
Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1002

A three-stage method with efficient calculation for
lot streaming flow-shop scheduling*

Hai-yan WANG†‡1, Fu ZHAO2,3, Hui-min GAO1, John W. SUTHERLAND2

1College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314000, China
2Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA

3School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
†E-mail: wanghy@mail.zjxu.edu.cn

Received July 9, 2017; Revision accepted Mar. 17, 2018; Crosschecked July 3, 2019

Abstract: An important production planning problem is how to best schedule jobs (or lots) when each job consists of a large
number of identical parts. This problem is often approached by breaking each job/lot into sublots (termed lot streaming). When the
total number of transfer sublots in lot streaming is large, the computational effort to calculate job completion time can be signif-
icant. However, researchers have largely neglected this computation time issue. To provide a practical method for production
scheduling for this situation, we propose a method to address the n-job, m-machine, and lot streaming flow-shop scheduling
problem. We consider the variable sublot sizes, setup time, and the possibility that transfer sublot sizes may be bounded because of
capacity constrained transportation activities. The proposed method has three stages: initial lot splitting, job sequencing optimi-
zation with efficient calculation of the makespan/total flow time criterion, and transfer adjustment. Computational experiments are
conducted to confirm the effectiveness of the three-stage method. The experiments reveal that relative to results reported on lot
streaming problems for five standard datasets, the proposed method saves substantial computation time and provides better solu-
tions, especially for large-size problems.

Key words: Lot streaming; Flow-shop scheduling; Transfer sublots; Variable size; Bounded size; Differential evolution
https://doi.org/10.1631/FITEE.1700457 CLC number: TH166; TP278

1 Introduction

A flow shop is a type of manufacturing shop
where each job is processed by the same group of
machines, and the machine order does not change.
The actions performed by a given machine may vary
from job to job. The flow-shop scheduling problem
(FSP) seeks to identify the best order in a manufac-
turing shop to process a set of jobs, where it is often
desired to minimize the makespan or total flow time.

Some shops deal with large orders from their cus-
tomers (e.g., 2000 power strips of type A and 1000 of
type B need to be produced). In this situation, when a
job (or lot) consists of a batch of identical parts, it
may be desirable to decompose a job into a number of
transfer sublots. A sublot is a group of parts in a lot
which are processed on one machine and then trans-
ferred to the next machine before the rest of the lot is
completed. This was termed “lot streaming” and was
first studied by Reiter (1966). With lot streaming,
production may be accelerated and the work-in-
process inventory may be decreased. A comprehen-
sive review of lot streaming in flow shops (as well as
other typical machine configurations such as job-
shops and open-shops) can be found in Cheng et al.
(2013).

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (No. 61403163) and the Zhejiang Provincial Natural Science
Foundation of China (Nos. LQ14G010008 and LY15F030021)

 ORCID: Hai-yan WANG, http://orcid.org/0000-0001-8289-5351
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2019

http://orcid.org/0000-0002-6574-1542
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1700457&domain=pdf

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1003

Motivated by practical applications, the lot
streaming problem has received extensive attention,
including the one-job (single-type job) case (Liu SC,
2003; Biskup and Feldmann, 2006; Liu JY, 2008;
Sarin et al., 2008; Defersha and Chen, 2011;
Mukherjee et al., 2017) and n-job (multi-type job)
case (Kumar et al., 2000; Marimuthu et al., 2008,
2009; Tseng and Liao, 2008; Kim and Jeong, 2009;
Martin, 2009; Defersha and Chen, 2010; Pan et al.,
2011; Chakaravarthy et al., 2013, 2014; Ventura and
Yoon, 2013; Davendra et al., 2014; Nejati et al., 2014,
2016; Han et al., 2016). Different meta-heuristic
methods have been proposed to optimize the job
processing sequence, such as genetic algorithm (GA)
(Kumar et al., 2000; Marimuthu et al., 2008; Kim and
Jeong, 2009; Martin, 2009; Defersha and Chen, 2010;
Ventura and Yoon, 2013; Nejati et al., 2014, 2016),
ant colony optimization (ACO) (Marimuthu et al.,
2009), artificial bee colony (ABC) (Chakaravarthy
et al., 2014), particle swarm optimization (PSO)
(Tseng and Liao, 2008; Chakaravarthy et al., 2013),
and differential evolution (DE) (Chakaravarthy et al.,
2013). Most research has focused on the subset of
problems with equal size sublots (ESSs). For example,
Sarin et al. (2008) studied a single-lot multi-machine
lot streaming FSP with ESSs to minimize a unified
cost-based criterion. Mukherjee et al. (2017) consid-
ered the lot streaming problem in a single-lot
two-machine flow shop with the learning effect of
setup and processing time. Davendra et al. (2014)
dealt with the n-job m-machine lot streaming FSP
with ESSs and sequence-dependent setups, and
sought to minimize the makespan. Marimuthu et al.
(2008, 2009) and Chakaravarthy et al. (2013, 2014)
studied the n-job m-machine problem with a
makespan/total flow time criterion, where the at-
tached setups and lot streaming with ESSs were in-
volved. Tseng and Liao (2008), Pan et al. (2011), and
Ventura and Yoon (2013) considered the total
weighted earliness and tardiness penalties criteria in
an n-job, m-machine lot streaming FSP with ESSs.
Han et al. (2016) considered the uncertainty in ma-
chine processing time, and formulated a mul-
ti-objective lot streaming FSP model with interval
processing time without an intermediate buffer.

ESSs strategy is common in practice since it is
easy to implement and manage in terms of shop floor
control. However, due to a lack of flexibility, the

general ESSs strategy can employ smaller size sublots
to achieve faster completion; almost always, as the
sublot size decreases, the makespan decreases as well.
This may lead to a large number of transfers to obtain
the fastest completion, and may not be feasible be-
cause of transfer/handling costs between machines. A
more flexible alternative to ESSs is the consistent size
sublots (CSSs) strategy, where the size of a sublot
remains the same from machine to machine, but may
vary within a job. Fewer researchers have considered
the n-job m-machine lot streaming FSP with CSSs.
Kumar et al. (2000) addressed a no-wait lot streaming
FSP with CSSs. Kim and Jeong (2009) solved the lot
streaming problem in a no-wait flexible flow shop
with detached setups and predetermined CSSs. Mar-
tin (2009) considered the interleaving of sublots from
different jobs in the processing sequence in a lot
streaming FSP. Nejati et al. (2014, 2016) dealt with a
CSSs lot streaming problem with a work shift con-
straint in a hybrid flow shop and a two-stage assembly
flow shop.

An even more flexible approach to lot streaming
(relative to ESSs and CSSs) is variable size sublot
(VSS), which allows the number of sublots and the
sublot sizes to vary among machines (and jobs). In
many situations, material handling systems may differ
throughout the production system, which makes it
necessary to consider VSSs. Fig. 1 illustrates lot
streaming for a two-job three-machine flow shop
under different sublot sizing options (job size, setup
time, and processing time are specified in Table 1). A
setup is required when there is a job change on a
machine tool (time is required to change tooling,
machine settings, etc.). In this example, the setup for a
job on a machine can begin only when the first sublot
of that job arrives at the machine. This may be termed
an “attached setup.” If a machine is allowed to begin
setting up before the actual arrival of the first sublot
of the job, it may be referred to as a “detached setup.”
In Fig. 1c, a schedule with unit size sublots (which is a
special case of ESSs) gives the minimum makespan
for all possible sublot sizing options. With VSSs,
however, the same minimum makespan with fewer
transfers between machines can be obtained (Fig. 1d).

Despite its relevance to production practice, few
researches have examined the VSSs lot streaming for
the n-job m-machine FSP. Liu (2003), Biskup and
Feldmann (2006), and Defersha and Chen (2011)

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTseng,%2520Chao-Tang%26authorID%3D24280678100%26md5%3Da7a155846ab7d8cc90b29a26caff4de5&_acct=C000050175&_version=1&_userid=1003047&md5=47cdf7132c9ea7868946cea2f4f82dfe
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLiao,%2520Ching-Jong%26authorID%3D7401956694%26md5%3D608b8f9ae1910329fa495582daaeca6b&_acct=C000050175&_version=1&_userid=1003047&md5=eab5a4c12a9c9799d86478b1f54257a2
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTseng,%2520Chao-Tang%26authorID%3D24280678100%26md5%3Da7a155846ab7d8cc90b29a26caff4de5&_acct=C000050175&_version=1&_userid=1003047&md5=47cdf7132c9ea7868946cea2f4f82dfe
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLiao,%2520Ching-Jong%26authorID%3D7401956694%26md5%3D608b8f9ae1910329fa495582daaeca6b&_acct=C000050175&_version=1&_userid=1003047&md5=eab5a4c12a9c9799d86478b1f54257a2

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1004

studied the m-machine lot streaming problem with
VSSs, but they focused on the one-job case. Defersha
and Chen (2010) developed a hybrid GA to solve the
n-job m-machine lot streaming FSP with VSSs, where
interleaving of sublots from different jobs in the
processing sequence was allowed. Based on a prede-
termined total number of sublots (Defersha and Chen,
2010), the hybrid GA determines the number of sub-
lots for each job, the size of each sublot on each ma-
chine, and the processing sequence of the sublots;
thus, the makespan could be minimized. Despite these
efforts, little attention has been devoted to the com-
putational issues associated with production sched-
uling in the event of lot streaming. With the existing
methods for a lot streaming FSP, the computation
time heavily depends on the size of a job. That is,
when a job consists of a large number of identical

parts, which normally results in a large number of
transfer sublots, the computational effort is likely to
be significant.

In this study, we consider the n-job m-machine
lot streaming FSP with VSSs, where sublots from
different jobs are not allowed to interleave in the
processing sequence (sometimes switching between
different jobs requires a costly setup). Transfer sublot
sizes may be bounded because of capacity con-
strained transportation (transfer or handling) activities
between machines. The proposed method is separated
into three stages: initial lot splitting, job sequencing
optimization, and transfer adjustment. During the first
stage, each job is split based on the low bound on
sublot size, to obtain the fastest (or close to the fastest)
completion for a processing sequence. In the second
stage, a DE-based algorithm is applied to optimize the
processing sequence, and the makespan/
total flow time criterion is efficiently calculated to
save computation time. Finally, based on the best
sequence obtained through the second stage, some
adjustments to sublots are undertaken to reduce the
number of transfers between machines. Overall, the
proposed three-stage method (TSM) seeks to mini-
mize the makespan/total flow time, and reduce the

Fig. 1 An example of lot streaming with transfer sublots: (a) a schedule without lot splitting; (b) lot streaming with con-
sistent size sublots; (c) lot streaming with unit size transfer sublots; (d) lot streaming with variable size sublots
The number in each bar refers to the time duration of the sublots

Table 1 Lot streaming problem in a two-job and three-
machine flow shop

Job Size
Setup time on each

machine (h)
Unit processing time
on each machine (h)

M1 M2 M3 M1 M2 M3
J1 2 2 2 1 4 5 3
J2 3 2 5 3 4 2 1

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1005

number of transfers without affecting the optimized
makespan/total flow time. Computational experi-
ments are conducted to demonstrate the TSM and the
experiments results are compared with those of other
studies.

