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Abstract: An important production planning problem is how to best schedule jobs (or lots) when each job consists of a large 
number of identical parts. This problem is often approached by breaking each job/lot into sublots (termed lot streaming). When the 
total number of transfer sublots in lot streaming is large, the computational effort to calculate job completion time can be signif-
icant. However, researchers have largely neglected this computation time issue. To provide a practical method for production 
scheduling for this situation, we propose a method to address the n-job, m-machine, and lot streaming flow-shop scheduling 
problem. We consider the variable sublot sizes, setup time, and the possibility that transfer sublot sizes may be bounded because of 
capacity constrained transportation activities. The proposed method has three stages: initial lot splitting, job sequencing optimi-
zation with efficient calculation of the makespan/total flow time criterion, and transfer adjustment. Computational experiments are 
conducted to confirm the effectiveness of the three-stage method. The experiments reveal that relative to results reported on lot 
streaming problems for five standard datasets, the proposed method saves substantial computation time and provides better solu-
tions, especially for large-size problems. 
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1  Introduction 
 

A flow shop is a type of manufacturing shop 
where each job is processed by the same group of 
machines, and the machine order does not change. 
The actions performed by a given machine may vary 
from job to job. The flow-shop scheduling problem 
(FSP) seeks to identify the best order in a manufac-
turing shop to process a set of jobs, where it is often 
desired to minimize the makespan or total flow time. 

Some shops deal with large orders from their cus-
tomers (e.g., 2000 power strips of type A and 1000 of 
type B need to be produced). In this situation, when a 
job (or lot) consists of a batch of identical parts, it 
may be desirable to decompose a job into a number of 
transfer sublots. A sublot is a group of parts in a lot 
which are processed on one machine and then trans-
ferred to the next machine before the rest of the lot is 
completed. This was termed “lot streaming” and was 
first studied by Reiter (1966). With lot streaming, 
production may be accelerated and the work-in- 
process inventory may be decreased. A comprehen-
sive review of lot streaming in flow shops (as well as 
other typical machine configurations such as job- 
shops and open-shops) can be found in Cheng et al. 
(2013). 
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Motivated by practical applications, the lot 
streaming problem has received extensive attention, 
including the one-job (single-type job) case (Liu SC, 
2003; Biskup and Feldmann, 2006; Liu JY, 2008; 
Sarin et al., 2008; Defersha and Chen, 2011; 
Mukherjee et al., 2017) and n-job (multi-type job) 
case (Kumar et al., 2000; Marimuthu et al., 2008, 
2009; Tseng and Liao, 2008; Kim and Jeong, 2009; 
Martin, 2009; Defersha and Chen, 2010; Pan et al., 
2011; Chakaravarthy et al., 2013, 2014; Ventura and 
Yoon, 2013; Davendra et al., 2014; Nejati et al., 2014, 
2016; Han et al., 2016). Different meta-heuristic 
methods have been proposed to optimize the job 
processing sequence, such as genetic algorithm (GA) 
(Kumar et al., 2000; Marimuthu et al., 2008; Kim and 
Jeong, 2009; Martin, 2009; Defersha and Chen, 2010; 
Ventura and Yoon, 2013; Nejati et al., 2014, 2016), 
ant colony optimization (ACO) (Marimuthu et al., 
2009), artificial bee colony (ABC) (Chakaravarthy  
et al., 2014), particle swarm optimization (PSO) 
(Tseng and Liao, 2008; Chakaravarthy et al., 2013), 
and differential evolution (DE) (Chakaravarthy et al., 
2013). Most research has focused on the subset of 
problems with equal size sublots (ESSs). For example, 
Sarin et al. (2008) studied a single-lot multi-machine 
lot streaming FSP with ESSs to minimize a unified 
cost-based criterion. Mukherjee et al. (2017) consid-
ered the lot streaming problem in a single-lot 
two-machine flow shop with the learning effect of 
setup and processing time. Davendra et al. (2014) 
dealt with the n-job m-machine lot streaming FSP 
with ESSs and sequence-dependent setups, and 
sought to minimize the makespan. Marimuthu et al. 
(2008, 2009) and Chakaravarthy et al. (2013, 2014) 
studied the n-job m-machine problem with a 
makespan/total flow time criterion, where the at-
tached setups and lot streaming with ESSs were in-
volved. Tseng and Liao (2008), Pan et al. (2011), and 
Ventura and Yoon (2013) considered the total 
weighted earliness and tardiness penalties criteria in 
an n-job, m-machine lot streaming FSP with ESSs. 
Han et al. (2016) considered the uncertainty in ma-
chine processing time, and formulated a mul-
ti-objective lot streaming FSP model with interval 
processing time without an intermediate buffer. 

ESSs strategy is common in practice since it is 
easy to implement and manage in terms of shop floor 
control. However, due to a lack of flexibility, the 

general ESSs strategy can employ smaller size sublots 
to achieve faster completion; almost always, as the 
sublot size decreases, the makespan decreases as well. 
This may lead to a large number of transfers to obtain 
the fastest completion, and may not be feasible be-
cause of transfer/handling costs between machines. A 
more flexible alternative to ESSs is the consistent size 
sublots (CSSs) strategy, where the size of a sublot 
remains the same from machine to machine, but may 
vary within a job. Fewer researchers have considered 
the n-job m-machine lot streaming FSP with CSSs. 
Kumar et al. (2000) addressed a no-wait lot streaming 
FSP with CSSs. Kim and Jeong (2009) solved the lot 
streaming problem in a no-wait flexible flow shop 
with detached setups and predetermined CSSs. Mar-
tin (2009) considered the interleaving of sublots from 
different jobs in the processing sequence in a lot 
streaming FSP. Nejati et al. (2014, 2016) dealt with a 
CSSs lot streaming problem with a work shift con-
straint in a hybrid flow shop and a two-stage assembly 
flow shop. 

An even more flexible approach to lot streaming 
(relative to ESSs and CSSs) is variable size sublot 
(VSS), which allows the number of sublots and the 
sublot sizes to vary among machines (and jobs). In 
many situations, material handling systems may differ 
throughout the production system, which makes it 
necessary to consider VSSs. Fig. 1 illustrates lot 
streaming for a two-job three-machine flow shop 
under different sublot sizing options (job size, setup 
time, and processing time are specified in Table 1). A 
setup is required when there is a job change on a 
machine tool (time is required to change tooling, 
machine settings, etc.). In this example, the setup for a 
job on a machine can begin only when the first sublot 
of that job arrives at the machine. This may be termed 
an “attached setup.” If a machine is allowed to begin 
setting up before the actual arrival of the first sublot 
of the job, it may be referred to as a “detached setup.” 
In Fig. 1c, a schedule with unit size sublots (which is a 
special case of ESSs) gives the minimum makespan 
for all possible sublot sizing options. With VSSs, 
however, the same minimum makespan with fewer 
transfers between machines can be obtained (Fig. 1d). 

