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Abstract: A novel controller for finding the best communication point is proposed for collecting data from a seabed platform by a 
single unmanned surface vehicle (USV) using underwater acoustic communication (UAC). As far as we know, extremum seeking 
based on climbing control is usually implemented by multiple vehicles or agents because of the large range of measurement and 
easy acquisition of gradient estimation. A single vehicle cannot rapidly estimate the field because of the limited extent for meas-
urement; therefore, it is difficult for a single vehicle to seek the extremum point in a field. In this study, an oscillation motion (OM) 
is designed for a single USV to acquire UAC’s link strength data between the seabed platform and the USV. The field for UAC’s 
link strength is updated using new measurement from an OM of the USV based on a multi-variable weight linear iteration method. 
A controller for seeking the best UAC’s point of the USV is designed using gradient climbing and artificial potential considering 
iterative estimation of an unknown field and an OM operation, and the stability is proved. The reliability and efficiency are shown 
in simulation results. 
 
Key words: Unmanned surface vehicle; Data collection; Underwater acoustic communication; Gradient climbing; Extremum 

seeking 
https://doi.org/10.1631/FITEE.1700732 CLC number: TP273 
 
 
1  Introduction 
 

Seabed platforms have been widely applied to 
ocean observation projects, such as seafloor obser-
vatory networks and hydrological investigations, 
which usually mount device measuring temperature, 
salinity, current, and so forth. Most seabed platforms 
are usually self-contained; therefore, the measure-
ment data cannot be transmitted to the shore station in 

real time. The data can be downloaded only when the 
seabed platforms are retrieved using large ships after 
a long period of deployment, such as several months 
or half a year. So, it is clear that there are some defi-
ciencies in the current mode of data collection, such 
as low efficiency, bad timeliness, and high cost. 

In recent years, a new kind of seabed platform 
mounted acoustic modem has appeared. The meas-
urement data can be transmitted to ships or buoys 
through underwater acoustic communication (UAC) 
in real time, and the data can be received by a shore 
station through wireless or satellite communication 
devices. In the Ocean Tracking Network Project of 
Canada, Dalhousie University has worked with the 
Satlantic Company to design and manufacture a sea-
bed platform with an acoustic modem, and the 
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measurement data can be delivered to a mother ship. 
Using a buoy relay for data collection via UAC, a 
seabed platform for tsunami warning and ocean ob-
servation was deployed in Coral Sea (Lawson et al., 
2012). More and more seabed platforms or mooring 
systems mount acoustic modems, and the data can be 
collected using ships, buoys, or even unmanned ve-
hicles, such as autonomous underwater vehicle 
(AUV), remote operated vehicle (ROV), and un-
manned surface vehicle (USV) (Murphy et al., 2014; 
Han et al., 2017; Park et al., 2017). 

In the unmanned vehicle family, USV is a new 
type of multi-functional surface platform, which has 
become the focus following the well-known un-
manned aerial vehicle (UAV) and AUV (Nađ et al., 
2015). In the 21st century, more than 40 research 
teams or departments of ocean technology around the 
world have fabricated manifold USVs, which have 
been applied to many oceanic fields, such as ba-
thymetry (Brown et al., 2010), underwater acoustic 
communication and localization (Bingham et al., 
2012), environmental survey (Naeem et al., 2008), 
marine rescue (Matos et al., 2013), and goal tracking 
(Sinisterra et al., 2017). Specifically, USV is a kind of 
surface vehicle which can be a relay or a data collec-
tion platform for AUVs, underwater notes, and sub-
marines via UAC technology. In recent years, some 
USVs have been applied to UAC. The ZARCO USV 
was developed by the Porto University and designed 
as a communication relay between air and sea (Santos 
et al., 2008). Another USV called “Swordfis” was 
developed by the Porto University and used as a mo-
bile gateway for AUV underwater communication 
(Martins et al., 2011). The SCOUT USVs fabricated 
by the Massachusetts Institute of Technology (MIT) 
were tested for UAC among multi-USV formations. 
They were designed to be communication relays for 
AUVs (Curcio et al., 2005). Wave glider without 
propeller has the potential to be an effective un-
manned platform for acoustic communication, and 
has been tested by the Woods Hole Oceanographic 
Institution and the University of Hawaii at Manoa 
(Bingham et al., 2012). An underwater real-time 
communication system, where the USV relays un-
manned underwater vehicle (UUV)’s status and sonar 
images to a distant base in real time, was developed 
and tested in Japan (Suzuki et al., 2015). USVs’ dy-
namic pursuit using underwater acoustics was  

