
Tao et al. / Front Inform Technol Electron Eng 2018 19(3):367-378 367

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

A projected gradient based game theoretic approach for

multi-user power control in cognitive radio network∗

Yun-zheng TAO‡1, Chun-yan WU1, Yu-zhen HUANG1,2, Ping ZHANG1

1State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing 100876, China
2College of Communications Engineering, PLA University of Science and Technology, Nanjing 210007, China

E-mail: yunzhengtao@bupt.edu.cn; chunyanwuarkiro@163.com; yzh_huang@sina.com; pzhang@bupt.edu.cn

Received Jan. 23, 2017; Revision accepted Apr. 20, 2017; Crosschecked Mar. 8, 2018

Abstract: The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand
caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between human
and things. To accommodate the ever-growing data traffic with scarce spectrum resources, cognitive radio (CR)
is considered a promising technology to improve spectrum utilization. We study the power control problem for
secondary users in an underlay CR network. Unlike most existing studies which simplify the problem by considering
only a single primary user or channel, we investigate a more realistic scenario where multiple primary users share
multiple channels with secondary users. We formulate the power control problem as a non-cooperative game with
coupled constraints, where the Pareto optimality and achievable total throughput can be obtained by a Nash
equilibrium (NE) solution. To achieve NE of the game, we first propose a projected gradient based dynamic model
whose equilibrium points are equivalent to the NE of the original game, and then derive a centralized algorithm
to solve the problem. Simulation results show that the convergence and effectiveness of our proposed solution,
emphasizing the proposed algorithm, are competitive. Moreover, we demonstrate the robustness of our proposed
solution as the network size increases.
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Projected gradient
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1 Introduction

Spectrum scarcity has been considered a pri-
mary problem in the fifth generation (5G) networks
when trying to meet the data requirement of new
wireless services, such as the Internet of Things
(IoT), which comprises billions of devices and the

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61227801 and 61629101), Huawei Communications
Technology Lab, China, and the Open Research Foundation of
Xi’an Jiaotong University, China (No. sklms2015015)

ORCID: Yun-zheng TAO, http://orcid.org/0000-0002-8734-
2729
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2018

comprehensive applications of augmented/virtual re-
ality (AR/VR). While developing unlicensed spec-
trum is a possible solution to the problem, recent
spectrum utilization measurements reveal that the
licensed spectra are actually underused. The lim-
ited spectrum resources are wasted by the static
and rigid spectrum management regimes which are
currently in use. Therefore, it is important to con-
sider possible improvements in spectrum utilization
by employing the latest technologies. Cognitive ra-
dio (CR) technology, which is able to facilitate more
efficient spectrum utilization, is considered a promis-
ing technology to solve the contradiction between
ceaseless demands for spectrum and finite spectrum
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resources (Han et al., 2012). In CR networks, the
co-channel interference (CCI) in radio transmission
and the interference temperature regulation imposed
by primary users (PUs) make power control a signif-
icant issue. For spectrum sharing, secondary users
(SUs) can access the licensed spectrum by two meth-
ods: overlay or underlay mode. In the latter, SUs
are allowed to interfere with PUs below a prede-
termined level, called the ‘interference temperature’
(Le and Hossain, 2008). Therefore, PUs can con-
sider the power of SUs noises, which can be quan-
tized and judged. As long as the interference is less
than the threshold predefined by PUs, SUs are al-
lowed to access the spectrum. Thus, it is not triv-
ial to set the optimal tolerable interference level for
PUs. Existing studies have proposed all kinds of
techniques to address related problems, including the
detection of leaked oscillator power (Wild and Ram-
chandran, 2005), the interference temperature model
(Kolodzy, 2006), and sensor-aided spectrum sensing
(Mercier et al., 2008).

In CR power control related research, a single
PU or a single-channel scenario has been investigated
broadly when formulating the problem. Wang et al.
(2013) and Yang et al. (2015) considered only a single
PU. Yang et al. (2015) and Zhou et al. (2012) inves-
tigated a single-channel model. Yang et al. (2015)
proposed a fast and low-complexity adaptive power
control iterative algorithm; however, they did not
prove that the obtained solution conforms to the in-
terference constraints of PUs. In Zhou et al. (2012),
a robust distributed power control algorithm, which
does not apply a pricing mechanism, was designed
through reinforcement learning. It is considered
to be the first algorithm to solve the incomplete-
information power control game in CR networks.
Bedeer et al. (2014) took multiple PUs and channels
into consideration, exploiting a multi-objective op-
timization approach to investigate the optimal link
adaptation problem in orthogonal frequency-division
multiplexing (OFDM) based CR systems. It is for-
mulated as a problem that jointly maximizes the
system’s throughput and minimizes its transmission
power, subject to the interference constraints for
PUs, the quality of service (QoS) requirements of
SUs in terms of the maximum bit error rate, trans-
mission power budget, and maximum number of al-
located bits per subcarrier. Although Bedeer et al.
(2014) thoughtfully took into account errors due to

imperfect sensing of PUs’ frequency bands, they con-
sidered only the single-SU situation.