2 Problem description and formulation

The n-job m-machine lot streaming FSP with
VSSs will be described in this section. There are n
jobs J={J1, J2, ..., Jn} to be processed on m machines
M={M1, M2, ..., Mm}, where each job must follow the
same order on the machines. Each job Ji consists of a
batch of identical parts, where the job size JSi is the
number of parts in the batch. Before a new job is
initiated on a machine, a setup is required. To com-
plete the set of jobs more quickly, once a group of
parts has been processed on a machine, it may be
transferred to the next machine as a sublot. Then
processing on this sublot can begin when the next
machine is available. Sublot size may be bounded and
vary from machine to machine. The aim of the lot
streaming FSP is to minimize the makespan/total flow
time. The decision variables are the job processing
sequence and the number and size of transfer sublots
between each machine.

Let π={π(1), π(2), ..., π(n)} represent a pro-
cessing sequence solution (to be optimized), where
the kth job in the sequence may be referred to as
π(k)∈J (k=1, 2, ..., n). A mathematical model for the
n-job m-machine lot streaming FSP with VSSs is
developed with the notations in Table 2. Assume that
i=π(k) (k=1, 2, ..., n), l=1, 2, ..., m, and s=1, 2, ..., ni, l.
The details are as follows:

1. Objective

max , , (), min Cpt , (), , ,i l s n mC i n l m s npp= = = = (1)

, , ,
1

min TFT Cpt , , .
n

i l s i m
i

l m s n
=

= = =∑ (2)

Eq. (1) specifies the objective to minimize the

makespan, defined as the completion time of the last
sublot on the final machine. Another criterion con-
sidered in this study is the total flow time, as shown in
Eq. (2).

2. Lot splitting constraint and sublot size
constraint:

,

, ,
1
SZ JS , ,

i ln

i l s i
s

i l
=

= ∀∑ , (3)

, , min max , , SZ [SZ , SZ], SZ , , , .i l s i l s i l s∈ ∈ ∀ (4)

Constraint (3) ensures that the sum of the sizes of
all the transfer sublots for a job transferring to the
next machine remains the same as the original job size.
Constraint (4) requires sublot sizes be integers and
bounded by a lower bound and an upper bound.

3. Sublot availability constraint and machine
availability constraint

, 1Sst 0, (1).i i p= = (5)

Assume that all jobs and machines are available

at time zero. Thus, the first machine in the flow shop
begins setting up for the first job in the processing
sequence at time zero (Eq. (5)).

Table 2 Notations
Index and parameter Decision variable

i: job index π: job processing sequence
l: machine index Cmax: makespan
s: sublot index TFT: total flow time
n: total number of jobs ni,l: number of transfer sublots for job Ji when transferred to machine Ml
m: total number of machines SZi,l,s: size of the sth sublot of job Ji when transferred to machine Ml
JSi: size of job Ji Ssti,l: start time of setup for job Ji on machine Ml
pti,l: unit processing time of job Ji on machine Ml Csti,l: completion time of setup for job Ji on machine Ml
sti,l: setup time of job Ji on machine Ml Spti,l,s: start time for processing the sth sublot of job Ji on machine Ml
SZmin: a lower bound on sublot size Cpti,l,s: completion time for processing the sth sublot of job Ji on machine Ml
SZmax: an upper bound on sublot size

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1006

, , 1 , 1, , , 1, 1,
1

Sst Cpt pt SZ SZ ,
s

i l i l i l s i li l s
s

∗

∗ − −−
=

= − −

∑

(6)

where ∀l>1, i=π(1), and for ∀i, ∀l>1, and s=1, s* is
given by Eq. (7), which is shown at the bottom of this
page.

Eqs. (6) and (7) address the sublot availability
constraint for the first job in the sequence. That is, a
machine l >1 may begin setting up for job π(1) when
the first sublot arrives, which is equivalent to the
completion time of the last part in that sublot on the
preceding machine (l−1). Eq. (6) provides the com-
pletion time, and Eq. (7) provides the index associated
with the sublot on machine (l−1) that contains the last
part.

, 1 , 1,

, 1

Sst Cpt ,
(), (1), , 1.

i i s

ii k i k s n kp p
′

′

=

′= = − = ∀ >
 (8)

Eq. (8) is the machine availability constraint

associated with the job processing sequence for the
first machine, meaning that machine M1 may begin
setting up for a job after the machine finishes pro-
cessing all the sublots from the previous job.

,, , ,

, 1 , 1, , , 1, 1,

, 1, , , 1
1

1

Sst max Cpt ,

,

SZ SZ)

 Cpt pt SZ SZ)

i li l i l n

s

i

s

l i l s i l

i l s i l

i l s
s

s

∗

′

∗

∗

′

′− −−

−
=

=

′

′

′

=

− −

−

∑

∑

(9)
where ∀k>1, ∀l>1, i=π(k), (1)i kp′ = − , and s* is
given by Eq. (7) for s=1.

Eqs. (7) and (9) consider both the sublot and
machine availability constraints for the setup for job
π(k) on machine l with l>1 and k>1.

, , , Cst Sst st , , .i l i l i l i l= + ∀ (10)

Each job requires a single setup on each machine
before processing, and setups cannot be interrupted
once started, as shown in Eq. (10).

, , 1 , Spt Cst , , ,i l i l i l= ∀ (11)

, 1, , 1, 1Spt Cpt , , 1,i s i s i s−= ∀ ∀ > (12)

, , , , 1 , 1,

, 1 , 1, , ,
1

1

1

Spt max Cpt ,Cpt

 ,pt SZ SZ

i l s i l s i l s

s s

i l i l s i l s
s s

s

s
∗

∗

∗

− −

′ ′− −
′ ′= =

′=

=

− −

∑

∑

∑

(13)

where ∀i, ∀l>1, and ∀s>1, and s* is given by Eq. (7)
for s>1.

Eq. (11) shows that a machine can start pro-
cessing the first sublot of a job right after the machine
finishes the setup for that job. Eq. (12) means that
machine M1 can start processing a sublot s (s >1) of a
job after the machine has finished processing the
preceding sublot (s−1) of that job. Eqs. (7) and (13)
consider both the sublot and machine availability
constraints for processing a sublot s (s>1) of job i on a
machine l>1.

, , , , , , , Cpt Spt pt SZ , , , .i l s i l s i l i l s i l s= + ∀ (14)

All the parts in one sublot are consecutively

processed on a machine. Therefore, the processing
time of a sublot is defined as the sum of the pro-
cessing time of all the parts in that sublot. Processing
procedures cannot be interrupted once started, as
shown in Eq. (14).

Note that in the above model each sublot is
started as soon as possible in a sequence π, and the
setup for a job on a machine can begin only when the
first sublot of that job arrives at the machine (attached
setup). If a detached setup is involved in the lot
streaming FSP, then Eqs. (6) and (9) need to be

, 1 , ,
1

, , ,(1), 1
1

1

, 1, , , , 1,
1 1 1

, SZ JS ,

1, SZ SZ ,

 falls in , otherwise.

s

i l i l s i
s

s

i l s i l
s

s s s

i l s i l s i l s
s s s

n

s

s SZ SZ SZ
∗ ∗

′−
′=

∗
′ −

′=

−
∗

′ ′ ′− −
′ ′ ′= = =

=

= ≤

 < ≤

∑

∑

∑ ∑ ∑

 (7)

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1007

changed to Eqs. (15) and (16), allowing a machine to
set up for a job before the arrival of the first sublot of
that job.

*

*

*, , 1, 1,

, 1, , , 1 ,
1

1

Sst max 0, Cpt pt

 ,SZ SZ st

i l i li l s

s

i l s i l i l

s

s

s

−−

′−
′=

′=

 = −

⋅ − −

∑

∑

(15)

where i=π(1), ∀l>1, and s* is given by Eq. (7) for s=1.

*

*,

*

, , , , 1,

, 1 , 1, , , 1 ,

1

1

Sst max Cpt , max 0, Cpt

 ,pt SZ st

i li l i l n i l s

s

i l i l l

s

i l i
s

s

sSZ

′
′=

′ −

′− −
′=

 =

− − −

∑

∑

(16)

where ∀k>1, ∀l>1, i=π(k), and i′=π(k−1), and s* is
given by Eq. (7) for s=1.

3 Preliminary analysis of lot streaming

Determining the makespan/total flow time in lot
streaming is different from the case without lot
streaming. Take the four cases in Fig. 1 as an example.
Compared with Fig. 1a, more computations are
needed to obtain the makespan/total flow time in
Figs. 1b–1d, since the start and completion times for
each sublot on each machine need to be calculated.
The increased computational effort can be significant
when the total number of sublots is large.

To reduce the computation time taken to calcu-
late the makespan/total flow time in a lot streaming
FSP, the analyses for ESSs lot streaming are carried
out. Several important properties are identified, based
on which efficient steps will later be developed to
calculate the makespan/total flow time criterion in
Section 4.2.