designed and tested (Reed et al., 2016). In the above 
work, contributions contain mainly tests and applica-
tions for USV acoustic communication technology 
and USV cooperation with other vehicles (such as 
AUVs) through UAC. As far as we know, the adap-
tive data collection scheme for a seabed platform 
using a USV is first proposed in this study, aiming to 
solve data transmission for seabed platforms in real 
time and to raise its efficiency. 

Seawater is a kind of non-ideal loss medium for 
UAC, and the underwater acoustic channel is an ex-
tremely complicated channel, which is simultane-
ously confined by time-space-frequency parameters. 
The complication of the underwater acoustic channel 
will lead to instability of acoustic communication in 
real environments. So, some difficulties still exist. For 
example, the best communication point does not al-
ways coincide with the nearest point from the seabed 
platform. Such a point may be time-variant. It is ob-
vious that seeking the best communication point 
around the seabed platform is difficult for a single 
USV. Although the UAC’s link strength field around 
the seabed platform to a USV is unknown, it can be 
measured by the USV in real time. So, the problem is 
how to seek the extremum for unmanned vehicles in 
an unknown environment. To solve this problem, 
multiple vehicles were usually used to estimate the 
field by measurement from neighbors, thus guiding 
vehicles to arrive at the extremum point of the field 
(Hollinger et al., 2012). Choi et al. (2009) presented a 
novel class of self-organizing autonomous sensing 
agents that form a swarm and learn the static field of 
interest through noisy measurement from neighbors 
for gradient climbing. Autonomous mobile sensor 
networks were employed to measure large-scale en-
vironmental fields, and an optimal strategy for mis-
sion design addressing both cooperative motion con-
trol and cooperative sensing was developed for mul-
tiple sensor platforms to explore a noisy scalar field in 
the plane (Zhang and Leonard, 2010). Gradient 
climbing was widely applied to cooperative control of 
multiple vehicles (Bachmayer and Leonard, 2002; 
Ögren et al., 2004; Biyik and Arcak, 2008; Khong et 
al., 2015). An adaptive-step-control strategy for au-
tonomous chemical plume tracking (CPT) in both 
two-dimensional (2D) and three-dimensional (3D) 
spaces by multiple vehicles was proposed and simu-
lated (Gao et al., 2016). In the above work,  
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multiple vehicles or mobile sensors were coopera-
tively controlled to estimate the measurement field, 
and this mode can cooperatively measure the field and 
simultaneously seek the extremum and frontal surface 
(Fig. 1a). However, if only a single vehicle is used to 
seek the extremum for a field, there is a question of 
how to design a control scheme. A single vehicle 
usually cannot rapidly estimate the field because of 
the limited extent of measurement; therefore, it is 
difficult for a single vehicle to seek the extremum 
point. We intend to design a motion style for vehicles 
to solve this problem. In this study, an oscillation 
motion (OM) for a single USV is designed to acquire 
data around the seabed platform and the USV, and to 
iterate the UAC’s link strength field. We desire a USV 
that can be guided to the best communication point at 
the same time, which is shown in Fig. 1b. 