Game theory provides the ideal framework for
designing efficient and robust distributed algorithms
in wireless communication networks, especially in
CR networks. All kinds of game models have been
proposed to solve power control problems in CR net-
works, including repeated, myopic, S-modular, and
potential games. These games were introduced and
their convergence conditions were demonstrated by
Neel et al. (2004). Wu and Tsang (2008) derived
a distributed algorithm based on a layered struc-
ture similar to the Stackelberg game, in which, with
the help of monitoring sensors deployed in the vicin-
ity of PUs, SUs’ power strategies are able to con-
verge to the unique Nash equilibrium (NE), sub-
ject to constraints on both SUs and PUs. However,
this algorithm requires a relatively high signal-to-
interference-plus-noise ratio (SINR) of every SU and
fails to prove the convergence of the algorithm. In
most existing work, SUs need to share interference
channel information and power strategies to imple-
ment the game with a pricing mechanism that re-
quires frequent exchange of information. Based on
CR networks with multiple PUs and multiple chan-
nels, Lin et al. (2010) proposed a distributed power
control algorithm whose objective is to maximize the
secondary capacity; however, the solution proposed
in this study incurs a significant information ex-
change overhead, requiring increased resulting time
and complexity.

Motivated by the limitations in these existing
studies, we consider a more realistic scenario in CR
networks where multiple PUs share multiple chan-
nels with SUs. We model the power control problem
as a non-cooperative game with coupled constraints.
Then we propose a centralized power control algo-
rithm based on projected gradient that can achieve
an NE of the game. The main contributions of this
paper are summarized as follows:

1. Multi-PU and multichannel power control
game formulation: Unlike many existing studies
which considered one single PU or channel, we inves-
tigate the power control problem in multi-PU and
multichannel CR networks, which is a much more
complicated problem. Hence, we consider the dis-
tributed alternative and formulate the distributed
power control problem as a non-cooperative game
with coupled constraints. The existence of NE for
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this game is demonstrated.
2. A projected gradient based dynamic model:

To find the NE of the power control game, we propose
a projected gradient based dynamic model whose
equilibrium points are equivalent to an NE of the
original game. Therefore, pursuing NE of the origi-
nal game is converted to solving equilibrium points
of the dynamic model. This procedure involves each
SU’s power strategies and some other information,
and determines the model as a centralized power con-
trol scheme.

3. Centralized projected gradient based power
control algorithm design: To solve the equilibrium
points of the proposed model, we next devise a
centralized power control algorithm based on pro-
jected gradient, which achieves an NE of the non-
cooperative power control game. The convergence of
the proposed algorithm is illustrated by simulation
results, and the effectiveness is shown by comparison
with another algorithm. Furthermore, the robust-
ness of the proposed algorithm is demonstrated with
the increase of the network size.

2 System description

In this section, we describe the system model
and then present the game formulation.

2.1 System model

The proposed system model is based on Wu and
Tsang (2008). It is depicted in the simplified abstract
diagram (Fig. 1), where there areM PUs and N SUs.
Each SU is a transceiver pair and is denoted as (SUi-
Tx, SUi-Rx) (1 ≤ i ≤ N). In the vicinity of each PU,
there is a monitoring sensor (MSm, 1 ≤ m ≤ M),
which is equipped by a PU to monitor the interfer-
ence level from each SU to PUm over each channel.
These sensors are omitted in the diagram for clarity.
We consider the uplink transmission of SUs, where
the blue solid lines represent data transmission links
between the SU transceiver pairs, and the blue chain
lines and red dashed lines denote interference from
SU-Tx to SU-Rx and PU, respectively. Note that
we focus on exploring the power control game in a
wireless interference model, and thus some physical
layer channel access schemes (e.g., code-division mul-
tiple access (CDMA)) can be adopted to allow SUs
to share the same spectrum resource simultaneously
and efficiently. The available spectrum is assumed to

be divided into K sub-channels, each with an equal
bandwidth W . Let gij =

(
g1ji, g

2
ji, · · · , gKji

)
be the

link power gain vector from SUj-Tx to SUi-Rx over
K channels and him =

(
h1
im, h2

im, · · · , hK
im

)
be the

link power gain vector from SUi-Tx to PUm over K
channels.

PU1

PUm

PUM

h1m
him

hNm
SUi-Tx

SU1-Tx

SUN-Tx

SUi-Rx

SU1-Rx

SUN-Rx

g1i

gii 

gNi

Signal transmission between SU transceiver pairs
Interference from SU-Tx to SU-Rx
Interference from SU-Tx to PU

...
...