Despite its relevance to production practice, few 
researches have examined the VSSs lot streaming for 
the n-job m-machine FSP. Liu (2003), Biskup and 
Feldmann (2006), and Defersha and Chen (2011)  

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTseng,%2520Chao-Tang%26authorID%3D24280678100%26md5%3Da7a155846ab7d8cc90b29a26caff4de5&_acct=C000050175&_version=1&_userid=1003047&md5=47cdf7132c9ea7868946cea2f4f82dfe
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studied the m-machine lot streaming problem with 
VSSs, but they focused on the one-job case. Defersha 
and Chen (2010) developed a hybrid GA to solve the 
n-job m-machine lot streaming FSP with VSSs, where 
interleaving of sublots from different jobs in the 
processing sequence was allowed. Based on a prede-
termined total number of sublots (Defersha and Chen, 
2010), the hybrid GA determines the number of sub-
lots for each job, the size of each sublot on each ma-
chine, and the processing sequence of the sublots; 
thus, the makespan could be minimized. Despite these 
efforts, little attention has been devoted to the com-
putational issues associated with production sched-
uling in the event of lot streaming. With the existing 
methods for a lot streaming FSP, the computation 
time heavily depends on the size of a job. That is, 
when a job consists of a large number of identical  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
parts, which normally results in a large number of 
transfer sublots, the computational effort is likely to 
be significant. 

In this study, we consider the n-job m-machine 
lot streaming FSP with VSSs, where sublots from 
different jobs are not allowed to interleave in the 
processing sequence (sometimes switching between 
different jobs requires a costly setup). Transfer sublot 
sizes may be bounded because of capacity con-
strained transportation (transfer or handling) activities 
between machines. The proposed method is separated 
into three stages: initial lot splitting, job sequencing 
optimization, and transfer adjustment. During the first 
stage, each job is split based on the low bound on 
sublot size, to obtain the fastest (or close to the fastest) 
completion for a processing sequence. In the second 
stage, a DE-based algorithm is applied to optimize the 
processing sequence, and the makespan/ 
total flow time criterion is efficiently calculated to 
save computation time. Finally, based on the best 
sequence obtained through the second stage, some 
adjustments to sublots are undertaken to reduce the 
number of transfers between machines. Overall, the 
proposed three-stage method (TSM) seeks to mini-
mize the makespan/total flow time, and reduce the 

 
 

Fig. 1 An example of lot streaming with transfer sublots: (a) a schedule without lot splitting; (b) lot streaming with con-
sistent size sublots; (c) lot streaming with unit size transfer sublots; (d) lot streaming with variable size sublots 
The number in each bar refers to the time duration of the sublots 

Table 1  Lot streaming problem in a two-job and three- 
machine flow shop 

Job Size 
Setup time on each 

machine (h) 
Unit processing time 
on each machine (h) 

M1 M2 M3 M1 M2 M3 
J1 2 2 2 1 4 5 3 
J2 3 2 5 3 4 2 1 
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number of transfers without affecting the optimized 
makespan/total flow time. Computational experi-
ments are conducted to demonstrate the TSM and the 
experiments results are compared with those of other 
studies. 

 
 

2  Problem description and formulation 
 

The n-job m-machine lot streaming FSP with 
VSSs will be described in this section. There are n 
jobs J={J1, J2, ..., Jn} to be processed on m machines 
M={M1, M2, ..., Mm}, where each job must follow the 
same order on the machines. Each job Ji consists of a 
batch of identical parts, where the job size JSi is the 
number of parts in the batch. Before a new job is 
initiated on a machine, a setup is required. To com-
plete the set of jobs more quickly, once a group of 
parts has been processed on a machine, it may be 
transferred to the next machine as a sublot. Then 
processing on this sublot can begin when the next 
machine is available. Sublot size may be bounded and 
vary from machine to machine. The aim of the lot 
streaming FSP is to minimize the makespan/total flow 
time. The decision variables are the job processing 
sequence and the number and size of transfer sublots 
between each machine. 

Let π={π(1), π(2), ..., π(n)} represent a pro-
cessing sequence solution (to be optimized), where 
the kth job in the sequence may be referred to as  
π(k)∈J (k=1, 2, ..., n). A mathematical model for the 
n-job m-machine lot streaming FSP with VSSs is 
developed with the notations in Table 2. Assume that 
i=π(k) (k=1, 2, ..., n), l=1, 2, ..., m, and s=1, 2, ..., ni, l. 
The details are as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 

1. Objective 
 

max , , ( ), min Cpt ,  ( ),  ,  ,i l s n mC i n l m s npp= = = = (1) 

, , , 
1

min TFT Cpt ,  ,  .
n

i l s i m
i

l m s n
=

= = =∑                (2) 
 
Eq. (1) specifies the objective to minimize the 

makespan, defined as the completion time of the last 
sublot on the final machine. Another criterion con-
sidered in this study is the total flow time, as shown in 
Eq. (2). 

2. Lot splitting constraint and sublot size  
constraint: 

 
, 

, , 
1
SZ JS ,  ,  

i ln

i l s i
s

i l
=

= ∀∑ ,                     (3) 

, , min max , , SZ [SZ ,  SZ ],  SZ , ,  ,  .i l s i l s i l s∈ ∈ ∀   (4) 
 

Constraint (3) ensures that the sum of the sizes of 
all the transfer sublots for a job transferring to the 
next machine remains the same as the original job size. 
Constraint (4) requires sublot sizes be integers and 
bounded by a lower bound and an upper bound. 

3. Sublot availability constraint and machine 
availability constraint 

 
, 1Sst 0,  (1).i i π= =                        (5) 

 
Assume that all jobs and machines are available 

at time zero. Thus, the first machine in the flow shop 
begins setting up for the first job in the processing 
sequence at time zero (Eq. (5)). 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Notations 
Index and parameter Decision variable 

i: job index π: job processing sequence 
l: machine index Cmax: makespan 
s: sublot index TFT: total flow time 
n: total number of jobs ni,l: number of transfer sublots for job Ji when transferred to machine Ml 
m: total number of machines SZi,l,s: size of the sth sublot of job Ji when transferred to machine Ml 
JSi: size of job Ji Ssti,l: start time of setup for job Ji on machine Ml 
pti,l: unit processing time of job Ji on machine Ml Csti,l: completion time of setup for job Ji on machine Ml 
sti,l: setup time of job Ji on machine Ml Spti,l,s: start time for processing the sth sublot of job Ji on machine Ml 
SZmin: a lower bound on sublot size Cpti,l,s: completion time for processing the sth sublot of job Ji on machine Ml 
SZmax: an upper bound on sublot size  
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, , 1 , 1, , , 1, 1, 
1

Sst Cpt pt SZ SZ ,
s

i l i l i l s i li l s
s

∗

∗ − −−
=

 
= − − 

 
∑

  
(6) 

 
where ∀l>1, i=π(1), and for ∀i, ∀l>1, and s=1, s* is 
given by Eq. (7), which is shown at the bottom of this 
page. 

Eqs. (6) and (7) address the sublot availability 
constraint for the first job in the sequence. That is, a 
machine l >1 may begin setting up for job π(1) when 
the first sublot arrives, which is equivalent to the 
completion time of the last part in that sublot on the 
preceding machine (l−1). Eq. (6) provides the com-
pletion time, and Eq. (7) provides the index associated 
with the sublot on machine (l−1) that contains the last 
part. 

 

, 1 , 1, 

, 1

Sst Cpt ,
( ),  ( 1),  , 1.

i i s

ii k i k s n kp p
′

′

=

′= = − = ∀ >
       (8) 

 
Eq. (8) is the machine availability constraint 

associated with the job processing sequence for the 
first machine, meaning that machine M1 may begin 
setting up for a job after the machine finishes pro-
cessing all the sublots from the previous job. 
 

,, , , 

, 1 , 1, , , 1, 1,

, 1, , , 1
1

 
1

Sst max Cpt ,
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           Cpt pt SZ SZ )
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s
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 


∑

∑

(9) 
where ∀k>1, ∀l>1, i=π(k), ( 1)i kπ′ = − , and s* is 
given by Eq. (7) for s=1. 