Consider the lot streaming of one job with four
same sized transfer sublots in a five-machine flow
shop (Fig. 2). The processing times for each sublot are
3, 2, 4, 1, and 2 h on machines M1, M2, M3, M4, and M5,
respectively. Assume that the setup time can be ig-
nored, and all sublots and machines are available at

time zero. There are three important properties asso-
ciated with the one-job lot streaming problem:

Property 1 There is either no or equal idling be-
tween sublots within a job on the lth machine Ml.
Property 2 The time that machine Ml starts pro-
cessing the first sublot of job Ji, denoted by Spti, l, 1 (in
the one-job case, i=1) can either be zero when l=1, or
equal to the completion time of the first sublot on
machine Ml−1 when l>1.
Property 3 The completion time for the last sublot
of job Ji on machine Ml, denoted by

, , , Cpt
i li l n , is

either the start time of the first sublot Spti, l, 1 plus the
sum of the processing times for all the sublots, if there
is no idling between the sublots, or the completion
time of the last sublot on the preceding machine

, 1, , Cpt
i li l n− plus the processing time for one sublot on

machine Ml if there is idling. That is,

,

, ,

, , , , 1 ,

, 1, , , ,

Cpt max{Spt pt JS ,

 Cpt pt SZ }.
i l

i l i l

i l n i l i l i

i l n i l i l n−

= +

+
(17)

From Properties 1–3, the start time for the first

sublot of a job and the completion time for the last
sublot of that job on each machine can be obtained.
This means that there is no need to calculate the start
and completion times of each sublot on every ma-
chine to obtain the makespan/total flow time.

If we consider the lot streaming of job Ji in a
processing sequence in an n-job case, each machine
becomes available for Ji after it finishes processing all
the sublots from the preceding job in the sequence

T (h)

Ldling between
 sublots within a job

Sublot processing

Four equal sublots of job Ji

240

M3

M2

M1 3

4

3 3 3

4 4 4

M4

 M5

2 2 22

1 1 1 1

2 22 2

Fig. 2 Lot streaming for a one-job case with no setup
The number in each bar refers to the time duration of the
sublot

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1008

(Fig. 3). The completion time of the jobs (the time at
which a machine becomes available for processing
job Ji) is denoted by ATl. There might be inter-sublot
idling during the periods associated with the light and
dark grey bars.

The machine availability constraint determines
when the processing of the four same sublots of job Ji
may begin (Fig. 3). The amount of idling, which re-
mains the same or is reduced relative to the situation
in Fig. 2, depends on the constraint. For the case
shown, the idle period is reduced on M2, M4, and M5.
Considering the difference between Figs. 2 and 3, the
initial idling period between sublots on a machine is
first affected, and the last idling period is affected
only when there is no idling between all the preceding
sublots for a job. The same effect can be caused by
machine setup before the first sublot of a job. As long
as there is an idling period before processing the last
sublot of a job, the last sublot of the job will begin at
the time when the sublot completes processing on the
preceding machine. Therefore, Property 3 still applies
to the n-job case. This means for an n-job lot
streaming FSP with setup time and ESSs, there is an
efficient way to obtain the makespan/total flow time
by focusing on only the start and completion times for
the first and the last sublots for each job on every
machine.

4 Three-stage method (TSM)

For a lot streaming FSP with an unbounded
sublot size, when each part (unit) in each job is

regarded as a separate transfer sublot between any
successive machines, the minimum makespan/total
flow time can be achieved for a processing sequence.
For a lot streaming FSP with a bounded sublot size, if
the size of a job is divisible by the lower bound SZmin,
splitting a job into a set of identical sublots, whose
size is equal to SZmin, would lead to the fastest com-
pletion. Based on this idea, we could first undertake
lot splitting based on the lower bound on sublot size,
and then find the optimal processing sequence of jobs
based on the initial splitting to minimize the
makespan/total flow time. In addition, considering
that the size of sublots can be variable, based on the
obtained optimal sequence, the possibility of merging
sublots to be transferred together under the upper
bound constraint may be explored, with the goal of
reducing the number of transfers between machines
without affecting the optimized makespan/total flow
time. In summary, the problem-solving process can be
broken into three stages: initial lot splitting, job se-
quencing optimization with efficient calculation of
the makespan/total flow time criterion, and transfer
adjustment. The framework of the TSM is illustrated
in Fig. 4.

4.1 Initial lot splitting

As discussed above, when the size of job Ji is
divisible by the lower bound SZmin, the job can be
split into ESSs to obtain the fastest completion. In this
case, the initial splitting is ni,l=JSi/SZmin and SZi, l, s=
SZmin, where l=1, 2, ..., m and s=1, 2, ..., ni, l.

If the size of Ji is not divisible by SZmin, then the
job may be split into the following CSSs:

Time duration for job Ji (≥24)

T (h)0

3

4

3 3 3

4 4 4

2 2 2 2
AT1

AT2

AT3

AT4

2 2 2
AT5

M3

M2

M1

M4

M5 2 2 2

1 11 1

 Sublot processing for job Ji Ldling between sublots within job Ji

Fig. 3 Lot streaming of job Ji in a multi-job case
The number in each bar refers to the time duration of the sublots. The light grey bars are associated with the processing of the
sublots from preceding jobs. The dark grey bars are associated with the processing of jobs after Ji

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1009

,
min

JS
, ,

SZ
i

i ln l

= ∀

 (18)

, min
, , min

,

JS SZ
SZ SZ , , 1,2, , ,i i l

i l s i
i l

n
l s s

n
 − ⋅

′= + ∀ =

(19)

, min
, , min

,

,

JS SZ
SZ SZ ,

 , 1, , ,

i i l
i l s

i l

i i l

n
n

l s s n

 − ⋅
= +

′∀ = +

 (20)

, min
, min ,

,

JS SZ
JS SZ ,i i l

i i i l i l
i l

n
s n n

n
 − ⋅

′ = − −

(21)

where b means the largest integer less than or equal
to b and b is the smallest integer greater than or
equal to b.

Note that both Eqs. (22) and (23) have to be
satisfied that all the sublot sizes are within [SZmin,
SZmax]. With the initial splitting, when all the job sizes

are divisible by SZmin (e.g., when SZmin=1), a mini-
mum makespan/total flow time can be achieved for a
processing sequence:

minJS SZ , ,i i≥ ∀ (22)

min
min

min max

min

JSJS SZ
SZ

SZ SZ , .
JS

SZ

i
i

i

i

−
 + ≤ ∀

 (23)

4.2 Job sequencing optimization with efficient
calculation

Based on the initial lot splitting, the second stage
aims to find the optimal processing sequence of jobs.
A DE-based algorithm is used to minimize the
makespan/total flow time. DE is a stochastic and
efficient population-based heuristic proposed by
Storn and Price (1997), which has been successfully

 Y

N

Start

Stage 1

Initial lot splitting
Decide the number and size of the
initial transfer sublots for each job

Population initialization

1 2 PS= { , , ..., }, = 0t t t tX x x x t

Find the best sequence
in the population

Stage 3
Transfer adjustment

Global search for population Xt

(For each individual in the population, conduct:
Mutation Crossover Evaluation based on
efficient calculation Selection)

Local search for the best individual
(check for a potential better sequence)

+1
best
tx

t = t +1

Stage 2
Job sequencing optimization

Iterative
evolution

The makespan Cmax /total flow time
TFT
The processing sequence π
The number and size of sublots (ni,l
and SZi,l,s)
The start and completion time for
each sublot (Ssti,l, Csti,l, Spti,l,s, and
Cpti,l,s)

Output

t≥tmax

Fig. 4 Framework of the three-stage method

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1010

used to solve production scheduling problems
(Onwubolu and Davendra, 2006; Wang et al., 2010;
Chakaravarthy et al., 2013; Tasgetiren et al., 2013).
The flowchart of the proposed DE-based optimization
is illustrated in Fig. 4. Details will be provided in this
subsection.

4.2.1 Individual representation and population
initialization

In DE optimization, the evolution is an iterative
process, starting from an initial population of ran-
domly generated candidate solutions (individuals).
Through the iterative evolution, the initial population
is evolved towards better solutions from one genera-
tion to the next. The algorithm terminates when the
maximum number of generations tmax can be
completed.

Let 1 2 PS{ , , ..., }t t t tX x x x= be the populations of
the tth generation, where PS is the population size and

, 1 , 2 , { , , ..., }t t t t
h h h h nx x x x= is the hth individual in the

populations (t=0, 1, …, tmax). Here, , [0,1]t
h ix ∈ is the

processing priority index of job Ji. During population
initialization, we randomly generate PS individuals to
construct an initial population X0, where each indi-
vidual 0

hx (h=1, 2, ..., PS) consists of n uniformly
distributed random real numbers within [0, 1].

A processing sequence π can be obtained for an
individual t

hx by ranking the processing priority in-

dex , ,t
h ix i=0, 1, ..., n; for example, if ={0.31,t

hx

0.40, 0.75, 0.28}, then p={3, 2, 1, 4}.

4.2.2 Efficient calculation of the makespan/total flow
time criterion

According to the preliminary analysis in
Section 3, there is an efficient way to obtain the

makespan/total flow time, where we need to calculate
only the start and completion times for the first and
the last sublot for each job on every machine. Note
that the properties apply only to lot streaming with
ESSs. However, after the initial lot splitting in
Section 4.1, each job is split into ESSs or CSSs, de-
pending on whether a job’s size JSi is divisible by
SZmin or not.

1. If JSi is divisible by SZmin, job Ji is split into
ESSs. Then to calculate the makespan/total flow time,
we need to compute only the start time of the first
sublot and the completion time of the last sublot for
job Ji on each machine according to Property 3.

2. If JSi is not divisible by SZmin, job Ji is split
into CSSs. According to Eqs. (18)–(21), there are
only two cases for the sublot sizes; thus, we can take
the lot splitting process as two parts of ESSs: the first

is′ equal sublots with the size specified in Eq. (19),
and the rest , ()i l in s′− equal sublots with the size
specified in Eq. (20). Thereby, we can apply Property
3 to the two parts, which means that we need to cal-
culate the completion time for the th()is′ sublot and

the start time for the th(1)is′ + sublot.
Based on the above-mentioned analysis, the

following efficient calculation steps are developed to
calculate the makespan/total flow time criterion for an
n-job m-machine lot streaming FSP with setup time.

Step 1: Obtain the processing sequence p={p(1),
p(2), ..., p(n)} from an individual that is being eval-
uated. Set the time when a machine becomes availa-
ble as ATl=0 for each l=1, 2, ..., m. Set k=1 and
TFT=0.