...
...

...
...

Fig. 1 System model with M PUs and N secondary
transceiver pairs
PU: primary user; SU-Tx: secondary user transmitter; SU-
Rx: secondary user receiver. i, j = 1, 2, · · · , N ; m =

1, 2, · · · ,M . References to color refer to the online version of
this figure

We assume that the spectrum sharing mode in
this study is underlay, where SUs are allowed to ac-
cess the licensed spectrum as long as the interfer-
ence power does not exceed a predefined threshold at
PUs. We employ the interference temperature model
(Kolodzy, 2006) as a metric for interference incurred
by PUs. By designating the interference tempera-
ture threshold, the power controller will govern the
operation of the CR system to ensure that PUs will
not be affected adversely. The interference power
threshold imposed by the mth PU can be calculated
as κTmKW , where κ is the Boltzmann constant and
Tm is its interference temperature threshold.

2.2 Game formulation

Based on the system model presented in Sec-
tion 2.1, we consider a power control strategy pi =(
p1i , p

2
i , · · · , pKi

)
(1 ≤ i ≤ N) for each SU. The goal

of each strategy is to maximize the channel capac-
ity for the specific SU when satisfying the inter-
ference temperature regulation and its transmission
power budget. The strategic game can be defined as
follows:
Definition 1 The non-cooperative power control
game in strategic form is a triplet G = {N , S,
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(ui)i∈N }, where N is a finite set of players, i.e.,
N = {1, 2, · · · , N}, S = p1 · p2 · . . . · pi · . . . · pN

is the set of pure strategies for players, and ui is the
utility function for player i.

Note that the players are assumed to be SUs,
and the pure strategy space is expressed as

S =
{
p = (p1,p2, · · · ,pN )T ∈ ×i=1,2,··· ,NΩi|

N∑

i=1

K∑

k=1

pki h
k
im ≤ κTmKW, m = 1, 2, · · · ,M

}
,

(1)

where Ωi denotes the set of transmit power for SUi-
Tx, given by

Ωi =
{
(p1i , p

2
i , · · · , pKi )

T ∈ R
K |

pki ≥ 0,

K∑

k=1

pki ≤ pmax
i , k = 1, 2, · · · ,K

}
,

(2)

where pmax
i denotes the power budget of SUi-Tx.

Then the SUi-Tx strategy space can be denoted as

Si(p−i) =
{
pi ∈ Ωi|

N∑

i=1

K∑

k=1

pki h
k
im ≤ κTmKW,

m = 1, 2, · · · ,M
}
.

(3)

It is easily observed that strategy sets are non-
orthogonal, meaning that G is a coupled constraint
game. In this game, the utility function is the
throughput of each SU, represented by channel ca-
pacity as

ui =

K∑

k=1

uk
i = W

K∑

k=1

log2

⎛

⎜
⎜
⎝

1 +
pki g

k
ii

N∑

j=1
j �=i

pkj g
k
ji + Iki

⎞

⎟
⎟
⎠,

(4)
where Iki is the background noise power of SUi-Rx
over channel k. Note that the interference from PUs
to SUi over channel k is included in Iki .

Based on this non-cooperative game, we then
define NE to deal with pure strategies.
Definition 2 A pure-strategy NE of the non-
cooperative power control game G = {N , S, (ui)i∈N }
is a strategy profile p∗ ∈ S such that

ui(p
∗
−i,p

∗
i ) ≥ ui(p

∗
−i,pi), ∀pi ∈ Si, ∀ i ∈ N . (5)

In other words, given that other SUs’ strate-
gies remain fixed, if no SU has an incentive to

deviate unilaterally to another transmit power strat-
egy, the strategy is a pure-strategy NE, which is
p∗ = (p1,p2, · · · ,pN ).

Then we investigate the existence of NE for G.
The result is stated in Theorem 1.
Theorem 1 There exists at least one pure-strategy
NE for the coupled constraint game G over the strat-
egy space S.

Proof For a non-cooperative game with coupled
constraints, Arrow et al. (1961) gave sufficient con-
ditions for the existence of an NE. In our power con-
trol game, they can be translated as: joint strategy
space S is a nonempty closed bounded convex sub-
set on R

N , and for each i ∈ N , its utility function
ui(p−i,pi) is continuous on S and concave in pi.

Because S is a nonempty closed bounded set and
is also the intersection of convex set ×i=1,2,··· ,NΩi

and half-space
N∑

i=1

K∑

k=1

pki h
k
im ≤ κTmKW (m =

1, 2, · · · ,M), it is a nonempty closed bounded convex
subset on R

N .