Eqs. (7) and (9) consider both the sublot and 
machine availability constraints for the setup for job 
π(k) on machine l with l>1 and k>1. 
 

, , , Cst Sst st ,  ,  .i l i l i l i l= + ∀              (10) 
 
 
 
 
 
 
 
 
 

Each job requires a single setup on each machine 
before processing, and setups cannot be interrupted 
once started, as shown in Eq. (10). 

 

, , 1 , Spt Cst ,  ,  ,i l i l i l= ∀                                  (11) 
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∑

∑

∑  

(13)

 

 
where ∀i, ∀l>1, and ∀s>1, and s* is given by Eq. (7) 
for s>1.  

Eq. (11) shows that a machine can start pro-
cessing the first sublot of a job right after the machine 
finishes the setup for that job. Eq. (12) means that 
machine M1 can start processing a sublot s (s >1) of a 
job after the machine has finished processing the 
preceding sublot (s−1) of that job. Eqs. (7) and (13) 
consider both the sublot and machine availability 
constraints for processing a sublot s (s>1) of job i on a 
machine l>1. 

 
, , , , , , , Cpt Spt pt SZ ,  ,  ,  .i l s i l s i l i l s i l s= + ∀        (14) 

 
All the parts in one sublot are consecutively 

processed on a machine. Therefore, the processing 
time of a sublot is defined as the sum of the pro-
cessing time of all the parts in that sublot. Processing 
procedures cannot be interrupted once started, as 
shown in Eq. (14). 

Note that in the above model each sublot is 
started as soon as possible in a sequence π, and the 
setup for a job on a machine can begin only when the 
first sublot of that job arrives at the machine (attached 
setup). If a detached setup is involved in the lot 
streaming FSP, then Eqs. (6) and (9) need to be  
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changed to Eqs. (15) and (16), allowing a machine to 
set up for a job before the arrival of the first sublot of 
that job. 
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where i=π(1), ∀l>1, and s* is given by Eq. (7) for s=1. 
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∑
 

(16) 
 

where ∀k>1, ∀l>1, i=π(k), and i′=π(k−1), and s* is 
given by Eq. (7) for s=1. 
 
 
3  Preliminary analysis of lot streaming 
 

Determining the makespan/total flow time in lot 
streaming is different from the case without lot 
streaming. Take the four cases in Fig. 1 as an example. 
Compared with Fig. 1a, more computations are 
needed to obtain the makespan/total flow time in 
Figs. 1b–1d, since the start and completion times for 
each sublot on each machine need to be calculated. 
The increased computational effort can be significant 
when the total number of sublots is large. 

To reduce the computation time taken to calcu-
late the makespan/total flow time in a lot streaming 
FSP, the analyses for ESSs lot streaming are carried 
out. Several important properties are identified, based 
on which efficient steps will later be developed to 
calculate the makespan/total flow time criterion in 
Section 4.2. 

Consider the lot streaming of one job with four 
same sized transfer sublots in a five-machine flow 
shop (Fig. 2). The processing times for each sublot are 
3, 2, 4, 1, and 2 h on machines M1, M2, M3, M4, and M5, 
respectively. Assume that the setup time can be ig-
nored, and all sublots and machines are available at 

time zero. There are three important properties asso-
ciated with the one-job lot streaming problem: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Property 1     There is either no or equal idling be-
tween sublots within a job on the lth machine Ml. 
Property 2     The time that machine Ml starts pro-
cessing the first sublot of job Ji, denoted by Spti, l, 1 (in 
the one-job case, i=1) can either be zero when l=1, or 
equal to the completion time of the first sublot on 
machine Ml−1 when l>1. 
Property 3      The completion time for the last sublot 
of job Ji on machine Ml, denoted by 

, , , Cpt
i li l n , is 

either the start time of the first sublot Spti, l, 1 plus the 
sum of the processing times for all the sublots, if there 
is no idling between the sublots, or the completion 
time of the last sublot on the preceding machine 

, 1, , Cpt
i li l n−  plus the processing time for one sublot on 

machine Ml if there is idling. That is, 
 

, 

, ,

,  ,  ,  ,  1 , 

,  1, ,  ,  ,  

Cpt max{Spt pt JS ,

                         Cpt pt SZ }.
i l

i l i l

i l n i l i l i

i l n i l i l n−

= +

+      
(17) 

 
From Properties 1–3, the start time for the first 

sublot of a job and the completion time for the last 
sublot of that job on each machine can be obtained. 
This means that there is no need to calculate the start 
and completion times of each sublot on every ma-
chine to obtain the makespan/total flow time. 

If we consider the lot streaming of job Ji in a 
processing sequence in an n-job case, each machine 
becomes available for Ji after it finishes processing all 
the sublots from the preceding job in the sequence 

T (h)

Ldling between  
  sublots within a job

Sublot processing

    

    

Four equal sublots of job Ji

240  

M3  

M2  

M1  3  

4  

3  3  3  

4  4  4  

M4  

    M5  

2 2 22

1 1 1 1

2 22 2

 
 

Fig. 2  Lot streaming for a one-job case with no setup 
The number in each bar refers to the time duration of the 
sublot 
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(Fig. 3). The completion time of the jobs (the time at 
which a machine becomes available for processing 
job Ji) is denoted by ATl. There might be inter-sublot 
idling during the periods associated with the light and 
dark grey bars. 

The machine availability constraint determines 
when the processing of the four same sublots of job Ji 
may begin (Fig. 3). The amount of idling, which re-
mains the same or is reduced relative to the situation 
in Fig. 2, depends on the constraint. For the case 
shown, the idle period is reduced on M2, M4, and M5. 
Considering the difference between Figs. 2 and 3, the 
initial idling period between sublots on a machine is 
first affected, and the last idling period is affected 
only when there is no idling between all the preceding 
sublots for a job. The same effect can be caused by 
machine setup before the first sublot of a job. As long 
as there is an idling period before processing the last 
sublot of a job, the last sublot of the job will begin at 
the time when the sublot completes processing on the 
preceding machine. Therefore, Property 3 still applies 
to the n-job case. This means for an n-job lot 
streaming FSP with setup time and ESSs, there is an 
efficient way to obtain the makespan/total flow time 
by focusing on only the start and completion times for 
the first and the last sublots for each job on every 
machine. 

 
 

4  Three-stage method (TSM) 
 

For a lot streaming FSP with an unbounded 
sublot size, when each part (unit) in each job is  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

regarded as a separate transfer sublot between any 
successive machines, the minimum makespan/total 
flow time can be achieved for a processing sequence. 
For a lot streaming FSP with a bounded sublot size, if 
the size of a job is divisible by the lower bound SZmin, 
splitting a job into a set of identical sublots, whose 
size is equal to SZmin, would lead to the fastest com-
pletion. Based on this idea, we could first undertake 
lot splitting based on the lower bound on sublot size, 
and then find the optimal processing sequence of jobs 
based on the initial splitting to minimize the 
makespan/total flow time. In addition, considering 
that the size of sublots can be variable, based on the 
obtained optimal sequence, the possibility of merging 
sublots to be transferred together under the upper 
bound constraint may be explored, with the goal of 
reducing the number of transfers between machines 
without affecting the optimized makespan/total flow 
time. In summary, the problem-solving process can be 
broken into three stages: initial lot splitting, job se-
quencing optimization with efficient calculation of 
the makespan/total flow time criterion, and transfer 
adjustment. The framework of the TSM is illustrated 
in Fig. 4. 