Step 2: Set i=p(k) and l=1.
Step 3: If l=1, then Ssti, l=ATl, meaning that M1

can set up for job Ji as soon as the machine is availa-
ble; otherwise, considering the sublot availability

,
, ,

, , 1 ,
, ,

, ,1 , , 1, , , ,

Spt pt JS , 1,
Cpt max{Spt pt JS , Cpt pt SZ }, 1,i l

i l i l

i l i l i
i l n

i l i l i i l n i l i l n

l
l−

+ == + + >

 (24)

, , 1 , , , 1
, ,

, , 1 , , , 1 , 1, , , ,

Spt pt SZ , 1,
Cpt

max{Spt pt SZ , Cpt pt SZ }, 1,i
i i

i l i l i i l
i l s

i l i l i i l i l s i l i l s

s l
s l′

′ ′−

′+ == ′+ + >
 (25)

, ,
, , 1

, , , 1, 1 , 1 , 1, 1

Cpt , 1,
Spt

max{Cpt , Spt pt SZ }, 1,
ii l s

i l s
i l s i l s i l i l s

l

l
′

′+
′ ′ ′− + − − +

==
+ >

 (26)

,
, ,

, , 1 , , , , 1
, ,

, , 1 , , , , 1 , 1, , , ,

Spt pt ()SZ , 1,
Cpt max{Spt pt ()SZ , Cpt pt SZ }, 1.i l

i l i l

i l s i l i l i l s
i l n

i l s i l i l i l s i l n i l i l n

n s l
n s l

′ ′+ +

′ ′+ + −

′+ − == ′+ − + >
(27)

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1011

constraint of Ssti, l=max{ATl, Cpti, l−1, l−sti, l} for the
attached setup, or Ssti, l=max{ATl, Cpti, l−1, l−sti, l} for
the detached setup.

Step 4: The start time for processing the first
sublot of Ji on Ml is , , 1 , , ,Spt Cst Sst st .i l i l i l i l= = +

Step 5: If the size of Ji is divisible by SZmin, the
completion time for the last sublot of Ji on Ml can be
determined according to Property 3, as shown in
Eq. (24); otherwise, according to the above-
mentioned discussion, we need to calculate the com-
pletion time for the (s′)th sublot and the start time for
the (is′ +1)th sublot of Ji on Ml using Eqs. (25) and (26),
where s′ is specified in Eq. (21). Then the comple-
tion time for the last sublot of Ji on Ml can be calcu-
lated by Eq. (27).

Step 6: Update
, , , AT =Cpt .

i ll i l n Execute l=l+1. If

l≤m, return to step 3.
Step 7: Execute TFT=TFT+ATm and k=k+1. If

k≤n, return to step 2; otherwise, obtain the makespan
Cmax=ATm.

The time complexity for the above calculation
steps is O(mn). This means that no matter how large
the total number of sublots is, the calculation time
nearly remains the same for the given n and m. It is
more efficient than the traditional way to calculate the
makespan/total flow time criterion.

4.2.3 Global search

During each round of iterative evolution, three
operators, mutation, crossover, and evaluation and
selection are conducted for each individual t

hx the
population Xt (h=1, 2, ..., PS) to produce the popula-
tion of the next generation Xt+1.

1. Mutation
For individual ,t

hx a mutated individual
1 1 1 1

, 1 , 2 , { , , ..., }t t t t
h h h h nv v v v+ + + += is generated by

1 2 3

1 () ,t t t t
h d d dv x F x x v+ = + − (28)

where d1, d2, and d3 are three different integers ran-
domly generated within [1, PS], and are different
from h. F∈[0, 2] is a real constant scaling factor.

If 1
,

t
h iv + (i=1, 2, ..., n) obtained through mutation

exceeds [0, 1], then perform

1 1 1
, , , 1

, 1 1 1
, , ,

, 0,

2 1 , 1.

t t t
h i h i h it

h i t t t
h i h i h i

v v v
v

v v v

+ + +

+

+ + +

 − + < =
 − + − >

 (29)

2. Crossover generation
For each h, randomly generate an integer within

[1, n] as j. Perform a crossover operation between t
hx

and +1t
hx by

1

, 1
,

,

, CR or ,
, otherwise.

t
h i it

h i t
h i

v r i j
u

x

+
+ ≤ ==

 (30)

A trial individual +1 +1 +1 +1
, 1 , 2 , ={ , , ..., }t t t t

h h h h nu u u u is

obtained. CR∈[0, 1] is the crossover probability and
ri (i=1, 2, ..., n) is a uniformly distributed random
value within [0, 1].

3. Evaluation and selection
Use the efficient calculation steps in

Section 4.2.2 to evaluate and choose one individual
among ,t

hx +1,t
hx and 1t

hu + as +1t
hx in the next genera-

tion using a greedy selection criterion. That is,
whichever the individual has the smallest
makespan/total flow time is selected.

4.2.4 Local search

To obtain a better performance, the best indi-
vidual in Xt+1, denoted as +1 +1 +1

best best, 1 best, 2={ , ,t t tx x x
+1

best, ..., },t
nx is selected to perform the interchange-

based local search procedure according to the fol-
lowing steps:

Step 1: Randomly generate an integer within [1,
n] and denote it as i1. Set k=1 and a temporary indi-
vidual 1

temp best temp temp,1 temp, 2 temp, ({ , , ..., }).t
nx x x x x x+′ ′ ′ ′ ′= =

Step 2: Randomly generate an integer within [1,
n] which is different from i1. Denote the integer as i2.
Interchange the values between

1temp, ix′ and
2temp, ix′ on

the temporary individual temp ,x′ which means jobs i1

and i2 are interchanged in the processing sequence.
Step 3: Evaluate the newly obtained tempx′ using

the calculation steps in Section 4.2.2. If tempx′ has a

smaller makespan/total flow time than 1
best ,
tx + set

1
best temp= .tx x+ ′

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1012

Step 4: Set k=k+1. If k≤n, return to step 2;
otherwise, the local search for the best individual is
finished.

4.3 Transfer adjustment

In this subsection, based on the best sequence
obtained in Section 4.2, we make some adjustments to
the initial transfer sublots to reduce the number of
transfers between machines without affecting the
obtained optimized makespan/total flow time. That is,
some sublots can be merged and transferred together
under the upper bound size constraint. The initial
transfer sublots become VSSs after the adjustment.

First, use the traditional calculation method to
obtain the start and completion times for each sublot
on each machine under the best sequence p={p(1),
p(2), ..., p(n)}. To maintain the makespan/total flow
time during transfer adjustment, we start by adjusting
the last job p(n) in the sequence, then job p(n−1), and
so forth. After transfer adjustments for each job (from
the last to the first) in the best sequence, the final
transfer sublots and the new start and completion
times can be obtained.

An example of lot streaming may be used to il-
lustrate the transfer adjustment process of a job in a
processing sequence (Fig. 5a). Job p(k) in Fig. 5a is
split into four equal transfer sublots with size SZmin
after initial splitting. Assume that SZmax=2×SZmin.
First, we delay the processing of the four sublots on
the last machine M3 as much as possible. If the
makespan criterion is considered (Fig. 5b), the first
two sublots can be merged when they are transferred
from M2 to M3, since they both finish processing on
M2 before the delayed start time of the first sublot on
M3. Similarly, the remaining two sublots can be
merged on M3. The initial transfer sublots can be
adjusted into two sublots, each of which with a size of
2×SZmin when transferred to machine M3. The size of
the emerged sublot will not exceed the upper bound
SZmax.

Second, we delay processing sublots of job p(k)
on M2 as much as possible without affecting the new
start times of all the sublots on M3. The second and
the third sublots can be merged when they are
transferred from M1 to M2 (Fig. 5c). The final transfer
sublots for job p(k) after adjustment are shown in
Fig. 5d. In this example, after adjustment on each
machine, the total number of transfers for job p(k)

from M1 to M2 and M2 to M3 is reduced from 8 to 5,
while the makespan criterion remains the same as
before. The reduction would be significant when the
job is large in size.

When the total flow time criterion is considered

in this example, the completion time of job π(k) on the
last machine should not be affected when delaying
processing sublots during the adjustment. Fig. 5e
shows the final transfer sublots of job π(k) after the
transfer adjustment for the total flow time criterion.

Fig. 5 Transfer adjustment for job π(k) in a processing
sequence: (a) lot streaming of job π(k) in a processing
sequence with other jobs; (b) delaying processing sublots
of job π(k) on M3 without affecting the makespan; (c)
delaying processing sublots of job π(k) on M2 without
affecting the makespan; (d) the final transfer sublots of
job π(k) for the makespan criterion; (e) transfer adjust-
ment of job π(k) for the total flow time criterion
The number in each bar refers to the time duration of the
sublot

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1013

4.4 Time complexity of the method

In the TSM, most of the total computation time is
attributed to stage 2, where iterative evolution is in-
volved. Therefore, we focus on the analysis of time
complexity in stage 2. The computation time of the
DE-based optimization is spent mostly in iterative
evolution, which includes global and local searches.
Mutation, crossover, and selection are carried out in
the global search. The time complexity for every
mutation and crossover is O(n). During the selection
procedure, evaluation is required to obtain the
makespan/total flow time criterion for the mutated
and trial individuals, and the time complexity is O(mn)
for each individual. Considering the population size
PS, the total time complexity of the global search is
PS(2O(n)+2O(mn)).

During the local search, the best individual is
selected to perform the interchange procedure, which
occurs n times. An evaluation is required each time
and two jobs in the processing sequence are inter-
changed. Therefore, the local search has a time com-
plexity of O(n2m).

Both the global and local searches are performed
tmax times; so, the total time complexity of the pro-
posed algorithm is

max

max max

2
max max

(, PS, ,)
PS(2 () 2 ()) ()

PS () ().

O t n m
t O n O mn t O n n m

t O mn t O n m

≈ + + ⋅ ⋅

≈ +

 (31)

We can see that the maximum number of itera-

tions, the population size, and the number of jobs and
machines determine the computational burden of the
algorithm. Note that the time complexity has little
relation with sizes of production jobs (lots) according
to the efficient calculation developed in Section 4.2.2.

5 Experiments and performance analysis

Five different datasets from the appendices of
Marimuthu et al. (2008) and Chakaravarthy et al.
(2013) were used to evaluate the performance of the
TSM on a lot streaming FSP. Each dataset in Mari-
muthu et al. (2008) was a problem with n=50 and m=7,
and m was extended by Chakaravarthy et al. (2013) to

10. Smaller-sized problems can be generated from the
same dataset. For any n′≤50 and m′≤10, the data up to
the n′th column and (2m′+1)th row in a dataset provide
information about job size, setup time, and processing
time for a problem with n′ jobs and m′ machines. The
datasets were initially generated for lot streaming
with an unbounded sublot size and attached setups.
5.1 Experiments on lot streaming with an un-
bounded sublot size

In the problem formulated in Section 2, when
SZmin=1 and SZmax is unlimited, the problem becomes
lot streaming with an unbounded sublot size. In this
case, Baker (1995) provided an optimal makespan for
the two-machine problem. Therefore, we first tested
the TSM in the two-machine problem to see whether
it could obtain the same makespan as Baker’s algo-
rithm (BA), and how fast and stable TSM can achieve
the optimal makespan. Then we conducted experi-
ments on the multi-machine problem for the
makespan/total flow time criterion, and compared the
results with those from the GA and the hybrid genetic
algorithm (HEA) proposed by Marimuthu et al.
(2008), and the differential evolution algorithm (DEA)
and PSO proposed by Chakaravarthy et al. (2013).