Obviously, utility function ui(p−i,pi) is contin-
uous on S. Its first partial derivative with respect to
pi is

∂ui

∂pi
=

W

ln 2

·

⎛

⎜
⎝

g1ii
N∑

j=1

p1jg
1
ji+I1i

,
g2ii

N∑

j=1

p2jg
2
ji+I2i

, · · · , gKii
N∑

j=1

pKj gKji+IKi

⎞

⎟
⎠

T

,

(6)
and its second partial derivative with respect to pi is
given by

∂2ui

∂pi
2
=

W

ln 2
· diag

⎛

⎜
⎜
⎝

−(g1ii)
2

(
N∑

j=1

p1jg
1
ji + I1i

)2 ,

−(g2ii)
2

(
N∑

j=1

p2jg
2
ji + I2i

)2 , · · · ,
−(gKii )

2

(
N∑

j=1

pKj gKji + IKi

)2

⎞

⎟
⎟
⎠ .

(7)
It can be observed easily that Eq. (7) is a negative
definite matrix, and thus ui(p−i,pi) is concave in pi.

Therefore, G satisfies the above sufficient condi-
tions, and there exists at least one NE for G.
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3 Property analysis of the game

3.1 A dynamic model based on projected
gradient

The NE solution to G is a fixed point. It is chal-
lenging to acquire the closed-form expression of the
solution. Therefore, we exploit certain mathemat-
ical programming computational methods instead.
First, we use a continuous-time dynamic adjustment
process of a non-cooperative power control game pro-
posed by Rosen (1965), where each player changes its
own power strategy, so that the joint power strategies
remain in S, and its own utility function would in-
crease, assuming that all other players hold their cur-
rent strategies. In other words, each player changes
its power strategy at a rate proportional to the gradi-
ent of its utility function with respect to its strategy,
subject to the constraints.

For analytical convenience, the strategy space is
rewritten as the following matrix-form inequality:

S=
{
p=(p1;p2; · · · ;pN )∈R

K×N | s(p)≥0
}
, (8)

where vector s(p) ∈ R
N(K+1)+M corresponds to

(N(K + 1) + M) constraints of the strategy space.
Specifically, we have

s(p) = Ap− b, (9)

where A and b are given by Eq. (10) shown on
the bottom of this page. For the sake of easy

representation, let Cm = κTmKW (1 ≤ m ≤ M).
The dynamic system under consideration can be
characterized by the following differential:

dp
dt

=

[
∂ui

∂pi

]

(i)

+

N(K+1)+M∑

z=1

λz
∂sz(p)

∂p
. (11)

By Eq. (9), we have

∂sz(p)

∂p
= AT

z , 1 ≤ z ≤ N(K + 1) +M, (12)

where AT
z is the transpose of the zth vector of matrix

A, and set λ lying in a bounded subset of the positive
orthant of RN(K+1)+M is selected appropriately to
ensure that set λ starts with any p ∈ S and the
solution of G remains in S. This will be discussed
later in this section. Note that λ is denoted by

λ=

{
argmin

λz≥0,sz(p)≤0
λz=0,sz(p)>0

||f(p, λ)||
∣
∣∣λ∈R

N(K+1)+M
}

, (13)

where f (p, λ) is the projection of the pseudo-
gradient of the individual utility function with re-
spect to its corresponding power strategy on the
manifold formed by the active constraints at p.

According to the lemma in Rosen (1965), we
can acquire the closed-form expression of λ, where
the vector consisting of nonzero elements in λ is

λ = −
(
AA

T
)−1

A

[
∂ui

∂pi

]

(i)

, (14)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

. . .
1

−1 −1 · · · −1

1

. . .
1

1

. . .
1

−1 −1 · · · −1

−h1
11 −h2

11 · · · −hK
11 −hK−1

21 · · · −h1
N1 −h2

N1 · · · −hK
N1

−h1
12 −h2

12 · · · −hK
12 −hK−1

22 · · · −h1
N2 −h2

N2 · · · −hK
N2

...
...

...
...

...
...

...
−h1

1M −h2
1M · · · −hK

1M −hK−1
2M · · · −h1

NM −h2
NM · · · −hK

NM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...
0

−pmax
1

0

0
...
0

−pmax
N

C1

C2

...
CM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)
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where A consists of every Az that satisfies Azp −
bz ≤ 0. Then let the right-hand side of Eq. (11) be

[
∂ui

∂pi

]

(i)

+

N(K+1)+M∑

z=1

λz
∂sz(p)

∂p
= f(p, λ). (15)

Now we introduce a useful definition of a dy-
namic system that will be used to prove Theorem 2,
i.e., the equilibrium point (Rosen, 1965).
Definition 3 We call p an ‘equilibrium point’, if

f(p, λ) = 0. (16)