 
 
 
 
 
 
 
 

 

 
 

2  Field estimation for UAC’s link strength 

2.1  Oscillation motion for USV 

A USV is a kind of surface vehicle that can be 
treated as a self-propelled particle in the plane; 
therefore, motion equations can be expressed as 

 
,=r v                                  (1) 
,=v u                                  (2) 

 
where the vector r=x+iy represents the position of the 
USV, v the velocity, and u the steering control varia-
ble for the velocity (r, v, and u∈). Discrete equa-
tions for the USV are given as follows: 

 
( ) ( ) ( ) ,t t tδ δ+ = +r r v                     (3) 
( ) ( ) ( ) ,t t tδ δ+ = +v v u                     (4) 

 
where δ represents the time interval. 

Eqs. (1) and (2) denote that the USV is con-
trolled by the control variable u in the plane, and that 

the model is adaptable for most USVs which are 
usually steered by speed difference of thrusters or 
rudder angles. In USV data collection, although the 
UAC link strength field around the seabed platform is 
unknown in advance, it can be measured by the USV 
during data collection in real time. To estimate the 
gradient of the field strength, the USV should meas-
ure the UAC’s link strength around the USV as much 
as possible. So, an OM of the USV is designed to 
enlarge the measurement extent. The steering control 
variables are designed as follows: 

 

0

0 0

cos sin
( ) ,

cos( / )sin cos
u

t
u A t T

ϕ ϕ
ϕ ϕ

−   
=   
   

v       (5) 

1
0 0

0cos sin
( ) ,sin( / )sin cos
t t Tu A

T

ϕ ϕ
ϕ ϕ

 −   =    −   

u    (6) 

 
where φ represents the OM’s direction of the USV, 
and A0, T, and u0 represent the oscillation amplitude, 
period, and velocity, respectively. Simulation results 
of the OM along with 30° are shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2.2  Link strength model for UAC 

The decline of acoustic signal strength between 
vehicles and seabed platforms can be characterized 
mainly by three factors: attenuation that increases 
with signal frequency, time-varying multi-path 
propagation, and Doppler effect for low speed of 
sound (Stojanovic and Preisig, 2009). However, there 
are no standardized models for acoustic channel fad-
ing, and some statistical models are usually built 
based on experimental data. The availability of the 
large experimental data sets is important for  

 
 

Fig. 2  USV’s oscillation motion along with 30° with 
φ=30°, u0=1, A0=3, and T=180/π 

(a) (b)  
 

Fig. 1  Extremum seeking: (a) multi-vehicle cooperation; 
(b) a single vehicle oscillation motion 
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advancement because of the realism compared with 
models (Stojanovic and Freitag, 2013). In this study, 
acoustic signal loss is estimated by an empirical 
formula (Stojanovic, 2006), expressed as 

 

1

r

r

( , ) ( ) ,
k

l llA l f a f
l

− =  
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                (7) 

 

where a(f) is an absorption coefficient, f the signal 
frequency, l the transmission distance taken in refer-
ence to a distance constant lr, and k1 the path loss 
exponent which models the spreading loss. It can be 
seen that the acoustic signal loss is decided mainly by 
f and l. The acoustic signal loss after taking a log 
operation of A, i.e., logA, is approximately propor-
tional to the transmission distance l, and the rela-
tionship was manifested by the experimental data in 
Jin et al. (2016). According to the relationship be-
tween the acoustic signal loss and transmission dis-
tance, a model for link strength in the form of proba-
bility was defined based on the experimental data in 
Jin et al. (2016) 
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where P(r) is the link strength of UAC, Q the largest 
signal strength between a USV and a seafloor plat-
form, r0 the position of the seabed platform, and e the 
noise. The defined link strength represents the UAC’s 
quality between the seabed platform and the USV. 
This is used to be an evaluation index of the best 
communication location for the USV around the 
seabed platform. In July 2015, the underwater acous-
tic communication experiments were implemented 
using an unmanned surface bathymetry vehicle 
(USBV) (Fig. 3) at Jihongtan Reservoir, Qingdao, 
China. The USBV was equipped with an EvoLogics 
18/34 acoustic modem, where the acoustic frequency 
was between 18 and 34 kHz (Jin et al., 2016). Data 
acquired by the USBV was used to model the link 
strength. The relationship between the signal strength 
and the transmission distance is shown in Fig. 4a, and 
the link strength is shown in Fig. 4b, where the largest 
signal strength is 84 dB and k2 is 28 dB/km. 