The TSM was coded with Visual C++.NET 2010
and run on a personal computer with an Intel
i5-3320M CPU, 2.60-GHz processor, and 4.00-GB
RAM. Parameters involved in the algorithm in stage 2
were set as PS=n, tmax=100n, CR=0.1, and F=0.7. The
maximum number of iterations and the population
size were set as the values used by Marimuthu et al.
(2008). The results obtained over 30 runs are pre-
sented in Tables 3–7. The makespan/total flow time
marked in bold refers to the minimum makespan/total
flow time.

From Table 3, we can see that TSM (the
three-stage method) can always obtain the optimal
makespan with fast convergence in each run for the
two-machine problem. For many cases in Tables 4–7,
TSM outperforms GA, DEA, PSO, and HEA, espe-
cially when the size of the problem becomes large.

The CPU time consumed by TSM, GA, and HEA
presented in Tables 4 and 5 are not comparable, since
the computers with different performances may have
been used by Marimuthu et al. (2008); it is unclear
which calculation method was used by Marimuthu
et al. (2008).

http://cn.bing.com/dict/search?q=not&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=comparable&FORM=BDVSP6&mkt=zh-cn

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1014

However, from the computation time consumed
by GA and HEA for the 30-job problem and the in-
creasing rate of computation time with the increase of
the number of machines, we infer that Marimuthu
et al. (2008) may have used the traditional calculation,
which means that in addition to the number of ma-
chines, the size of jobs (or the number of sublots) also
affects the computation time. With the efficient cal-
culation steps developed in Section 4.2.2, however,
the CPU time of TSM slowly increases as the number

of machines increases. Since we set the parameters
PS=n and tmax=100n, the computation time of TSM
becomes proportional to mn3, according to the time
complexity analysis in Section 4.4. Therefore, com-
pared with the number of machines, the number of
jobs has a greater impact on computation time.

When optimizing for the total flow time criterion,
it takes longer for TSM to reach convergence, and the
standard deviations are larger compared with the
results of TSM when optimizing the makespan

Table 3 Performance of TSM on the two-machine problem with the makespan criterion

n Dataset BA
TSM

n Dataset BA
TSM

BM SD AG (s) AT (s) BM SD AG (s) AT (s)

15

1 429 429 0 0.0013 0.96

35

1 914 914 0 0.0030 6.26
2 363 363 0 0.0007 0.99 2 772 772 0 0.0143 6.30
3 249 249 0 0.0007 0.99 3 709 709 0 0.0024 6.35
4 291 291 0 0.0008 0.98 4 720 720 0 0.0028 6.31
5 305 305 0 0.0011 0.98 5 892 892 0 0.0052 6.30

25

1 648 648 0 0.0016 2.37

50

1 1258 1258 0 0.0042 15.56
2 581 581 0 0.0045 2.37 2 1153 1153 0 0.0180 15.54
3 436 436 0 0.0012 2.39 3 1013 1013 0 0.0037 15.51
4 489 489 0 0.0015 2.36 4 1035 1035 0 0.0056 15.51
5 671 671 0 0.0013 2.36 5 1250 1250 0 0.0146 15.52

BA: Baker’s algorithm; BM: best makespan over 30 runs; SD: standard deviation of makespan obtained over 30 runs; AG:
average CPU time consumed to reach convergence over 30 runs; AT: average CPU time consumed for one run over 30 runs

Table 4 A comparison with DEA, PSO, GA, and HEA for the makespan criterion in the 30-job problem

m Dataset DEA PSO
GA HEA TSM

BM AT (s) BM AT (s) BM SD AG (s) AT (s)

3

1 796 796 803

22.25

796

36.37

796 0 0.0199 3.29
2 691 691 691 691 691 0 0.0022 3.31
3 625 625 625 625 625 0 0.0041 3.32
4 623 623 623 623 623 0 0.0048 3.30
5 770 770 770 770 770 0 0.0209 3.28

5

1 851 854 843

35.21

835

52.34

827 0.77 0.8499 3.31
2 748 749 747 747 747 0 0.0574 3.36
3 638 634 627 627 627 0 0.0387 3.42
4 677 677 677 677 677 0 0.0064 3.38
5 790 796 788 782 774 0 0.2142 3.39

7

1 888 896 878

50.92

870

65.20

855 0 0.4290 3.55
2 766 778 761 758 751 0.43 0.9918 3.44
3 702 709 701 696 686 0 0.2224 3.59
4 690 697 685 685 685 0 0.0423 3.50
5 821 829 810 796 786 0.81 0.9302 3.59

The results of DEA and PSO are from Chakaravarthy et al. (2013); the results of GA and HEA are from Marimuthu et al.
(2008); the makespan/total flow time marked in bold refers to the minimum makespan/total flow time; the underlined num-
bers are improved makespans. BA: Baker’s algorithm; BM: best makespan over 30 runs; SD: standard deviation of makespan
obtained over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs; AT: average CPU time consumed
for one run over 30 runs

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1015

criterion (Tables 4–7). This is probably because the
total flow time (the sum of the job completion times)
is larger than the makespan (the time of the last job
completion) for the same problem, and there tends to
be more possible processing sequences that lead to the
same flow time in the solution space.

If we allow transfer sublots to be a variable size
instead of a unit size, TSM can provide a solution
with fewer transfers between machines. Take the

15×2 problem with the makespan criterion in the No.
1 dataset as an example. From the Gantt chart illus-
trated in Fig. 6, the total number of transfers from M1
to M2 in the problem is reduced from 85 to 21.

In Fig. 6, the position and length of a bar reflect
the start time, duration, and completion time of sublot
processing. For the first sublot of a job on a machine,
the setup activity is included. The bar reflects both the
job setup and the sublot processing time.

Table 5 A comparison with DEA, PSO, GA, and HEA for the total flow time criterion in the 30-job problem

m Dataset DEA PSO
GA HEA TSM

BF AT (s) BF AT (s) BF SD AG (s) AT (s)

3

1 11 205 11 135 9829

23.51

9722

29.83

9573 14.908 2.5971 3.53
2 8794 8994 7361 7353 7229 4.616 2.1886 3.43
3 8743 8644 7589 7544 7448 7.830 2.5135 3.50
4 8466 8555 7616 7512 7365 5.579 2.3435 3.45
5 10 192 10 087 8716 8681 8467 9.724 1.7883 3.42

5

1 12 847 12 871 11 165

37.46

11 165

49.49

10 949 20.388 2.8396 3.80
2 10 532 10 527 8948 8880 8564 11.409 2.4266 3.65
3 9598 9759 8578 8513 8304 19.402 2.8864 3.80
4 9874 9836 8690 8616 8364 16.260 2.4867 3.73
5 10 919 11 175 9564 9379 9179 8.098 2.5279 3.65

7

1 13 696 13 767 12 039

51.85

11 949

67.56

11 727 26.235 2.9601 4.06
2 11 391 11 253 9894 9745 9414 12.952 2.8480 3.90
3 10 838 10 757 9517 9472 9279 21.890 2.9945 4.05
4 10 748 10 682 9541 9377 9026 15.132 2.7263 3.96
5 11 737 11 706 10 260 10 164 9889 18.273 2.7974 3.94

The underlined numbers are improved total flow times. BF: best total flow time over 30 runs; SD: standard deviation of
makespan obtained over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs; AT: average CPU
time consumed for one run over 30 runs. The results of DEA and PSO are from Chakaravarthy et al. (2013); the results of
GA and HEA are from Marimuthu et al. (2008); the makespan/total flow time marked in bold refers to the minimum
makespan/total flow time

Table 6 A comparison with DEA, and PSO for the makespan criterion in the 50-job problem

m Dataset DEA PSO
TSM

m Dataset DEA PSO
TSM

BM SD AG (s) AT (s) BM SD AG (s) AT (s)

3

1 1345 1345 1345 0 0.0078 16.22

7

1 1374 1384 1354 0 1.9212 19.33
2 1155 1155 1154 0 0.1556 16.10 2 1357 1361 1332 0 1.4852 19.48
3 1057 1057 1057 0 0.0244 16.14 3 1169 1170 1133 0.24 7.5705 19.36
4 1148 1148 1148 0 0.0135 16.12 4 1225 1228 1189 0 1.3111 19.26
5 1254 1258 1251 0 0.5900 15.99 5 1340 1358 1265 0.84 11.261 19.43

5

1 1349 1352 1347 0 0.1541 18.81

10

1 1458 1475 1370 4.68 14.914 22.80
2 1334 1336 1329 0 0.3069 18.78 2 1422 1422 1338 1.85 13.196 22.83
3 1076 1075 1059 0 0.2677 18.76 3 1269 1280 1195 4.31 14.338 22.61
4 1190 1197 1186 0 0.0749 18.73 4 1307 1306 1230 2.75 14.568 22.65
5 1305 1316 1258 0 6.2930 18.81 5 1414 1427 1316 3.72 14.591 22.81

The results of DEA and PSO are from Chakaravarthy et al. (2013); the makespan/total flow time marked in bold refers to the
minimum makespan/total flow time; the underlined numbers are improved makespans. BM: best makespan over 30 runs; SD:
standard deviation of makespan obtained over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs;
AT: average CPU time consumed for one run over 30 runs

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1016

5.2 Experiments on lot streaming with a bounded
sublot size

To evaluate the performance of TSM on a lot
streaming FSP with a bounded sublot size, we set
JSi=10, SZmax=10, and SZmin=3 for each job Ji in the
No. 1 dataset, and applied TSM under the same pa-
rameter setting as that in Section 5.1. The results over
30 runs are shown in Tables 8 and 9.