3.2 Equilibrium points of the dynamic system

In Theorem 2, we exploit Karush-Kuhn-Tucker
(KKT) conditions at NE and the specialty of the
equilibrium point of the above dynamic system. The
desired results enable us to find the NE for the con-
sidered game by updating the power strategies on
the basis of the dynamic system.
Theorem 2 The equilibrium points of the dynamic
system defined by Eqs. (11) and (13) are equivalent
to the NE of G.
Proof According to the sufficiency of KKT con-
ditions (Rosen, 1965) at NE of G, if ∃ (p∗,α∗) that
satisfies conditions (17)–(19), then (p∗,α∗) is the NE
of game G.

s(p∗) ≥ 0, (17)

∃α∗ ∈ R
N(K+1)+M , α∗ ≥ 0 (18)

s.t. (α∗)Ts(p∗) = 0,

ui(p
∗
−i,p

∗
i ) ≥ ui(p

∗
−i,p−i) + (α∗)Ts(p∗

−i,p−i),

i = 1, 2, · · · , N. (19)

Because both ui(p) and sz(p) are differentiable con-
cave functions, inequality (19) is equivalent to

[
∂ui

∂pi

]

(i)

∣
∣
∣
∣
∣
p=p∗

+

N(K+1)+M∑

z=1

α∗
z

∂sz(p
∗)

∂p
= 0. (20)

Although the equilibrium points of the dynamic
model defined by Eqs. (11) and (13) also satisfy con-
ditions (17)–(19), condition (17) is satisfied because
there is a conclusion that starting with any point
p ∈ S, a continuous solution p(t) to the dynamic
model exists, such that p(t) remains in S for all t > 0.
The proof is similar to that in Rosen (1965); how-
ever, we omit it due to space limitations. Second,
Eq. (13) is equivalent to constraint (18). Finally,

Eq. (16) is equivalent to Eq. (20) by definition of the
equilibrium point.

Therefore, it is shown that the equilibrium
points of the dynamic system are equivalent to the
NE of G.

Though the continuous-time dynamic system is
desired for finding the NE of the original game, it is
not suitable for computational calculation. There-
fore, the following discrete-time system, as an ap-
proximation of the continuous-time dynamic system,
is considered to derive NE:

p(n+ 1) = p(n) + ρ(n)f(p(n), λ(n)), (21)

λ(n)=

{
λ = argmin
λz≥0,sz(n)≤0
λz=0,sz(n)>0

||f(p(n), λ)||
∣
∣
∣λ ∈ R

N(K+1)+M
}

,

(22)
where n is the discrete-time variable and ρ(n) is the
step length.

With this discrete-time system, we can acquire
the NE solution by a sequence of iteration transmis-
sion power vectors of all SUs. We are inclined to
conclude that the iterative rule (Eq. (21)) and the
selection of the step length (Eq. (22)) are similar to
their counterparts in the general gradient projection
method (Rosen, 1960), which is effective in solving
constrained maximization. The only practical differ-
ence between the two methods is that in the latter
case we choose the step length to give a maximum of
the objective function along the chosen ray, whereas
for the equilibrium point problem, we choose the step
length to minimize the norm of f .

4 Centralized power control algorithm
based on projected gradient design

4.1 A centralized gradient projection power
control algorithm

In this subsection, we propose a centralized gra-
dient projection (CGP) power control algorithm,
presented in Algorithm 1.

Algorithm 1 Centralized gradient projection
(CGP) power control algorithm

Input: gkji, hk
im, nk

i , pmax
i , and Tm (i, j = 1, 2, · · · , N

and m = 1, 2, · · · ,M).
Output: p∗.
Initialize: set p(1) ∈ S, ε > 0, n = 1, and conti = 1.
1: while conti do
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2: Divide constraints by their activity, where A and
b are divided as (A1;A2) and (b1; b2),
respectively, such that A1p(n) ≤ b1 and
A2p(n) > b2;

3: Compute
[
∂ui
∂pi

]
(i)

∣∣∣∣
p=p(n)

;

4: while 1 do
// Compute projection matrix P :

5: if A1 is empty then
6: Let P = ENK ;
7: else
8: Let P = ENK −A1

T(A1A1
T)−1A1;

9: end if
// Seek the feasible searching direction d(n) for
// the equilibrium point:

10: Let d(n) = P
[
∂ui
∂pi

]
(i)

∣∣∣∣
p=p(n)

;

11: if ||d(n)|| < ε then
12: if A1 is empty then
13: Output p∗ = p(n), conti = 0;
14: break;
15: else
16: w = (A1A1

T)−1A1

[
∂ui
∂pi

]
(i)

∣∣∣∣
p=p(n)

;