2.3  Estimation for link strength field 

The communication link strength between a 
seabed platform and a USV can be described by a 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
scalar field. The scalar field is unknown and variable 
because of the complex nature of the acoustic channel 
and the ocean environments discussed in Section 2.2. 
To seek the extremum of the field, the scalar field 
must be updated in real time by new measurement 
data from the USV. An iteration algorithm is intro-
duced to estimate the scalar field in this subsection. 

In the plane ∈2, z(r(t)) is the measured value 
at position r(t), and is composed of the scalar value 
c(r(t)) and the measurement noise e(r(t)), expressed 
as 

 
z(r(t)):=c(r(t))+e(r(t)),                      (9) 

 

where c: ×R+→[0, cmax] denotes the scalar field in 

 
 

Fig. 3  An unmanned surface bathymetry vehicle (USBV) 
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Fig. 4  UAC signal strength and link strength for USV 
with communication distance: (a) signal strength; (b) 
link strength 
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the plane . Note that both the scalar value c(r(t)) and 
the measurement value z(r(t)) represent the link 
strength value P(r(t)) for convenience. 

Suppose that the scalar field c(r(t)) can be de-
fined using multi-variable linear regression as 

 
T

1
( ( )) ( ( )) ( ( )) ,

m

j j
i

c t h t x t
=

= =∑r r h r x       (10) 

 
where x:=(x1, x2, …, xm)T∈m is the regression coef-
ficient, h(r(t)):=(h1, h2, …, hm)T the base function, and 
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r  with a a normaliza-

tion constant and bj uniformly locating in the area of 
, j∈{1, 2, …, m}. 

The measurement value at r(t) can be described 
as z(r(t))=hT(r(t))x+e(r(t)). Though the link strength 
in Fig. 4 is linear to the communication distance, the 
measurement error e(r(t)) of link strength is not linear 
to the transmission distance, and the measurement 
error depends mainly on the ocean environments; 
therefore, the weight estimation method is used in the 
regression. The regression coefficient x can be cal-
culated by the regression criterion for the minimum of 
the weight residual error based on the data set 

1{ ( ), ( )} .N
k k kz r r =h  The regression criterion J is ex-

pressed as 
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where wk is a weight factor and N the total number of 
measurements. Eq. (11) can also be expressed as 
 

T=( ) ( ),J z xzx− − WH H                  (12) 
 
where W is an m×m symmetric matrix called the 
“weight matrix.” 

The condition for the minimum of J is 
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so, HTWH must be definitely positive. 

For the data set 1{ ( ( )), ( ( ))} ,N
k k kz r t r t =h  z(k):=z(rk), 

and h(k):=φ(rk), when 0,J x∂ ∂ =  the optimal re-
gression coefficients can be acquired as follows: 

 
T 1 T=( ) .z−

HX W WH H                    (14) 
 
When W=R−1 and R=E(e·eT), the variance of the 

evaluation error of x is a minimum, and W=R−1 is 
called an “optimal weight matrix.” In this situation, 
the evaluation is a Gauss-Markov evaluation, and 
Eq. (14) can be expressed as 

 
T( )= ( ) ( ) ( ) ( ),N N N N N



X P H W Z          (15) 
 
where P(s, n)=(HT(s, n)W(s, n)H(s, n))−1∈m×m,  
H(s, n)=(h(s), h(s+1), …, h(n))T∈ (n−s+1)×m, W(s, n)= 
R−1(s, n)=E(e(s, n)e(s, n)T)−1∈(n−s+1)×(n−s+1), and  
Z(s, n):=(z(s), z(s+1), …, z(n))T∈n−s+1. 