Note that for the 10×10, 30×3, 30×7, 40×3, 40×5,
50×3, 50×5, and 50×7 problems in the No. 1 dataset,
TSM could obtain the minimum makespan in each
run (i.e., SD=0), which can be seen from Tables 4, 6,
and 8. We conclude that besides the size of the prob-
lem. The problem itself could also affect the perfor-
mance of the algorithm (e.g., when there is more than
one possible processing sequence that leads to the
minimum makespan in the solution space, it would be
easier to find the optimal solution).

The Gantt charts for the 5×5 problem with the
makespan/total flow time criterion in the No. 1
dataset when JSi=10, SZmin=3, and SZmax=10 are
illustrated in Figs. 7 and 8. For the problem with the
makespan criterion, after the size adjustment in the
third stage, the total number of transfers from M1 to
M2, M2 to M3, M3 to M4, and M4 to M5 is reduced from
60 to 42 (Fig. 7), compared with the initial splitting
obtained through the first stage, where each job is
split into three sublots on each machine with sizes 4, 3,
and 3, respectively. For the problem with the total
flow time criterion, the total number of transfers is
reduced from 60 to 46 (Fig. 8).

To show the efficiency of the calculation steps
developed in Section 4.2.2 with the increase of job
size JSi (i=1, 2, ..., n), we conducted experiments on
the 50×10 problem with makespan criterion in the No.
1 dataset under different values of JSi (from 10 to 100
with an increment of 10) for each job. The variation

Table 7 A comparison between DEA and PSO for the total flow time criterion in the 50-job problem

m Dataset DEA PSO
TSM

m Dataset DEA PSO
TSM

BF SD AG (s) AT (s) BF SD AG (s) AT (s)

3

1 30 751 30 178 25 040 36.108 12.725 17.67

7

1 34 514 34 346 28 790 66.106 14.023 20.49
2 26 879 27 579 21 553 50.460 12.843 17.71 2 33 663 33 809 26 550 64.169 14.884 20.26
3 24 848 24 429 19 217 28.189 12.657 17.70 3 29 351 29 924 23 241 64.769 15.437 20.27
4 25 906 25 852 20 934 30.154 12.291 17.57 4 31 733 31 252 25 028 88.003 15.518 19.95
5 29 185 28 471 22 878 27.495 12.902 17.51 5 32 606 33 376 26 303 71.508 15.205 20.12

5

1 32 775 33 390 27 170 73.194 14.167 19.26

10

1 37 760 37 452 30 798 73.554 17.691 23.67

2 32 439 32 158 24 771 61.412 14.596 19.07 2 35 461 35 391 28 361 94.647 17.183 23.26

3 26 377 26 650 21 267 68.665 14.234 19.29 3 32 269 32 263 25 794 73.184 17.086 23.18

4 29300 29 505 23320 55.557 13.934 19.00 4 33 976 33 267 27 406 83.66 17.476 23.09

5 31 732 31 350 24 653 58.744 14.046 19.09 5 35 589 35 553 28 268 66.106 14.023 20.49

The results of DEA and PSO are from Chakaravarthy et al. (2013). The makespan/total flow time marked in bold refers to the
minimum makespan/total flow time. BF: the best total flow time over 30 runs; SD: standard deviation of makespan obtained
over 30 runs; AG: average CPU time consumed to reach convergence over 30 runs; AT: average CPU time consumed for one
run over 30 runs

M1

M2

J2 J15

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 429

J1 J11 J8 J14 J3 J9 J5 J12 J4 J10 J13 J6 J7

J2 J2 J15 J15 J15 J1 J1 J11 J11 J8 J8 J14 J3 J9 J5 J12 J4 J10 J13 J6 J7

36887478333244343211

2 9 7 6 6 3 8 7 4 7 8 8 1 6 3

T

Fig. 6 Gantt chart for the 15×2 problem in the No. 1 dataset with VSS and the makespan criterion (Cmax=429)
Each bar represents a sublot, and the number in each bar refers to the size of the sublot

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1017

in the average CPU time (the vertical axis, in seconds)
consumed by TSM for one run across different values
of JSi (the horizontal axis) under three different cases
of SZmin=1, 3, and 5 is illustrated in Fig. 9.

The efficient calculation shows the benefit of
saving computation time over traditional calculation,
and the benefit is the most remarkable in the SZmin=1
case when using unit size transfer sublots. The

Table 8 Performance of the TSM on a lot streaming FSP with a bounded sublot size for the makespan criterion in the
No. 1 dataset

n×m BM SD AG (s) AT (s) n×m BM SD AG (s) AT (s)

5×5 345 1.28 0.0005 0.03 40×5 1854 0 1.2036 11.16
10×10 621 0 0.0202 0.16 40×7 1874 0.81 5.6471 12.20
20×10 1108 3.26 0.7190 1.06 40×10 1969 5.37 10.374 16.74
30×3 1349 0 0.2713 1.42 50×3 2290 0 0.0904 19.66
30×5 1393 2.66 0.8399 1.42 50×5 2296 0 0.8687 21.65
30×7 1511 0 0.1357 2.22 50×7 2320 0 6.4719 23.50

30×10 1542 3.55 1.9753 2.47 50×10 2393 6.19 12.5860 31.12
40×3 1843 0 0.1565 10.21

BM: best makespan over 30 runs; SD: standard deviation of makespan obtained over 30 runs; AG: average CPU time con-
sumed to reach convergence over 30 runs; AT: average CPU time consumed for one run over 30 runs

Table 9 Performance of the TSM on a lot streaming FSP with a bounded sublot size for the total flow time criterion in
the No. 1 dataset

n×m BF SD AG (s) AT (s) n×m BF SD AG (s) AT (s)

5×5 1076 0 0.0006 0.08 40×5 37 762 112.530 5.9827 12.03
10×10 4054 14.306 0.0500 0.20 40×7 40 494 116.482 7.1991 12.35
20×10 13 305 45.238 0.8095 1.47 40×10 43 742 164.640 9.3931 17.24
30×3 18 847 26.013 1.5563 1.98 50×3 50 157 91.777 13.5043 20.35
30×5 21 931 71.740 2.0219 2.57 50×5 56 290 225.074 15.1491 22.15
30×7 24 152 54.105 2.1536 2.93 50×7 60 289 237.065 15.6489 24.32
30×10 26 299 95.194 2.4919 3.31 50×10 64 921 224.219 21.8573 33.32
40×3 32 982 73.208 5.5635 10.56

BF: best total flow time over 30 runs; SD: standard deviation of makespan obtained over 30 runs; AG: average CPU time
consumed to reach convergence over 30 runs; AT: average CPU time consumed for one run over 30 runs

M1

M2

M3

M4

J4

10 10 10 10

64 37 10 10 10

0 50 100 150 200 250 300 345

4 3 3 4 3 3 4 3 3 4 3 3 4 3 3

7 3 4 3 3 4 3 3 7 3 4 3

3

10 10 10 10 4 3 3M5

J3J5 J1J2

10

T

Fig. 7 Gantt chart for the 5×5 problem in the No. 1 dataset with the bounded VSS and the makespan criterion (Cmax=345)
The number in each bar refers to the size of the sublot, and the number of bars from job Ji with the same color on machine
Ml represents the number of sublots of Ji when they are transferred to Ml (i=1, 2, ..., 5 and l=1, 2, ..., 5)

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1018

computation time of traditional calculation always
increases as job size increases in all three cases. With
the efficient calculation, the value of job size has no
influence on computation time in the SZmin=1 and
SZmin=5 cases, and also in the SZmin=3 case when
JSi=30, 60, and 90 (when JSi is divisible by SZmin).

When JSi is not divisible by SZmin, the computation-
time is a little longer, but does not increase as job size
increases.

Note that the transfer adjustment in the third
stage aims at reducing the number of transfers be-
tween machines without affecting the optimized
makespan/total flow time criterion obtained from the
second stage. For the best results obtained above over
30 runs for the 50×10 problem with the makespan
criterion in the No. 1 dataset under SZmin=1 and
SZmin=5 cases, the variation in the total number of
transfers (the vertical axis) across different values of
JSi (the horizontal axis) is illustrated in Fig. 10. The
results show that the transfer adjustment reduces the
number of transfers between machines, and the re-
duction can be significant when the number of jobs is
large. The reduction of transfers in the SZmin=5 case is
less significant than that in the SZmin=1 case, since the
initial total number of transfer sublots is small in the
SZmin=5 case.

The experimental results confirm the effective-
ness of TSM from the following aspects: (1) Job se-
quencing optimization under the initial lot splitting
can provide the desirable optimization solution; (2)
The efficient calculation for the makespan/total flow
time criterion can save a great deal of computation
time in lot streaming, especially when the number of
jobs (production lots) is large; (3) Transfer adjustment
reduces the number of transfers between machines
without affecting the optimized criterion, by adjusting
the initial transfer sublots into variable size sublots
(VSSs). In addition, we find that although a local

1010 10 10 10

64 1010 10 10

4 6 4 3 3 4 3 3 4 3 3 4 3 3

4 6 4 6 4 3 3 4 3 3 4 3 3

4 3 3 7 3 4 3 3 7 3 4 3 3

M1

M2

M3

M4

M5

0 50 100 150 200 250 300 349

J4J3 J5 J1J2

T

Fig. 8 Gantt chart for the 5×5 problem in the No. 1 dataset with the bounded VSS and the total flow time criterion
(TFT=1076)
The number in each bar refers to the size of the sublot, and the number of bars from job Ji with the same color on machine Ml
represents the number of sublots of Ji when they are transferred to Ml (i=1, 2, ..., 5 and l=1, 2, ..., 5)

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100

SZmin=1 SZmin=3 SZmin=5

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100

(a)

(b)

Job size

Job size

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

(s
)

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

(s
)

Fig. 9 Variation in the average computation time across
different values of JSi: (a) traditional calculation; (b) effi-
cient calculation
References to color refer to the online version of this figure

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1019

search procedure in an evolutionary algorithm can be
necessary for improving the optimization ability for a
large-scale and complex problem, it leads to an inev-
itable increase in computation time. We look forward
to developing a more effective local search with
greater optimization power and less computation time
in our future work.

6 Conclusions

In this paper, we have investigated a lot
streaming FSP with bounded variable size sublots,
aiming at minimizing the makespan/total flow time.
The problem has been formulated and a TSM has
been proposed to solve the problem efficiently. Dur-
ing the first stage, each job has been split according to
the lower bound on sublot size, which leads to the
fastest (or close to the fastest) completion for a pro-
cessing sequence. Then we have developed a
DE-based optimization with efficient calculation for
the makespan/total flow time criterion to find the
optimal processing sequence of jobs, based on the

initial lot splitting in stage 1. During the third stage, to
decrease the number of transfers between machines,
some adjustments to sublots have been made based on
the best sequence obtained through stage 2 to adjust
the initial transfer sublots into VSSs under the upper
bound size constraint.