4.1  Initial lot splitting 

As discussed above, when the size of job Ji is 
divisible by the lower bound SZmin, the job can be 
split into ESSs to obtain the fastest completion. In this 
case, the initial splitting is ni,l=JSi/SZmin and SZi, l, s= 
SZmin, where l=1, 2, ..., m and s=1, 2, ..., ni, l. 

If the size of Ji is not divisible by SZmin, then the 
job may be split into the following CSSs: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

Time duration for job Ji (≥24)

T (h)0 

3 

4 

3 3 3 

4 4 4 

2 2 2 2  
AT1  

AT2

AT3

AT4

2  2 2
AT5  

M3  

M2  

M1  

M4  

M5  2 2 2
 

1 11 1

 Sublot processing for job Ji  Ldling between sublots within job Ji

 
 

Fig. 3  Lot streaming of job Ji in a multi-job case 
The number in each bar refers to the time duration of the sublots. The light grey bars are associated with the processing of the 
sublots from preceding jobs. The dark grey bars are associated with the processing of jobs after Ji 
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i l
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n
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(21) 

 
where b means the largest integer less than or equal 
to b and b is the smallest integer greater than or 
equal to b. 

Note that both Eqs. (22) and (23) have to be 
satisfied that all the sublot sizes are within [SZmin, 
SZmax]. With the initial splitting, when all the job sizes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are divisible by SZmin (e.g., when SZmin=1), a mini-
mum makespan/total flow time can be achieved for a 
processing sequence: 

 

minJS SZ ,  ,i i≥ ∀                          (22) 

min
min

min max

min

JSJS SZ
SZ

SZ SZ ,  .
JS

SZ

i
i

i

i

  
−  
   + ≤ ∀  

  
   

 (23) 

 

4.2  Job sequencing optimization with efficient 
calculation 

Based on the initial lot splitting, the second stage 
aims to find the optimal processing sequence of jobs. 
A DE-based algorithm is used to minimize the 
makespan/total flow time. DE is a stochastic and 
efficient population-based heuristic proposed by 
Storn and Price (1997), which has been successfully  
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Fig. 4  Framework of the three-stage method 
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used to solve production scheduling problems 
(Onwubolu and Davendra, 2006; Wang et al., 2010; 
Chakaravarthy et al., 2013; Tasgetiren et al., 2013). 
The flowchart of the proposed DE-based optimization 
is illustrated in Fig. 4. Details will be provided in this 
subsection. 

4.2.1  Individual representation and population  
initialization 

In DE optimization, the evolution is an iterative 
process, starting from an initial population of ran-
domly generated candidate solutions (individuals). 
Through the iterative evolution, the initial population 
is evolved towards better solutions from one genera-
tion to the next. The algorithm terminates when the 
maximum number of generations tmax can be  
completed. 

Let 1 2 PS{ ,  ,  ...,  }t t t tX x x x=  be the populations of 
the tth generation, where PS is the population size and 

, 1 , 2 , { ,  ,  ...,  }t t t t
h h h h nx x x x=  is the hth individual in the 

populations (t=0, 1, …, tmax). Here, , [0,1]t
h ix ∈  is the 

processing priority index of job Ji. During population 
initialization, we randomly generate PS individuals to 
construct an initial population X0, where each indi-
vidual 0

hx (h=1, 2, ..., PS) consists of n uniformly 
distributed random real numbers within [0, 1]. 

A processing sequence π can be obtained for an 
individual t

hx  by ranking the processing priority in-

dex , ,t
h ix  i=0, 1, ..., n; for example, if ={0.31,t

hx  

0.40, 0.75, 0.28}, then p={3, 2, 1, 4}. 

4.2.2  Efficient calculation of the makespan/total flow 
time criterion 

According to the preliminary analysis in  
Section 3, there is an efficient way to obtain the  

 
 
 
 
 
 
 
 
 
 
 
 

makespan/total flow time, where we need to calculate 
only the start and completion times for the first and 
the last sublot for each job on every machine. Note 
that the properties apply only to lot streaming with 
ESSs. However, after the initial lot splitting in  
Section 4.1, each job is split into ESSs or CSSs, de-
pending on whether a job’s size JSi is divisible by 
SZmin or not. 

1. If JSi is divisible by SZmin, job Ji is split into 
ESSs. Then to calculate the makespan/total flow time, 
we need to compute only the start time of the first 
sublot and the completion time of the last sublot for 
job Ji on each machine according to Property 3. 

2. If JSi is not divisible by SZmin, job Ji is split 
into CSSs. According to Eqs. (18)–(21), there are 
only two cases for the sublot sizes; thus, we can take 
the lot splitting process as two parts of ESSs: the first 

is′  equal sublots with the size specified in Eq. (19), 
and the rest , ( )i l in s′−  equal sublots with the size 
specified in Eq. (20). Thereby, we can apply Property 
3 to the two parts, which means that we need to cal-
culate the completion time for the th( )is′  sublot and 

the start time for the th( 1)is′ +  sublot. 
Based on the above-mentioned analysis, the 

following efficient calculation steps are developed to 
calculate the makespan/total flow time criterion for an 
n-job m-machine lot streaming FSP with setup time. 

Step 1: Obtain the processing sequence p={p(1), 
p(2), ..., p(n)} from an individual that is being eval-
uated. Set the time when a machine becomes availa-
ble as ATl=0 for each l=1, 2, ..., m. Set k=1 and 
TFT=0. 

Step 2: Set i=p(k) and l=1. 
Step 3: If l=1, then Ssti, l=ATl, meaning that M1 

can set up for job Ji as soon as the machine is availa-
ble; otherwise, considering the sublot availability 

, 
, , 

,  ,  1 , 
, , 

, ,1 , , 1, , , , 

Spt pt JS , 1,
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                                 (24) 
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s l
s l′

′ ′−
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constraint of Ssti, l=max{ATl, Cpti, l−1, l−sti, l} for the 
attached setup, or Ssti, l=max{ATl, Cpti, l−1, l−sti, l} for 
the detached setup. 

Step 4: The start time for processing the first 
sublot of Ji on Ml is , , 1 , , ,Spt Cst Sst st .i l i l i l i l= = +  

Step 5: If the size of Ji is divisible by SZmin, the 
completion time for the last sublot of Ji on Ml can be 
determined according to Property 3, as shown in 
Eq. (24); otherwise, according to the above- 
mentioned discussion, we need to calculate the com-
pletion time for the (s′)th sublot and the start time for 
the ( is′ +1)th sublot of Ji on Ml using Eqs. (25) and (26), 
where s′  is specified in Eq. (21). Then the comple-
tion time for the last sublot of Ji on Ml can be calcu-
lated by Eq. (27). 

Step 6: Update 
, , , AT =Cpt .

i ll i l n  Execute l=l+1. If 

l≤m, return to step 3. 
Step 7: Execute TFT=TFT+ATm and k=k+1. If 

k≤n, return to step 2; otherwise, obtain the makespan 
Cmax=ATm. 

The time complexity for the above calculation 
steps is O(mn). This means that no matter how large 
the total number of sublots is, the calculation time 
nearly remains the same for the given n and m. It is 
more efficient than the traditional way to calculate the 
makespan/total flow time criterion. 

4.2.3  Global search 

During each round of iterative evolution, three 
operators, mutation, crossover, and evaluation and 
selection are conducted for each individual t

hx  the 
population Xt (h=1, 2, ..., PS) to produce the popula-
tion of the next generation Xt+1. 