Note that P(1, N) is simplified to P(N), H(1, N) is 
simplified to H(N), and Z(1, N) is simplified to Z(N) 
in Eq. (15). 

According to Eq. (15), the scalar field c(r(t)) can 
be regressed using the whole measurement data set 
from the USV. However, the scalar field c(r(t)) should 
be updated to guide the USV to seek the extremum in 
real time. Therefore, the estimated field should be 
iterated using new measurement data based on history 
data. Let Z(N) be the history data of the USV meas-
urement before t, and Z(N+1, N+T) be the new data in 
the next period of the OM of the USV. For conven-
ience, it is defined as Z(j):=Z(N), Z(j, j+1):=Z(N+1, 
N+T), and H(j, j+1):=H(N+1, N+T). Iteration equa-
tions for the OM of the USV in the period T are given 
as follows (Zhou and Lu, 2009): 
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where K(j+1)=P(j)HT(j, j+1)(W−1(j, j+1)+H(j, j+1) 
·P(j)HT(j, j+1))−1and P(j+1)=(1−K(j+1)H(j, j+1))P(j). 
It can be seen from Eq. (16) that the newly estimated 
variable ( 1)j +



X  is the sum of the previously esti-
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X  and a linear revising term be-
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To obtain an initial field, one selection is based 
on history data using Eq. (15), and the other selection 
is to choose some initial values, such as H(t)=0 and 

2
1(0) ,C=P I  where C1 is a constant. The advantage of 

the second selection is that the iteration can be exe-
cuted from the first time and does not need to acquire 
an inverse matrix for HT(t)W(t)H(t). 

The new scalar field can be continuously up-
dated by iteration (16) using new measurement data 
from the USV, expressed as follows: 

 
T( , ) : ( ) ( ).c n n=



 r H r X                    (17) 

The gradient of the field can be expressed as 

T 2 1( , ) ( ) ( ) .c n n ×′∇ = ∈
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3 Controller design and convergence  
analysis 
 

In the previous section, the instantaneous field 
for link strength between a seabed platform and a 
USV is built using the measurement data from the 
USV. To conveniently illustrate the problem, let x=[r, 
v]T; so, the state function of the USV can be described 
as follows: 

 
T T T[ , ] ,=x r v                            (19) 
T T T[ , ] .=x v u                           (20) 

 
Here, two assumptions are given as follows: 
1. Parameters u0, A0, and T are bounded in 

Eqs. (5) and (6), and all the parameters are larger than 
zero, assuring an OM for the USV. 

2. The initial position of the USV is not on the 
area boundary of rc. If the condition does not hold, the 
area boundary should be enlarged based on the initial 
position of the USV. 

Select a candidate Lyapunov function as 
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 is a potential 

function, the first term of which denotes an attraction 
potential function and the second term of which  

denotes a rejection potential function, r0 is the rough 
location of the seabed platform, and rc is the area 
boundary around the seabed floor. It is clear that 
V(x)>0. 

Then the derivative of V(x) is 
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Considering the OM of the USV and gradient of 

the field, the gradient climbing controller is designed 
as follows: 
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where u1 is the OM control term in Eq. (6). So, the 
derivative of the Lyapunov function is expressed as 
follows: 
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From the Lyapunov function V(x) in Eq. (21), we 
can know that V(x) is radially unbounded; that is,  
V(x)→∞ when ||x||→∞. Under the condition of 
Eqs. (21) and (24), the gradient climbing controller 
(19) can assure the stability of extremum seeking for 
the system. 

