification of regions of interest. Although users are
able to express their data requirements with inter-
active visualization, they are not able to contribute
their domain knowledge to visualization for better
data understanding. In other words, human intelli-
gence was not part of the data fed into the visualiza-
tion process.

There are two reasons for adopting visualization
in data analysis: data are too complex to interpret,
and data in their raw form still require further pro-
cessing. Visualization (interactively) addresses the
former challenge, while visual analysis addresses the
latter. Different from interactive visualization, hu-
man intelligence integrated in a visual analysis pro-
cess is not limited to navigation or parameter ad-
justment. More importantly, it also includes logical
reasoning skills and domain knowledge that consti-
tute an iterative knowledge generation model (Sacha
et al., 2014) for more profound findings. Palan-
tir is one representative of a visual analytical tool
for knowledge generation. It integrates human do-
main knowledge to build connections between data
from various sources, from which analysts are able
to validate obsolete knowledge and generate new
knowledge.

Though visualization has been fully involved in
every component of big data, we are still facing many
challenges. First of all, in the era of big data, visual-
ization is often faced with TB- or even PB-level data
sets, which brings great computing efficiency and us-
ability challenges to data cleaning, data statistics,
feature extraction, and data display. Secondly, many

existing visualization approaches perform post-hoc
analysis. The expectation is to integrate visualiza-
tion into real-time analysis systems, evolving from
the analysis of static historical data to the analy-
sis of dynamic streaming data, as well as forecasts
of the future. Thirdly, many existing visualization
applications are designed for only one type or class
of specific data. General visualization methods and
platforms for all kinds of cross-media data will need
to be developed to standardize visualization, which
is crucial for the future development, popularization,
and application of visualization tools. Finally, in the
future, visualization will be able to connect physical
space with cyber space using large shared displays
(Marrinan et al., 2014), such as virtual reality (VR),
augmented reality (AR), wearable, and other tech-
nologies, making visual interactions more natural.

6 Prospective trends and conclusions

We human beings learn by way of concrete ex-
amples, different forms of general knowledge, and
rich experiences in the physical world. As pointed
out in Pan (2016), with the rapid partial overlapping
of cyberspace with physical space and human society
(CPH), AI has been profoundly changed. Here we
describe in detail some of the emerging trends from
data to knowledge depicted in Fig. 1 as follows:

The effective integration of rule-based symbolic
reasoning and data-driven learning (i.e., connection-
ist learning). An appropriate integration is desirable
for enhancing the ability to explain intelligent ac-
tions, e.g., prediction and classification (Hu et al.,
2016).

Cross-media inference and reasoning. Data with
multi-modalities from multi-domains can improve
the robustness and reliability of inference and rea-
soning. In general, data with different modalities
have different discriminative powers to encode their
particular semantics. As a result, how to employ the
intrinsic interaction between cross-media during in-
ference and reasoning is a fundamental challenge to
sense our real world.

Creative ability via artificial intelligence. In re-
cent years, we have witnessed an explosion of AI
generated arts such as pop music and painted pho-
tos. Whether next generation AI will have creative
ability in some domain-specific field is an amazing
research direction.
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In this paper, we survey some recent advances in
terms of AI platforms, NLP, multimedia, computer
vision, knowledge base population, and visualiza-
tion. We believe that an appropriate integration of
data-driven machine learning approaches (bottom-
up) with knowledge-guided methods (top-down) will
open a new door for the future of AI.
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