1. Mutation 
For individual ,t

hx  a mutated individual 
1 1 1 1

, 1 , 2 , { , ,  ..., }t t t t
h h h h nv v v v+ + + +=  is generated by 

 

1 2 3

1 ( ) ,t t t t
h d d dv x F x x v+ = + −                    (28) 

 
where d1, d2, and d3 are three different integers ran-
domly generated within [1, PS], and are different 
from h. F∈[0, 2] is a real constant scaling factor. 

If 1
, 

t
h iv +  (i=1, 2, ..., n) obtained through mutation 

exceeds [0, 1], then perform 

1 1 1
, , , 1

, 1 1 1
, , , 

,            0,

2 1 ,   1.

t t t
h i h i h it

h i t t t
h i h i h i

v v v
v

v v v

+ + +

+

+ + +

  − + <  = 
 − + − >  

           (29) 

 
2. Crossover generation 
For each h, randomly generate an integer within 

[1, n] as j. Perform a crossover operation between t
hx  

and +1t
hx  by  

 
1

, 1
, 

, 

,   CR or ,
,  otherwise.

t
h i it

h i t
h i

v r i j
u

x

+
+  ≤ == 


            (30) 

 

A trial individual +1 +1 +1 +1
, 1 , 2 , ={ , , ...,  }t t t t

h h h h nu u u u  is 

obtained. CR∈[0, 1] is the crossover probability and 
ri (i=1, 2, ..., n) is a uniformly distributed random 
value within [0, 1]. 

3. Evaluation and selection 
Use the efficient calculation steps in  

Section 4.2.2 to evaluate and choose one individual 
among ,t

hx  +1,t
hx  and 1t

hu +  as +1t
hx  in the next genera-

tion using a greedy selection criterion. That is, 
whichever the individual has the smallest 
makespan/total flow time is selected. 

4.2.4  Local search 

To obtain a better performance, the best indi-
vidual in Xt+1, denoted as +1 +1 +1

best best, 1 best, 2={ , ,t t tx x x  
+1

best, ...,  },t
nx  is selected to perform the interchange- 

based local search procedure according to the fol-
lowing steps: 

Step 1: Randomly generate an integer within [1, 
n] and denote it as i1. Set k=1 and a temporary indi-
vidual 1

temp best temp temp,1 temp, 2 temp, ( { , , ..., }).t
nx x x x x x+′ ′ ′ ′ ′= =  

Step 2: Randomly generate an integer within [1, 
n] which is different from i1. Denote the integer as i2. 
Interchange the values between 

1temp, ix′  and 
2temp, ix′  on 

the temporary individual temp ,x′  which means jobs i1 

and i2 are interchanged in the processing sequence. 
Step 3: Evaluate the newly obtained tempx′  using 

the calculation steps in Section 4.2.2. If tempx′  has a 

smaller makespan/total flow time than 1
best ,
tx +  set 

1
best temp= .tx x+ ′  
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Step 4: Set k=k+1. If k≤n, return to step 2;  
otherwise, the local search for the best individual is 
finished. 

4.3  Transfer adjustment 

In this subsection, based on the best sequence 
obtained in Section 4.2, we make some adjustments to 
the initial transfer sublots to reduce the number of 
transfers between machines without affecting the 
obtained optimized makespan/total flow time. That is, 
some sublots can be merged and transferred together 
under the upper bound size constraint. The initial 
transfer sublots become VSSs after the adjustment. 

First, use the traditional calculation method to 
obtain the start and completion times for each sublot 
on each machine under the best sequence p={p(1), 
p(2), ..., p(n)}. To maintain the makespan/total flow 
time during transfer adjustment, we start by adjusting 
the last job p(n) in the sequence, then job p(n−1), and 
so forth. After transfer adjustments for each job (from 
the last to the first) in the best sequence, the final 
transfer sublots and the new start and completion 
times can be obtained. 

An example of lot streaming may be used to il-
lustrate the transfer adjustment process of a job in a 
processing sequence (Fig. 5a). Job p(k) in Fig. 5a is 
split into four equal transfer sublots with size SZmin 
after initial splitting. Assume that SZmax=2×SZmin. 
First, we delay the processing of the four sublots on 
the last machine M3 as much as possible. If the 
makespan criterion is considered (Fig. 5b), the first 
two sublots can be merged when they are transferred 
from M2 to M3, since they both finish processing on 
M2 before the delayed start time of the first sublot on 
M3. Similarly, the remaining two sublots can be 
merged on M3. The initial transfer sublots can be 
adjusted into two sublots, each of which with a size of 
2×SZmin when transferred to machine M3. The size of 
the emerged sublot will not exceed the upper bound 
SZmax. 

Second, we delay processing sublots of job p(k) 
on M2 as much as possible without affecting the new 
start times of all the sublots on M3. The second and 
the third sublots can be merged when they are  
transferred from M1 to M2 (Fig. 5c). The final transfer 
sublots for job p(k) after adjustment are shown in 
Fig. 5d. In this example, after adjustment on each 
machine, the total number of transfers for job p(k) 

from M1 to M2 and M2 to M3 is reduced from 8 to 5, 
while the makespan criterion remains the same as 
before. The reduction would be significant when the 
job is large in size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
When the total flow time criterion is considered 

in this example, the completion time of job π(k) on the 
last machine should not be affected when delaying 
processing sublots during the adjustment. Fig. 5e 
shows the final transfer sublots of job π(k) after the 
transfer adjustment for the total flow time criterion. 

 
 

Fig. 5  Transfer adjustment for job π(k) in a processing 
sequence: (a) lot streaming of job π(k) in a processing 
sequence with other jobs; (b) delaying processing sublots 
of job π(k) on M3 without affecting the makespan; (c) 
delaying processing sublots of job π(k) on M2 without 
affecting the makespan; (d) the final transfer sublots of 
job π(k) for the makespan criterion; (e) transfer adjust-
ment of job π(k) for the total flow time criterion 
The number in each bar refers to the time duration of the 
sublot 
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4.4  Time complexity of the method 

In the TSM, most of the total computation time is 
attributed to stage 2, where iterative evolution is in-
volved. Therefore, we focus on the analysis of time 
complexity in stage 2. The computation time of the 
DE-based optimization is spent mostly in iterative 
evolution, which includes global and local searches. 
Mutation, crossover, and selection are carried out in 
the global search. The time complexity for every 
mutation and crossover is O(n). During the selection 
procedure, evaluation is required to obtain the 
makespan/total flow time criterion for the mutated 
and trial individuals, and the time complexity is O(mn) 
for each individual. Considering the population size 
PS, the total time complexity of the global search is 
PS(2O(n)+2O(mn)). 

During the local search, the best individual is 
selected to perform the interchange procedure, which 
occurs n  times. An evaluation is required each time 
and two jobs in the processing sequence are inter-
changed. Therefore, the local search has a time com-
plexity of O(n2m). 

Both the global and local searches are performed 
tmax times; so, the total time complexity of the pro-
posed algorithm is 

 

max

max max

2
max max

( ,  PS,  ,  )
PS(2 ( ) 2 ( )) ( )

PS ( ) ( ).

O t n m
t O n O mn t O n n m

t O mn t O n m

≈ + + ⋅ ⋅

≈ +

 (31) 

 
We can see that the maximum number of itera-

tions, the population size, and the number of jobs and 
machines determine the computational burden of the 
algorithm. Note that the time complexity has little 
relation with sizes of production jobs (lots) according 
to the efficient calculation developed in Section 4.2.2. 
 