 
 

4  Simulation 
 

To simulate the seeking of the best UAC point of 
the USV, a 2D field for UAC link strength is built 
based on Eq. (8) with noise e and a random value 
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below 10% of the largest value of the link strength, as 
shown in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
In the simulation, the USV is first controlled by 

an OM controller along with a fixed direction, and its 
measurement data is regressed as an initial field. Then 
the simulation goes into the gradient climbing control 
mode, the proposed controller is used to guide the 
USV, and the new data of the USV’s OM in the next 
period is added to the iteration of the field. In the first 
case study, the USV is controlled by the OM con-
troller along with 30° in 1500 s, and the gradient 
control is executed between 1500 s and 3100 s (Fig. 6). 
In the simulation, A0=6, T=90/π, u0=0.5, and k3=1. In 
Fig. 6a, the blue path of USV converges to the 
maximum value area of the strength field from the 
initial point denoted by a circle in the left bottom 
corner. The oscillation direction for the USV is shown 
in Fig. 6b, which reflects the USV’s seeking process. 
Before 1500 s, the USV’s oscillation direction is fixed 
at 30°, and measurement data in this period is used for 
the initial field. The USV’s autonomous seeking 
process is between 1500 s and 3100 s, and the USV 
finds the extremum area at 2700 s. Between 1500 s 
and 2700 s, the USV’s course changes between 30° 
and 120°, and the USV continuously tends to the 
extremum area. After 2700 s, the USV’s course fluc-
tuates largely (Fig. 6). This denotes that the USV has 
hovered around the extremum area. In Fig. 6a, it can 
be seen that the estimated field is similar to the real 
field (Fig. 5) around the path of the USV; however, 
there are some differences for these two fields in the 
right corner, because the area is far from the meas-
urement range for the USV. Although there are dif-
ferences between the estimated and the real fields, the 

USV can get to the area of the field’s maximum point 
based on the estimated field, demonstrating the va-
lidity of the proposed algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figs. 6–8 show the results of seeking the best 

UAC point of the USV with 10%, 30%, and 50% of 
noise, respectively. In these cases, the best UAC point 
can all be found. However, differences between the 
estimated and real fields of the link strength are en-
larged along with the enlargement of noise. 
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Fig. 5  UAC link strength field between the seabed plat-
form and the USV 
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Fig. 6  Seeking the best UAC point of the USV with 10% 
of noise in the first case study: (a) USV trajectory; (b) 
USV course 
References to color refer to the online version of this figure 
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Fig. 7  Seeking for the best UAC point of the USV with 
30% of noise 
References to color refer to the online version of this figure 
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To validate the proposed algorithm, the second 

case study is carried out, where the initial oscillation 
direction of the USV is fixed along with the x axis. In 
Fig. 9, the USV’s oscillation direction is fixed at 0° 
before 2000 s, and the best UAC point of the USV is 
found at 3700 s. After 3700 s, the best UAC point of 
the USV is found, and the “hovering motion” comes 
out the same as in Fig. 6a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figs. 6–9, although the initial oscillation mo-
tion for the USV does not point to the maximum point, 
the best UAC point of the USV is found using the 
proposed controller. In addition, the simulation results 
are not affected by the disparity between the esti-
mated and real fields, especially in the corners with-
out measurement data from the USV. 
 
 
5  Conclusions 
 

In underwater data collection applications, more 
and more unmanned vehicles have been taken as relay 
nodes. In this study, an algorithm for seeking the 
extremum area of the UAC link strength field be-
tween the USV and the seabed platform has been 
presented. A controller based on gradient climbing 
and oscillation motion has been designed and applied 
to find the best communication point for a single USV 
without prior knowledge. In the simulation, the pro-
posed algorithm can force a USV to track the best 
communication area in an unknown UAC link 
strength field, which is estimated at the same time. 
The simulation results showed the reliability and 
efficiency of the algorithm. Future work will inves-
tigate how seabed platform network data can be effi-
ciently collected based on a single USV. 
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