17: if w ≤ 0 then
18: Output p∗ = p(n), conti = 0;
19: break;
20: else
21: Choose the maximum positive

component of w, getting rid of its
corresponding row vector in A1;

22: end if
23: end if
24: else
25: break;
26: end if
27: end while
28: Select step length ρ(n) by solving constraint

minimization:

min
ρ(n)

∥∥∥∥∥∥
P

[
∂ui

∂pi

]

(i)

∣∣∣∣∣
p=p(n)+ρ(n)d(n)

∥∥∥∥∥∥
s.t. 0 ≤ ρ(n) ≤ ρmax,

where ρmax is determined by

ρmax =

⎧
⎨
⎩
∞, dd ≥ 0,

min
(

bb(j)
dd(j)

| dd(j) < 0
)
, otherwise,

where bb = b2 −A2p(n) and dd = A2d(n);
29: if ||ρ(n)d(n)|| < ε then
30: Output p∗ = p(n);
31: break;
32: else
33: p(n+ 1) = p(n) + ρ(n)d(n), n = n+ 1;

34: end if
35: end while

Remark 1 CGP needs to be implemented with
complete information, including the channel gain of
channels between the SU transmitters and receivers
and PU receivers, respectively. Those also required
are the background noise power of SU receivers, the
maximum transmit power budget of every SU, the
interference temperature threshold of every PU, and
the power allocation strategy of every SU during ev-
ery stage. CGP requires a deep collaboration among
SUs. It cannot achieve distributed implementation
by individual SUs. Therefore, a central control node
or a similar one is required in our algorithm.
Remark 2 Assume that the channel state is quasi-
static during the procedure. Therefore, the proposed
algorithm focuses on power control in slow time-
varying environments.

4.2 Convergence analysis

Convergence has a critical relation with the ac-
curacy and reliability of an algorithm. Accordingly,
in this subsection, the convergence of our proposed
algorithm is investigated. We obtain the following
result using a method similar to the proof in Rosen
(1965):
Theorem 3 A step length ρ(n) can be chosen so
that starting with any p ∈ S, the dynamic system
defined by Eqs. (21) and (22) converges to the NE of
G.
Proof For a fixed λ(n), by the Lagrange mean
value theorem, there exists a pξN between p(n) and
p(n+ 1), such that

f(p(n+ 1), λ(n)) = f(p(n), λ(n))

+F (pξN )(p(n+ 1)− p(n)),
(23)

where F (p) is the Jacobian of f(p, λ) with respect
to p. Putting Eq. (15) into f(p, λ), we have

F (p)=

(
∂f

∂p1
T ,

∂f

∂p2
T , · · · , ∂f

∂pN
T

)

=P

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

∂2u1

∂p2
1

∂2u1

∂p1∂p2
· · · ∂2u1

∂p1∂pN

∂2u2

∂p2∂p1

∂2u2

∂p2∂p2
· · · ∂2u2

∂p2∂pN
...

...
...

∂2uN

∂pN∂p1

∂2uN

∂pN∂p2
· · · ∂2uN

∂p2
N

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

,

(24)
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where P is the projection matrix introduced in Al-
gorithm 1. Substituting Eq. (21) into Eq. (23), we
have

f(p(n+ 1), λ(n))

= (ENK + ρ(n)F (pξN ))f(p(n), λ(n)),
(25)

where ENK is the identity matrix of N ×K. Then

||f(p(n+ 1), λ(n))||2 = ||f(p(n), λ(n))||2
+ ρ(n)

(
ρ(n)||F (pξN )f(p(n), λ(n))||2

+ 2fT(p(n), λ(n))F (pξN )f(p(n), λ(n))
)
.

(26)

To minimize ||f(p(n + 1), λ(n))||2, ρ(n) is selected
by

ρ(n) = −fT(p(n), λ(n))F (pξN )f(p(n), λ(n))

||F (pξN )f(p(n), λ(n))||2 .

(27)
Thus,

||f(p(n+ 1), λ(n))||2 = ||f(p(n), λ(n))||2

−
(
fT(p(n), λ(n))F (pξN )f(p(n), λ(n))

)2

||F (pξN )f (p(n), λ(n)) ||2 .
(28)

Obviously,

‖f(p(n+ 1), λ(n))‖2 < ‖f(p(n), λ(n))‖2. (29)

Because λ(n + 1) is selected to minimize
||f(p(n+ 1), λ(n+ 1))||2, we have

||f(p(n+ 1), λ(n+ 1))||2
≤||f(p(n+ 1), λ(n))||2 < ||f(p(n), λ(n))||2. (30)

We can assume that ∃ ε > 0, such that

||f(p(n+ 1), λ(n+ 1))||2 < ε||f(p(n), λ(n))||2.
(31)

Then we have

lim
n→∞ ||f(p(n), λ(n))||2 = 0. (32)

Therefore, a step length can be obtained during each
iteration to achieve one equilibrium point of the sys-
tem of differential Eq. (21). With Theorem 2, it is
concluded that Algorithm 1 can converge to NE of
the considered game.