 
5  Experiments and performance analysis 
 

Five different datasets from the appendices of 
Marimuthu et al. (2008) and Chakaravarthy et al. 
(2013) were used to evaluate the performance of the 
TSM on a lot streaming FSP. Each dataset in Mari-
muthu et al. (2008) was a problem with n=50 and m=7, 
and m was extended by Chakaravarthy et al. (2013) to 

10. Smaller-sized problems can be generated from the 
same dataset. For any n′≤50 and m′≤10, the data up to 
the n′th column and (2m′+1)th row in a dataset provide 
information about job size, setup time, and processing 
time for a problem with n′ jobs and m′ machines. The 
datasets were initially generated for lot streaming 
with an unbounded sublot size and attached setups. 
5.1  Experiments on lot streaming with an un-
bounded sublot size 

In the problem formulated in Section 2, when 
SZmin=1 and SZmax is unlimited, the problem becomes 
lot streaming with an unbounded sublot size. In this 
case, Baker (1995) provided an optimal makespan for 
the two-machine problem. Therefore, we first tested 
the TSM in the two-machine problem to see whether 
it could obtain the same makespan as Baker’s algo-
rithm (BA), and how fast and stable TSM can achieve 
the optimal makespan. Then we conducted experi-
ments on the multi-machine problem for the 
makespan/total flow time criterion, and compared the 
results with those from the GA and the hybrid genetic 
algorithm (HEA) proposed by Marimuthu et al. 
(2008), and the differential evolution algorithm (DEA) 
and PSO proposed by Chakaravarthy et al. (2013). 

The TSM was coded with Visual C++.NET 2010 
and run on a personal computer with an Intel 
i5-3320M CPU, 2.60-GHz processor, and 4.00-GB 
RAM. Parameters involved in the algorithm in stage 2 
were set as PS=n, tmax=100n, CR=0.1, and F=0.7. The 
maximum number of iterations and the population 
size were set as the values used by Marimuthu et al. 
(2008). The results obtained over 30 runs are pre-
sented in Tables 3–7. The makespan/total flow time 
marked in bold refers to the minimum makespan/total 
flow time. 

From Table 3, we can see that TSM (the 
three-stage method) can always obtain the optimal 
makespan with fast convergence in each run for the 
two-machine problem. For many cases in Tables 4–7, 
TSM outperforms GA, DEA, PSO, and HEA, espe-
cially when the size of the problem becomes large. 

The CPU time consumed by TSM, GA, and HEA 
presented in Tables 4 and 5 are not comparable, since 
the computers with different performances may have 
been used by Marimuthu et al. (2008); it is unclear 
which calculation method was used by Marimuthu 
et al. (2008). 

http://cn.bing.com/dict/search?q=not&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=comparable&FORM=BDVSP6&mkt=zh-cn
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However, from the computation time consumed 
by GA and HEA for the 30-job problem and the in-
creasing rate of computation time with the increase of 
the number of machines, we infer that Marimuthu 
et al. (2008) may have used the traditional calculation, 
which means that in addition to the number of ma-
chines, the size of jobs (or the number of sublots) also 
affects the computation time. With the efficient cal-
culation steps developed in Section 4.2.2, however, 
the CPU time of TSM slowly increases as the number 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of machines increases. Since we set the parameters 
PS=n and tmax=100n, the computation time of TSM 
becomes proportional to mn3, according to the time 
complexity analysis in Section 4.4. Therefore, com-
pared with the number of machines, the number of 
jobs has a greater impact on computation time. 

When optimizing for the total flow time criterion, 
it takes longer for TSM to reach convergence, and the 
standard deviations are larger compared with the 
results of TSM when optimizing the makespan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Performance of TSM on the two-machine problem with the makespan criterion 

n Dataset BA 
TSM 

n Dataset BA 
TSM 

BM SD AG (s) AT (s) BM SD AG (s) AT (s) 

15 

1 429 429 0 0.0013 0.96 

35 

1 914 914 0 0.0030 6.26 
2 363 363 0 0.0007 0.99 2 772 772 0 0.0143 6.30 
3 249 249 0 0.0007 0.99 3 709 709 0 0.0024 6.35 
4 291 291 0 0.0008 0.98 4 720 720 0 0.0028 6.31 
5 305 305 0 0.0011 0.98 5 892 892 0 0.0052 6.30 

25 

1 648 648 0 0.0016 2.37 

50 

1 1258 1258 0 0.0042 15.56 
2 581 581 0 0.0045 2.37 2 1153 1153 0 0.0180 15.54 
3 436 436 0 0.0012 2.39 3 1013 1013 0 0.0037 15.51 
4 489 489 0 0.0015 2.36 4 1035 1035 0 0.0056 15.51 
5 671 671 0 0.0013 2.36 5 1250 1250 0 0.0146 15.52 

BA: Baker’s algorithm; BM: best makespan over 30 runs; SD: standard deviation of makespan obtained over 30 runs; AG: 
average CPU time consumed to reach convergence over 30 runs; AT: average CPU time consumed for one run over 30 runs 

 

Table 4  A comparison with DEA, PSO, GA, and HEA for the makespan criterion in the 30-job problem 

m Dataset DEA PSO 
GA HEA TSM 

BM AT (s) BM AT (s) BM SD AG (s) AT (s) 

3 

1 796 796 803 

22.25 

796 

36.37 

796 0 0.0199 3.29 
2 691 691 691 691 691 0 0.0022 3.31 
3 625 625 625 625 625 0 0.0041 3.32 
4 623 623 623 623 623 0 0.0048 3.30 
5 770 770 770 770 770 0 0.0209 3.28 

5 

1 851 854 843 

35.21 

835 

52.34 

827 0.77 0.8499 3.31 
2 748 749 747 747 747 0 0.0574 3.36 
3 638 634 627 627 627 0 0.0387 3.42 
4 677 677 677 677 677 0 0.0064 3.38 
5 790 796 788 782 774 0 0.2142 3.39 

7 

1 888 896 878 

50.92 

870 

65.20 

855 0 0.4290 3.55 
2 766 778 761 758 751 0.43 0.9918 3.44 
3 702 709 701 696 686 0 0.2224 3.59 
4 690 697 685 685 685 0 0.0423 3.50 
5 821 829 810 796 786 0.81 0.9302 3.59 

The results of DEA and PSO are from Chakaravarthy et al. (2013); the results of GA and HEA are from Marimuthu et al. 
(2008); the makespan/total flow time marked in bold refers to the minimum makespan/total flow time; the underlined num-
bers are improved makespans. BA: Baker’s algorithm; BM: best makespan over 30 runs; SD: standard deviation of makespan 
obtained over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs; AT: average CPU time consumed 
for one run over 30 runs 
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criterion (Tables 4–7). This is probably because the 
total flow time (the sum of the job completion times) 
is larger than the makespan (the time of the last job 
completion) for the same problem, and there tends to 
be more possible processing sequences that lead to the 
same flow time in the solution space. 

If we allow transfer sublots to be a variable size 
instead of a unit size, TSM can provide a solution 
with fewer transfers between machines. Take the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15×2 problem with the makespan criterion in the No. 
1 dataset as an example. From the Gantt chart illus-
trated in Fig. 6, the total number of transfers from M1 
to M2 in the problem is reduced from 85 to 21. 