Experimental results of lot streaming with un-
bounded and bounded sublot size cases have verified
the effectiveness of the proposed TSM. Compared
with the results reported before, experimental results
on two- and multi-machine problems in five datasets
have revealed the good performance of the proposed
method in providing a better solution with less com-
putational effort. We have provided a new method for
the flow shop scheduling problem with lot streaming.
The efficient calculation and transfer adjustment can
be incorporated into other algorithms to save com-
putation time and reduce the number of transfers. In
future work, we will consider multi-objective and
dynamic scheduling in the problem to apply real-time
knowledge to achieve greater production system
flexibility and enhance throughput.

Compliance with ethics guidelines

Hai-yan WANG, Fu ZHAO, Hui-min GAO, and John W.
SUTHERLAND declare that they have no conflict of interest.

References
Baker KR, 1995. Lot streaming in the two-machine flow shop

with setup times. Ann Oper Res, 57(1):1-11.
 https://doi.org/10.1007/BF02099687
Biskup D, Feldmann M, 2006. Lot streaming with variable

sublots: an integer programming formulation. J Oper Res
Soc, 57(3):296-303.

 https://doi.org/10.1057/palgrave.jors.2602016
Chakaravarthy GV, Marimuthu S, Sait AN, 2013. Performance

evaluation of proposed differential evolution and particle
swarm optimization algorithms for scheduling m-machine
flow shops with lot streaming. J Intell Manuf,
24(1):175-191.

 https://doi.org/10.1007/s10845-011-0552-2
Chakaravarthy GV, Marimuthu S, Ponnambalam SG, et al.,

2014. Improved sheep flock heredity algorithm and arti-
ficial bee colony algorithm for scheduling m-machine
flow shops lot streaming with equal size sub-lot problems.
Int J Prod Res, 52(5):1509-1527.

 https://doi.org/10.1080/00207543.2013.848304
Cheng M, Mukherjee NJ, Sarin SC, 2013. A review of lot

streaming. Int J Prod Res, 51(23-24):7023-7046.
 https://doi.org/10.1080/00207543.2013.774506
Davendra D, Senkerik R, Zelinka I, et al., 2014. Utilising the

chaos-induced discrete self organising migrating algo-
rithm to solve the lot-streaming flowshop scheduling

0
5000

10 000
15 000
20 000
25 000
30 000
35 000
40 000
45 000

10 20 30 40 50 60 70 80 90 100

Without transfer adjustment With transfer adjustment

500

2500

4500

6500

8500

10 500

12 500

14 500

10 20 30 40 50 60 70 80 90 100

(a)

(b)

Job size

Job size

To
ta

l n
um

be
r o

f t
ra

ns
fe

rs
To

ta
l n

um
be

r o
f t

ra
ns

fe
rs

Fig. 10 Variation in the total number of transfers across
different values of JSi: (a) SZmin=1; (b) SZmin=5
References to color refer to the online version of this figure

http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Vijay+chakaravarthy%2C+G%22
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Marimuthu%2C+S%22
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Naveen+Sait%2C+A%22
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ1NCgIxDIWLa90IiksvUJh22sxkLQ4eQA_Q_C1nNffHVATxBlmEvO9BkhfCVfsdD6AmEtaG4l01CzLYnLEMMv8FTex_Q205hp2up_Ba7s_bI37DAKL2H-HR2jgashNuIyEFyVIzDTZWcFFMOQs7eUwOOI1J0ZWMeWJ2_i9SayvpHA6tL42v2-e4TC5eKHa3UioZYAFKqORuMaOhVmArb2vVMyo
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ1NCgIxDIWLa90IiksvUJh22sxkLQ4eQA_Q_C1nNffHVATxBlmEvO9BkhfCVfsdD6AmEtaG4l01CzLYnLEMMv8FTex_Q205hp2up_Ba7s_bI37DAKL2H-HR2jgashNuIyEFyVIzDTZWcFFMOQs7eUwOOI1J0ZWMeWJ2_i9SayvpHA6tL42v2-e4TC5eKHa3UioZYAFKqORuMaOhVmArb2vVMyo
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ1NCgIxDIWLa90IiksvUJh22sxkLQ4eQA_Q_C1nNffHVATxBlmEvO9BkhfCVfsdD6AmEtaG4l01CzLYnLEMMv8FTex_Q205hp2up_Ba7s_bI37DAKL2H-HR2jgashNuIyEFyVIzDTZWcFFMOQs7eUwOOI1J0ZWMeWJ2_i9SayvpHA6tL42v2-e4TC5eKHa3UioZYAFKqORuMaOhVmArb2vVMyo
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ1NCgIxDIWLa90IiksvUJh22sxkLQ4eQA_Q_C1nNffHVATxBlmEvO9BkhfCVfsdD6AmEtaG4l01CzLYnLEMMv8FTex_Q205hp2up_Ba7s_bI37DAKL2H-HR2jgashNuIyEFyVIzDTZWcFFMOQs7eUwOOI1J0ZWMeWJ2_i9SayvpHA6tL42v2-e4TC5eKHa3UioZYAFKqORuMaOhVmArb2vVMyo
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Chakaravarthy%2C+GV%22
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Marimuthu%2C+S%22
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Ponnambalam%2C+SG%22
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ0xDsIwDEUjdhYkEGMvUCmtGyeeERUHgAPEsT124v7CKSzsHrzYX0_69g9hIK6RpFIiXCQXzQwmC3KeLEsE-wua-NoO922-nsJBt3N4rffn7TH-wgBG7ZQyFhLaLVWACtW4WcpEjaPlinNln1kXV25oatojdWeHCTXXAEYvLtMlHGs3jW_v_bhMrmHwzqopAGHrX1oyF9CCotFxM1GSD69SNIM
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ0xDsIwDEUjdhYkEGMvUCmtGyeeERUHgAPEsT124v7CKSzsHrzYX0_69g9hIK6RpFIiXCQXzQwmC3KeLEsE-wua-NoO922-nsJBt3N4rffn7TH-wgBG7ZQyFhLaLVWACtW4WcpEjaPlinNln1kXV25oatojdWeHCTXXAEYvLtMlHGs3jW_v_bhMrmHwzqopAGHrX1oyF9CCotFxM1GSD69SNIM
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ0xDsIwDEUjdhYkEGMvUCmtGyeeERUHgAPEsT124v7CKSzsHrzYX0_69g9hIK6RpFIiXCQXzQwmC3KeLEsE-wua-NoO922-nsJBt3N4rffn7TH-wgBG7ZQyFhLaLVWACtW4WcpEjaPlinNln1kXV25oatojdWeHCTXXAEYvLtMlHGs3jW_v_bhMrmHwzqopAGHrX1oyF9CCotFxM1GSD69SNIM
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Zelinka%2C+Ivan%22
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVV07CkJBDFystREUSy_wYPPMflKLDw-gB0g2Sfkq74-7IohVqoEUYchAJhPC2YaPJ5OBaDMm7VNVlVr2OhNGrX9BE9sfeS37sLH1EJ7L7XG9T98wgMkASp5kvjgLjI9kppojai-euK87jbFwmTEV52YxNQSBShYvzOId7agOx7DjcTS-vj7mMj31RmmoFUzimTALkElXizM5WcrN8Q2Z5jPq
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVV07CkJBDFystREUSy_wYPPMflKLDw-gB0g2Sfkq74-7IohVqoEUYchAJhPC2YaPJ5OBaDMm7VNVlVr2OhNGrX9BE9sfeS37sLH1EJ7L7XG9T98wgMkASp5kvjgLjI9kppojai-euK87jbFwmTEV52YxNQSBShYvzOId7agOx7DjcTS-vj7mMj31RmmoFUzimTALkElXizM5WcrN8Q2Z5jPq
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVV07CkJBDFystREUSy_wYPPMflKLDw-gB0g2Sfkq74-7IohVqoEUYchAJhPC2YaPJ5OBaDMm7VNVlVr2OhNGrX9BE9sfeS37sLH1EJ7L7XG9T98wgMkASp5kvjgLjI9kppojai-euK87jbFwmTEV52YxNQSBShYvzOId7agOx7DjcTS-vj7mMj31RmmoFUzimTALkElXizM5WcrN8Q2Z5jPq

Wang et al. / Front Inform Technol Electron Eng 2019 20(7):1002-1020 1020

problem with setup time. Soft Comput, 18(4):669-681.
 https://doi.org/10.1007/s00500-014-1219-7
Defersha FM, Chen MY, 2010. A hybrid genetic algorithm for

flowshop lot streaming with setups and variable sublots.
Int J Prod Res, 48(6):1705-1726.

 https://doi.org/10.1080/00207540802660544
Defersha FM, Chen MY, 2011. A genetic algorithm for one-job

m-machine flowshop lot streaming with variable sublots.
Int J Oper Res, 10(4):458-468.

 https://doi.org/10.1504/IJOR.2011.039713
Han YY, Gong DW, Jin YC, et al., 2016. Evolutionary multi-

objective blocking lot-streaming flow shop scheduling
with interval processing time. Appl Soft Comput, 42:229-
245. https://doi.org/10.1016/j.asoc.2016.01.033

Kim K, Jeong IJ, 2009. Flow shop scheduling with no-wait
flexible lot streaming using an adaptive genetic algorithm.
Int J Adv Manuf Technol, 44(11-12):1181-1190.

 https://doi.org/10.1007/s00170-007-1236-0
Kumar S, Bagchi TP, Sriskandarajah C, 2000. Lot streaming

and scheduling heuristics for m-machine no-wait flow-
shops. Comput Ind Eng, 38(1):149-172.
 https://doi.org/10.1016/S0360-8352(00)00035-8

Liu JY, 2008. Single-job lot streaming in m-1 two-stage hybrid
flowshops. Eur J Oper Res, 187(3):1171-1183.

 https://doi.org/10.1016/j.ejor.2006.06.066
Liu SC, 2003. A heuristic method for discrete lot streaming

with variable sublots in a flow shop. Int J Adv Manuf
Technol, 22(9-10):662-668.