5 Simulation results

5.1 Network parameters

Unless otherwise mentioned, the simulation is
performed under the following network parameter
settings. There are N = 4 SUs and M = 3 PUs in
the network. The involved spectrum is divided into
K = 5 channels and each channel has bandwidth
W = 1 MHz. The SUs and PUs are randomly located
in a 10 m × 10 m square. Assume that path loss over
channel k is in accordance with the classic path-loss
model (Goldsmith, 2005), i.e.,

Lk(dij) = Lk(d0) + 10n lg

(
dij
d0

)
, i �= j, (33)

where the reference distance d0 is set to 1 m, dij is the
distance between SUi-Tx and SUj-Rx, and constant
n is set to 4. The propagation loss in the free space
is given by

Lk(d0)=

(
4πd0
νk

)2

, (34)

where νk is the operating wavelength of channel k.
Without loss of generality, the center frequency of
the system is assumed to be 900 MHz. Thus, the
power gain can be obtained as

gkij =
1

d4ij
·
(
νkd0
4π

)2

, (35)

hk
im =

1

d4im
·
(
νkd0
4π

)2

, (36)

where dim is the distance between SUi-Tx and PUm.
The background noise power is set to 10−8

∣
∣xk

i

∣
∣,

where xk
i is subject to a random distribution in [0, 1].

The maximum possible transmit powers of SUs are
set to 4, 3, 2, and 6 mW, respectively, and the inter-
ference power thresholds of PUs are set to 5× 10−9,
6 × 10−9, and 4 × 10−9 W, respectively. Tolerable
error ε is set to 10−8.

5.2 Convergence and capacity analysis

Now we investigate the convergence and capac-
ity of the proposed Algorithm 1. First, Fig. 2 shows
the convergence of each SU’s power strategy over
each channel, from which we can observe that the
transmit power evolves in a stepwise manner and the
trends during the entire process may be inconsistent.
After convergence, some SUs’ total transmit power
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will achieve the possible maximum total power. The
interference created for PUs by SUs is illustrated
in Fig. 3. As shown in Fig. 3, the interference to
each PU increases all along, and some PUs’ inter-
ference power thresholds are reached. Figs. 2 and 3
demonstrate that the power strategy satisfies all the
constraints imposed after convergence.
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Fig. 2 Convergence of four SUs’ power strategy over
five channels: (a) SU1; (b) SU2; (c) SU3; (d) SU4
(SU: secondary user)
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Fig. 3 Convergence of interference created for PUs
by SUs
PU: primary user; SU: secondary user; CGP: centralized
gradient projection

Fig. 4 shows the convergence of each SU’s rate
and the whole secondary system’s throughput. Sim-
ilarly, the channel throughput evolves in a stepwise
manner and the trends during the entire process may
be inconsistent. Channel capacity versus different

maximum possible transmit power is illustrated in
Fig. 5. We change only the maximum possible trans-
mit power of SU4 while holding the other three SUs’
maximum possible transmit power constant. It can
be seen that the channel capacity of SU4 improves
along with the increase of its maximum transmit
power, while other SUs’ capacities slightly decrease.
Also, we can see that the total secondary capacity
shows a little improvement as the whole maximum
possible transmit power increases.

5.3 Effectiveness analysis

To verify the effectiveness of the proposed CGP
algorithm, we compare it with the distributed mul-
tichannel power allocation (DMPA) algorithm using
the Lagrange dual decomposition in Wu and Tsang
(2008). The DMPA algorithm requires that the link
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Fig. 4 Rate convergence of each SU and the through-
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power gain among SUs satisfy an assumption

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(gkii)
2 ≥

N∑

j=1
j �=i

gkiig
k
ji,

(gkii)
2 ≥

N∑

j=1
j �=i

gkjjg
k
ij ,

where

{
i = 1, 2, · · · , N,

k = 1, 2, · · · ,K,

(37)
i.e., relatively low level interference among SUs (or
high SINR). Thus, gkij (j �= i) is kept unchanged
and gkii is set to satisfy constraint (37), which guar-
antees the uniqueness of the NE of G by Wu and
Tsang (2008). Other parameters are kept the same
to guarantee a fair comparison.