In Fig. 6, the position and length of a bar reflect 
the start time, duration, and completion time of sublot 
processing. For the first sublot of a job on a machine, 
the setup activity is included. The bar reflects both the 
job setup and the sublot processing time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  A comparison with DEA, PSO, GA, and HEA for the total flow time criterion in the 30-job problem 

m Dataset DEA PSO 
GA HEA TSM 

BF AT (s) BF AT (s) BF SD AG (s) AT (s) 

3 

1 11 205 11 135 9829 

23.51 

9722 

29.83 

9573 14.908 2.5971 3.53 
2 8794 8994 7361 7353 7229 4.616 2.1886 3.43 
3 8743 8644 7589 7544 7448 7.830 2.5135 3.50 
4 8466 8555 7616 7512 7365 5.579 2.3435 3.45 
5 10 192 10 087 8716 8681 8467 9.724 1.7883 3.42 

5 

1 12 847 12 871 11 165 

37.46 

11 165 

49.49 

10 949 20.388 2.8396 3.80 
2 10 532 10 527 8948 8880 8564 11.409 2.4266 3.65 
3 9598 9759 8578 8513 8304 19.402 2.8864 3.80 
4 9874 9836 8690 8616 8364 16.260 2.4867 3.73 
5 10 919 11 175 9564 9379 9179 8.098 2.5279 3.65 

7 

1 13 696 13 767 12 039 

51.85 

11 949 

67.56 

11 727 26.235 2.9601 4.06 
2 11 391 11 253 9894 9745 9414 12.952 2.8480 3.90 
3 10 838 10 757 9517 9472 9279 21.890 2.9945 4.05 
4 10 748 10 682 9541 9377 9026 15.132 2.7263 3.96 
5 11 737 11 706 10 260 10 164 9889 18.273 2.7974 3.94 

The underlined numbers are improved total flow times. BF: best total flow time over 30 runs; SD: standard deviation of 
makespan obtained over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs; AT: average CPU 
time consumed for one run over 30 runs. The results of DEA and PSO are from Chakaravarthy et al. (2013); the results of 
GA and HEA are from Marimuthu et al. (2008); the makespan/total flow time marked in bold refers to the minimum 
makespan/total flow time 

 

Table 6  A comparison with DEA, and PSO for the makespan criterion in the 50-job problem 

m Dataset DEA PSO 
TSM 

m Dataset DEA PSO 
TSM 

BM SD AG (s) AT (s) BM SD AG (s) AT (s) 

3 

1 1345 1345 1345 0 0.0078 16.22 

7 

1 1374 1384 1354 0 1.9212 19.33 
2 1155 1155 1154 0 0.1556 16.10 2 1357 1361 1332 0 1.4852 19.48 
3 1057 1057 1057 0 0.0244 16.14 3 1169 1170 1133 0.24 7.5705 19.36 
4 1148 1148 1148 0 0.0135 16.12 4 1225 1228 1189 0 1.3111 19.26 
5 1254 1258 1251 0 0.5900 15.99 5 1340 1358 1265 0.84 11.261 19.43 

5 

1 1349 1352 1347 0 0.1541 18.81 

10 

1 1458 1475 1370 4.68 14.914 22.80 
2 1334 1336 1329 0 0.3069 18.78 2 1422 1422 1338 1.85 13.196 22.83 
3 1076 1075 1059 0 0.2677 18.76 3 1269 1280 1195 4.31 14.338 22.61 
4 1190 1197 1186 0 0.0749 18.73 4 1307 1306 1230 2.75 14.568 22.65 
5 1305 1316 1258 0 6.2930 18.81 5 1414 1427 1316 3.72 14.591 22.81 

The results of DEA and PSO are from Chakaravarthy et al. (2013); the makespan/total flow time marked in bold refers to the 
minimum makespan/total flow time; the underlined numbers are improved makespans. BM: best makespan over 30 runs; SD: 
standard deviation of makespan obtained over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs; 
AT: average CPU time consumed for one run over 30 runs 
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5.2  Experiments on lot streaming with a bounded 
sublot size 
 

To evaluate the performance of TSM on a lot 
streaming FSP with a bounded sublot size, we set 
JSi=10, SZmax=10, and SZmin=3 for each job Ji in the 
No. 1 dataset, and applied TSM under the same pa-
rameter setting as that in Section 5.1. The results over 
30 runs are shown in Tables 8 and 9. 

Note that for the 10×10, 30×3, 30×7, 40×3, 40×5, 
50×3, 50×5, and 50×7 problems in the No. 1 dataset, 
TSM could obtain the minimum makespan in each 
run (i.e., SD=0), which can be seen from Tables 4, 6, 
and 8. We conclude that besides the size of the prob-
lem. The problem itself could also affect the perfor-
mance of the algorithm (e.g., when there is more than 
one possible processing sequence that leads to the 
minimum makespan in the solution space, it would be 
easier to find the optimal solution). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Gantt charts for the 5×5 problem with the 
makespan/total flow time criterion in the No. 1  
dataset when JSi=10, SZmin=3, and SZmax=10 are 
illustrated in Figs. 7 and 8. For the problem with the 
makespan criterion, after the size adjustment in the 
third stage, the total number of transfers from M1 to 
M2, M2 to M3, M3 to M4, and M4 to M5 is reduced from 
60 to 42 (Fig. 7), compared with the initial splitting 
obtained through the first stage, where each job is 
split into three sublots on each machine with sizes 4, 3, 
and 3, respectively. For the problem with the total 
flow time criterion, the total number of transfers is 
reduced from 60 to 46 (Fig. 8). 

To show the efficiency of the calculation steps 
developed in Section 4.2.2 with the increase of job 
size JSi (i=1, 2, ..., n), we conducted experiments on 
the 50×10 problem with makespan criterion in the No. 
1 dataset under different values of JSi (from 10 to 100 
with an increment of 10) for each job. The variation 

Table 7  A comparison between DEA and PSO for the total flow time criterion in the 50-job problem 

m Dataset DEA PSO 
TSM 

m Dataset DEA PSO 
TSM 

BF SD AG (s) AT (s) BF SD AG (s) AT (s) 

3 

1 30 751 30 178 25 040 36.108 12.725 17.67 

7 

1 34 514 34 346 28 790 66.106 14.023 20.49 
2 26 879 27 579 21 553 50.460 12.843 17.71 2 33 663 33 809 26 550 64.169 14.884 20.26 
3 24 848 24 429 19 217 28.189 12.657 17.70 3 29 351 29 924 23 241 64.769 15.437 20.27 
4 25 906 25 852 20 934 30.154 12.291 17.57 4 31 733 31 252 25 028 88.003 15.518 19.95 
5 29 185 28 471 22 878 27.495 12.902 17.51 5 32 606 33 376 26 303 71.508 15.205 20.12 

5 

1 32 775 33 390 27 170 73.194 14.167 19.26 

10 

1 37 760 37 452 30 798 73.554 17.691 23.67 

2 32 439 32 158 24 771 61.412 14.596 19.07 2 35 461 35 391 28 361 94.647 17.183 23.26 

3 26 377 26 650 21 267 68.665 14.234 19.29 3 32 269 32 263 25 794 73.184 17.086 23.18 

4 29300 29 505 23320 55.557 13.934 19.00 4 33 976 33 267 27 406 83.66 17.476 23.09 

5 31 732 31 350 24 653 58.744 14.046 19.09 5 35 589 35 553 28 268 66.106 14.023 20.49 