 https://doi.org/10.1007/s00170-002-1516-7
Marimuthu S, Ponnambalam SG, Jawahar N, 2008. Evolu-

tionary algorithms for scheduling m-machine flow shop
with lot streaming. Robot Comput Integr Manuf, 24(1):
125-139. https://doi.org/10.1016/j.rcim.2006.06.007

Marimuthu S, Ponnambalam SG, Jawahar N, 2009. Threshold
accepting and ant-colony optimization algorithms for
scheduling m-machine flow shops with lot streaming. J
Mater Process Technol, 209(2):1026-1041.

 https://doi.org/10.1016/j.jmatprotec.2008.03.013
Martin CH, 2009. A hybrid genetic algorithm/mathematical

programming approach to the multi-family flowshop
scheduling problem with lot streaming. Omega, 37(1):
126-137. https://doi.org/10.1016/j.omega.2006.11.002

Mukherjee NJ, Sarin SC, Singh S, 2017. Lot streaming in the
presence of learning in sublot-attached setup times and
processing times. Int J Prod Res, 55(6):1623-1639.

 https://doi.org/10.1080/00207543.2016.1200760

Nejati M, Mahdavi I, Hassanzadeh R, et al., 2014. Multi-job lot
streaming to minimize the weighted completion time in a
hybrid flow shop scheduling problem with work shift
constraint. Int J Adv Manuf Technol, 70(1-4):501-514.

 https://doi.org/10.1007/s00170-013-5265-6
Nejati M, Mahdavi I, Hassanzadeh R, et al., 2016. Lot

streaming in a two-stage assembly hybrid flow shop
scheduling problem with a work shift constraint. J Ind
Prod Eng, 33(7):459-471.

 https://doi.org/10.1080/21681015.2015.1126653
Onwubolu G, Davendra D, 2006. Scheduling flow shops using

differential evolution algorithm. Eur J Oper Res, 171(2):
674-692. https://doi.org/10.1016/j.ejor.2004.08.043

Pan QK, Suganthan PN, Liang JJ, et al., 2011. A local-best
harmony search algorithm with dynamic sub-harmony
memories for lot-streaming flow shop scheduling prob-
lem. Expert Syst Appl, 38(4):3252-3259.

 https://doi.org/10.1016/j.eswa.2010.08.111
Reiter S, 1966. A system for managing job-shop production. J

Bus, 39(3):371-393. https://doi.org/10.1086/294867
Sarin SC, Kalir AA, Chen M, 2008. A single-lot, unified

cost-based flow shop lot-streaming problem. Int J Prod
Econ, 113(1):413-424.

 https://doi.org/10.1016/j.ijpe.2007.10.002
Storn R, Price K, 1997. Differential evolution—a simple and

efficient adaptive scheme for global optimization over
continuous spaces. J Glob Optim, 11(4):341-359.
https://doi.org/10.1023/a:1008202821328

Tasgetiren MF, Pan QK, Suganthan PN, et al., 2013. A variable
iterated greedy algorithm with differential evolution for
the no-idle permutation flowshop scheduling problem.
Comput Oper Res, 40(7):1729-1743.

 https://doi.org/10.1016/j.cor.2013.01.005
Tseng CT, Liao CJ, 2008. A discrete particle swarm optimiza-

tion for lot-streaming flowshop scheduling problem. Eur
J Oper Res, 191(2):360-373.

 https://doi.org/10.1016/j.ejor.2007.08.030
Ventura JA, Yoon SH, 2013. A new genetic algorithm for

lot-streaming flow shop scheduling with limited capacity
buffers. J Intell Manuf, 24(6):1185-1196.

 https://doi.org/10.1007/s10845-012-0650-9
Wang L, Pan QK, Suganthan PN, et al., 2010. A novel hybrid

discrete differential evolution algorithm for blocking flow
shop scheduling problems. Comput Oper Res, 37(3):509-
520. https://doi.org/10.1016/j.cor.2008.12.004

http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVV07CkJBDFystREUSy_wYPPMflKLDw-gB0g2Sfkq74-7IohVqoEUYchAJhPC2YaPJ5OBaDMm7VNVlVr2OhNGrX9BE9sfeS37sLH1EJ7L7XG9T98wgMkASp5kvjgLjI9kppojai-euK87jbFwmTEV52YxNQSBShYvzOId7agOx7DjcTS-vj7mMj31RmmoFUzimTALkElXizM5WcrN8Q2Z5jPq
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Nejati%2C+Mohsen%22
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Mahdavi%2C+Iraj%22
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Hassanzadeh%2C+Reza%22
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ0xDsIwDEUjdhYkEGMvUCmpkzieERUHgAPYsTN24v4iKSwcwLKnbz35W9-5iYQ9KVOiHBWLoUDTmAVDQ_XQ_oImvrbDXZzWkzvYdnav9f68PeZfGMBcQ-eombvWKhi35INmAc2KSIul0PqOLQGzpKUEHh0ixcUG3HAddyQSqRAu7sjDNL699-cyvbqpT8bNACjXUYNSwEpW8x03EyX9AEBwMtg
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ0xDsIwDEUjdhYkEGMvUCmpkzieERUHgAPYsTN24v4iKSwcwLKnbz35W9-5iYQ9KVOiHBWLoUDTmAVDQ_XQ_oImvrbDXZzWkzvYdnav9f68PeZfGMBcQ-eombvWKhi35INmAc2KSIul0PqOLQGzpKUEHh0ixcUG3HAddyQSqRAu7sjDNL699-cyvbqpT8bNACjXUYNSwEpW8x03EyX9AEBwMtg
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ0xDsIwDEUjdhYkEGMvUCmpkzieERUHgAPYsTN24v4iKSwcwLKnbz35W9-5iYQ9KVOiHBWLoUDTmAVDQ_XQ_oImvrbDXZzWkzvYdnav9f68PeZfGMBcQ-eombvWKhi35INmAc2KSIul0PqOLQGzpKUEHh0ixcUG3HAddyQSqRAu7sjDNL699-cyvbqpT8bNACjXUYNSwEpW8x03EyX9AEBwMtg
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVZ0xDsIwDEUjdhYkEGMvUCmpkzieERUHgAPYsTN24v4iKSwcwLKnbz35W9-5iYQ9KVOiHBWLoUDTmAVDQ_XQ_oImvrbDXZzWkzvYdnav9f68PeZfGMBcQ-eombvWKhi35INmAc2KSIul0PqOLQGzpKUEHh0ixcUG3HAddyQSqRAu7sjDNL699-cyvbqpT8bNACjXUYNSwEpW8x03EyX9AEBwMtg
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-511K3R1-6&_user=1003047&_coverDate=04%2F30%2F2011&_alid=1664482052&_rdoc=5&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=595&_acct=C000050175&_version=1&_urlVersion=0&_userid=1003047&md5=7e5b9c4878e0cb83109b65782328660c&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-511K3R1-6&_user=1003047&_coverDate=04%2F30%2F2011&_alid=1664482052&_rdoc=5&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=595&_acct=C000050175&_version=1&_urlVersion=0&_userid=1003047&md5=7e5b9c4878e0cb83109b65782328660c&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-511K3R1-6&_user=1003047&_coverDate=04%2F30%2F2011&_alid=1664482052&_rdoc=5&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=595&_acct=C000050175&_version=1&_urlVersion=0&_userid=1003047&md5=7e5b9c4878e0cb83109b65782328660c&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-511K3R1-6&_user=1003047&_coverDate=04%2F30%2F2011&_alid=1664482052&_rdoc=5&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=595&_acct=C000050175&_version=1&_urlVersion=0&_userid=1003047&md5=7e5b9c4878e0cb83109b65782328660c&searchtype=a
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTseng,%2520Chao-Tang%26authorID%3D24280678100%26md5%3Da7a155846ab7d8cc90b29a26caff4de5&_acct=C000050175&_version=1&_userid=1003047&md5=47cdf7132c9ea7868946cea2f4f82dfe
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLiao,%2520Ching-Jong%26authorID%3D7401956694%26md5%3D608b8f9ae1910329fa495582daaeca6b&_acct=C000050175&_version=1&_userid=1003047&md5=eab5a4c12a9c9799d86478b1f54257a2
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235963%232008%23998089997%23690550%23FLA%23&_cdi=5963&_pubType=J&view=c&_auth=y&_acct=C000050175&_version=1&_urlVersion=0&_userid=1003047&md5=ca464187688a4a8be982fa436befc8b3
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Ventura%2C+Jos%C3%A9+A%22
http://buffalostate.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Yoon%2C+Suk-Hun%22
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVV27CgJBDFystREUS3_g4HZvN7upxcMP0A_I5lFedf-PORHEPsUUSYaBGSaEq245HkCNXVgJxbeqCTJYS5hHaX9FE_vfs5qPYafLKbzm-_P2GL5lAAMXZ61BI3TWlDlJpdKqKCWe6jiSU9KUu2Yg80ERcVDG1ioyFfBjd41TNJ7DgTbT-LJ-wmVycaC4qZVcugFm6BG1u1pMaKgF2PIbktsztg
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVV27CgJBDFystREUS3_g4HZvN7upxcMP0A_I5lFedf-PORHEPsUUSYaBGSaEq245HkCNXVgJxbeqCTJYS5hHaX9FE_vfs5qPYafLKbzm-_P2GL5lAAMXZ61BI3TWlDlJpdKqKCWe6jiSU9KUu2Yg80ERcVDG1ioyFfBjd41TNJ7DgTbT-LJ-wmVycaC4qZVcugFm6BG1u1pMaKgF2PIbktsztg
http://buffalostate.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwVV27CgJBDFystREUS3_g4HZvN7upxcMP0A_I5lFedf-PORHEPsUUSYaBGSaEq245HkCNXVgJxbeqCTJYS5hHaX9FE_vfs5qPYafLKbzm-_P2GL5lAAMXZ61BI3TWlDlJpdKqKCWe6jiSU9KUu2Yg80ERcVDG1ioyFfBjd41TNJ7DgTbT-LJ-wmVycaC4qZVcugFm6BG1u1pMaKgF2PIbktsztg

	Hai-yan WANG†‡1, Fu ZHAO2,3, Hui-min GAO1, John W. SUTHERLAND2
	Abstract: An important production planning problem is how to best schedule jobs (or lots) when each job consists of a large number of identical parts. This problem is often approached by breaking each job/lot into sublots (termed lot streaming). When ...
	Key words: Lot streaming; Flow-shop scheduling; Transfer sublots; Variable size; Bounded size; Differential evolution