Table 1 shows the performance comparison of
the two algorithms in terms of a power strategy of
four SUs over five channels, the channel through-
put of each SU, and the interference suffered from
three PUs. Within error tolerance, it can be con-
cluded that the two algorithms converge to the same
power strategy, and the channel throughput of each
SU and the interference suffered from PUs are the
same as well. Comparison of the two algorithms in
terms of the interference created for PUs is shown in
Figs. 6 and 7. From Fig. 6, it can be observed that
the interference created for PUs by SUs continues
to increase when some PUs’ interference threshold is
exceeded and converges at the threshold exceeded for
a period of time. However, for the CGP algorithm
(Fig. 7), interference suffered from PUs increases all
along during the procedure and never exceeds any
PU’s interference threshold. Furthermore, the in-
terference does not exhibit a process of first rising
and then declining, reflecting the good effectiveness
of the CGP algorithm.

It can be concluded that although the two algo-
rithms achieve a similar power strategy, secondary
throughput, and interference level, CGP has a much
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Fig. 6 DMPA convergence of interference created for
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DMPA: distributed multichannel power allocation; PU: pri-
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Table 1 Comparison of distributed multichannel power allocation (DMPA) and centralized gradient projection
(CGP)

Algorithm
Power (W) Capacity (Mb/s) Interference (nW)

SU1 SU2 SU3 SU4 SU5 SU1 SU2 SU3 SU4 SU1 SU2 SU3

DPMA 0 0.1144 0.1267 0.5329 0 2.4260 2.9980 6.7620 12.7530 3.9470 6.0000 0.2960
0.4736 0.8099 0.5063 0.4188 0.7892
0.4332 0.0241 0.3348 0.5029 0.7047
1.2251 0.9404 1.4053 1.3618 1.0658

CGP 0 0.1451 0.0950 0.5337 0 2.4230 2.9980 6.7630 12.8280 3.9480 6.0000 0.2960
0.4740 0.8109 0.5062 0.4192 0.7896
0.4333 0.0281 0.3307 0.5032 0.7047
1.2254 0.9425 1.4037 1.3623 1.0661
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higher convergence speed and is more stable, com-
pared with the DMPA algorithm. Moreover, DMPA
demands a relatively high SINR of SUs, without
which it is not able to converge. Thus, we can con-
clude from constraint (37) that it is not always met in
practice. Conversely, the CGP algorithm can be im-
plemented regardless of the power gain among SUs,
revealing good effectiveness and a broad channel con-
dition applicability.

5.4 Robustness analysis

To test and verify the robustness of our pro-
posed algorithm, we further study the impact of net-
work scale characterized by the number of SUs. To
control variables as much as possible, thus ensuring
a fair comparison, the proposed network scenario is
determined as follows: consider the same network pa-
rameters as depicted in Section 5.1. The number, lo-
cation, and interference power constraints of PUs are
unchanged. As for the CR network, using the four-
pair CR network considered above as a model, keep-
ing the topology location, background noise power,
and maximum transmit power constraints of SUs un-
changed, and by scaling down the model area by a
ratio of n, we introduce 4n SU transceivers to the
network. The network scenario is illustrated in Fig.
8 for the case of n = 3. Each simulation round
randomly generates a CR network topology model,
and the average results of 1000 simulation rounds are
shown in Figs. 9 and 10.

Fig. 9 shows the required number of iterations
of CGP vs. the number of SUs. It is shown that,
with the growth in the number of SUs, the required
number of iterations increases first, reaching a peak
with 24 SUs, and then decreases. Fig. 10 shows the
running time of CGP vs. the number of SUs; note
that the curve shows a trend different from that in
Fig. 9. When the number of SUs is less than 28, the
running time increases rapidly; when the number of
SUs is larger than 28, the running time fluctuates
around 1 s. Compared with Fig. 9, it can be extrapo-
lated that, when the number of SUs is larger than 28,
with the increase in the number of SUs, the average
time consumed during each iteration increases. How-
ever, Figs. 9 and 10 indicate that implementing the
proposed algorithm, the delay involved in the cen-
tral control node which sends the power allocation
policy is tolerable when the network scale expands,
reflecting the good robustness of the CGP algorithm.
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6 Conclusions and future work

In this paper, we have studied the important
power control problem for SUs in a CR network with
multiple PUs and multiple channels. We have formu-
lated the power control problem as a non-cooperative
game with coupled constraints. Due to the complex-
ity of finding the NE of the original game, we have
proposed a projected gradient based dynamic model
and converted the problem into finding the equilib-
rium points of the proposed model. Then we have
derived a centralized algorithm to solve the problem.
Through simulation results, we showed that our pro-
posed algorithm is robust, and that its convergence
and effectiveness are competitive.

The power control scheme demonstrated in this
paper is centralized, which may not be suitable
for fast time-varying channels. Therefore, our fu-
ture work will focus on implementing the proposed
scheme in a distributed manner. Moreover, dur-
ing the process of solving the problem, we observed
that there exists more than one NE in the original
game. Therefore, the optimality analysis of the pro-
posed solution is also an interesting and challenging
problem.
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