The results of DEA and PSO are from Chakaravarthy et al. (2013). The makespan/total flow time marked in bold refers to the 
minimum makespan/total flow time. BF: the best total flow time over 30 runs; SD: standard deviation of makespan obtained 
over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs; AT: average CPU time consumed for one 
run over 30 runs 
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Fig. 6  Gantt chart for the 15×2 problem in the No. 1 dataset with VSS and the makespan criterion (Cmax=429) 
Each bar represents a sublot, and the number in each bar refers to the size of the sublot 
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in the average CPU time (the vertical axis, in seconds) 
consumed by TSM for one run across different values 
of JSi (the horizontal axis) under three different cases 
of SZmin=1, 3, and 5 is illustrated in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The efficient calculation shows the benefit of 
saving computation time over traditional calculation, 
and the benefit is the most remarkable in the SZmin=1 
case when using unit size transfer sublots. The 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8  Performance of the TSM on a lot streaming FSP with a bounded sublot size for the makespan criterion in the  
No. 1 dataset 

n×m BM SD AG (s) AT (s) n×m BM SD AG (s) AT (s) 

5×5 345 1.28 0.0005 0.03 40×5 1854 0 1.2036 11.16 
10×10 621 0 0.0202 0.16 40×7 1874 0.81 5.6471 12.20 
20×10 1108 3.26 0.7190 1.06 40×10 1969 5.37 10.374 16.74 
30×3 1349 0 0.2713 1.42 50×3 2290 0 0.0904 19.66 
30×5 1393 2.66 0.8399 1.42 50×5 2296 0 0.8687 21.65 
30×7 1511 0 0.1357 2.22 50×7 2320 0 6.4719 23.50 

30×10 1542 3.55 1.9753 2.47 50×10 2393 6.19 12.5860 31.12 
40×3 1843 0 0.1565 10.21      

BM: best makespan over 30 runs; SD: standard deviation of makespan obtained over 30 runs; AG: average CPU time con-
sumed to reach convergence over 30 runs; AT: average CPU time consumed for one run over 30 runs 

 
Table 9  Performance of the TSM on a lot streaming FSP with a bounded sublot size for the total flow time criterion in 
the No. 1 dataset 

n×m BF SD AG (s) AT (s) n×m BF SD AG (s) AT (s) 

5×5 1076 0 0.0006 0.08 40×5 37 762 112.530 5.9827 12.03 
10×10 4054 14.306 0.0500 0.20 40×7 40 494 116.482 7.1991 12.35 
20×10 13 305 45.238 0.8095 1.47 40×10 43 742 164.640 9.3931 17.24 
30×3 18 847 26.013 1.5563 1.98 50×3 50 157 91.777 13.5043 20.35 
30×5 21 931 71.740 2.0219 2.57 50×5 56 290 225.074 15.1491 22.15 
30×7 24 152 54.105 2.1536 2.93 50×7 60 289 237.065 15.6489 24.32 
30×10 26 299 95.194 2.4919 3.31 50×10 64 921 224.219 21.8573 33.32 
40×3 32 982 73.208 5.5635 10.56      

BF: best total flow time over 30 runs; SD: standard deviation of makespan obtained over 30 runs; AG: average CPU time 
consumed to reach convergence over 30 runs; AT: average CPU time consumed for one run over 30 runs 
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Fig. 7  Gantt chart for the 5×5 problem in the No. 1 dataset with the bounded VSS and the makespan criterion (Cmax=345) 
The number in each bar refers to the size of the sublot, and the number of bars from job Ji with the same color on machine  
Ml represents the number of sublots of Ji when they are transferred to Ml (i=1, 2, ..., 5 and l=1, 2, ..., 5) 
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computation time of traditional calculation always 
increases as job size increases in all three cases. With 
the efficient calculation, the value of job size has no 
influence on computation time in the SZmin=1 and 
SZmin=5 cases, and also in the SZmin=3 case when 
JSi=30, 60, and 90 (when JSi is divisible by SZmin).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When JSi is not divisible by SZmin, the computation-
time is a little longer, but does not increase as job size 
increases. 

Note that the transfer adjustment in the third 
stage aims at reducing the number of transfers be-
tween machines without affecting the optimized 
makespan/total flow time criterion obtained from the 
second stage. For the best results obtained above over 
30 runs for the 50×10 problem with the makespan 
criterion in the No. 1 dataset under SZmin=1 and 
SZmin=5 cases, the variation in the total number of 
transfers (the vertical axis) across different values of 
JSi (the horizontal axis) is illustrated in Fig. 10. The 
results show that the transfer adjustment reduces the 
number of transfers between machines, and the re-
duction can be significant when the number of jobs is 
large. The reduction of transfers in the SZmin=5 case is 
less significant than that in the SZmin=1 case, since the 
initial total number of transfer sublots is small in the 
SZmin=5 case. 

The experimental results confirm the effective-
ness of TSM from the following aspects: (1) Job se-
quencing optimization under the initial lot splitting 
can provide the desirable optimization solution; (2) 
The efficient calculation for the makespan/total flow 
time criterion can save a great deal of computation 
time in lot streaming, especially when the number of 
jobs (production lots) is large; (3) Transfer adjustment 
reduces the number of transfers between machines 
without affecting the optimized criterion, by adjusting 
the initial transfer sublots into variable size sublots 
(VSSs). In addition, we find that although a local 
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Fig. 8  Gantt chart for the 5×5 problem in the No. 1 dataset with the bounded VSS and the total flow time criterion 
(TFT=1076) 
The number in each bar refers to the size of the sublot, and the number of bars from job Ji with the same color on machine Ml 
represents the number of sublots of Ji when they are transferred to Ml (i=1, 2, ..., 5 and l=1, 2, ..., 5) 
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Fig. 9  Variation in the average computation time across 
different values of JSi: (a) traditional calculation; (b) effi-
cient calculation 
References to color refer to the online version of this figure 
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search procedure in an evolutionary algorithm can be 
necessary for improving the optimization ability for a 
large-scale and complex problem, it leads to an inev-
itable increase in computation time. We look forward 
to developing a more effective local search with 
greater optimization power and less computation time 
in our future work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 

In this paper, we have investigated a lot 
streaming FSP with bounded variable size sublots, 
aiming at minimizing the makespan/total flow time. 
The problem has been formulated and a TSM has 
been proposed to solve the problem efficiently. Dur-
ing the first stage, each job has been split according to 
the lower bound on sublot size, which leads to the 
fastest (or close to the fastest) completion for a pro-
cessing sequence. Then we have developed a 
DE-based optimization with efficient calculation for 
the makespan/total flow time criterion to find the 
optimal processing sequence of jobs, based on the 

initial lot splitting in stage 1. During the third stage, to 
decrease the number of transfers between machines, 
some adjustments to sublots have been made based on 
the best sequence obtained through stage 2 to adjust 
the initial transfer sublots into VSSs under the upper 
bound size constraint. 

Experimental results of lot streaming with un-
bounded and bounded sublot size cases have verified 
the effectiveness of the proposed TSM. Compared 
with the results reported before, experimental results 
on two- and multi-machine problems in five datasets 
have revealed the good performance of the proposed 
method in providing a better solution with less com-
putational effort. We have provided a new method for 
the flow shop scheduling problem with lot streaming. 
The efficient calculation and transfer adjustment can 
be incorporated into other algorithms to save com-
putation time and reduce the number of transfers. In 
future work, we will consider multi-objective and 
dynamic scheduling in the problem to apply real-time 
knowledge to achieve greater production system 
flexibility and enhance throughput. 
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