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Abstract: We evidence and study the differences in turbulence statistics in ocean dynamics carried by wind forcing
at the air-sea interface. Surface currents at the air-sea interaction are of crucial importance because they transport
heat from low to high latitudes. At first order, oceanic currents are generated by the balance of the Coriolis and
pressure gradient forces (geostrophic current) and the balance of the Coriolis and the frictional forces dominated by
wind stress (Ekman current) in the surface ocean layers. The study was conducted by computing statistical moments
on the shapes of spectra computed within the framework of microcanonical multi-fractal formalism. Remotely sensed
daily datasets derived from one year of altimetry and wind data were used in this study, allowing for the computation
of two kinds of vector fields: geostrophy with and geostrophy without wind stress forcing. We explore the statistical
properties of singularity spectra computed from velocity norms and vorticity data, notably in relation with kurtosis
information to underline the differences in the turbulent regimes associated with both kinds of velocity fields.
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1 Introduction and motivation

Due to the adequate synoptic picture of ocean
circulation provided by altimetry techniques (Chel-
ton et al., 2001), refined analysis of turbulent surface
ocean dynamics has become a tractable field of re-
search. However, existing ocean circulation models
which are used to compute ocean dynamics operate
at spatial scales far superior to the lower limit of
the ocean’s inertial range. Consequently, they can-
not be used presently to provide a precise quantita-
tive analysis of the differences in turbulence statis-
tics in space, time (seasonal time scales), and ob-
servation scales (Lee et al., 2010). A quantitative
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description of ocean surface turbulence statistics
at different spatial and time scales finds interest-
ing applications in oceanography. At mesoscale,
geostrophic eddies dominate the turbulent motion,
with radii between 10 and 100 km, with notable ef-
fects on mixing, heat, and climatically active tracers
(Mashayek et al., 2017). Submesoscale turbulence is
a very active field of research, with coherent struc-
tures less than one kilometer in size down to a few
meters, and a likely role in vertical mixing. Below
this, the turbulent properties and characteristics of
ocean dynamics close to the lower limit of the in-
ertial range are unknown. A quantitative evalua-
tion of the spatial and seasonal variability in the tur-
bulent properties of ocean dynamics is a promising
field of research, notably in relation with upwelling
and air/sea exchanges at the interface (Hernández-
Carrasco et al., 2015).
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In this paper, we study the variations in the
statistics of ocean dynamics turbulence directly from
the acquired data, with a focus on mesoscale oceanic
data. Our goal is to provide quantitative evalua-
tion of wind stress forcing effects on mesoscale ocean
dynamics.

2 Surface ocean dynamics

We use the surface ocean dynamics product at
the 1/4◦ as described in Sudre et al. (2013). Our data
covers one year of daily acquisitions from 2010. Using
these datasets, the central hypothesis is to estimate
the first-order current as the sum of geostrophic and
wind driven components:

1. Geostrophic current is determined from the
absolute dynamic topography.

2. Equator singularity is solved with semi-
geostrophy approximation.

3. Ekman current is estimated by fitting a simple
Ekman model based on the residual vdrifter − vgeos.

4. Validation is performed with the shipboard
acoustic Doppler current profiler (ADCP), equa-
torial moorings, surface velocity program (SVP)
drifters, and surface displacement Argo floats.

Using these data, we calculate the norm of
geostrophic current with and without Ekman cur-
rents and the associated vorticity for the following
four areas of study: (1) Agulhas retroflection; (2)
Gulf-Stream area; (3) Peru-Chile area; (4) Brazil-
Malvinas area.

In Fig. 1, we display the norm of the geostrophic
surface current for the 1st January 2010. For each
daily acquisition from 2010, we obtain the norm of
the oceanic velocity field with and without the Ek-
man currents. From these data we obtain the vor-
ticity of the geostrophic velocity field, again with
and without Ekman currents: ω = ∇ ∧ v, where ‘∧’
denotes the vector product.

3 Method

In the phenomenological description of turbu-
lence, a fundamental problem is the study of the
intermittency of the energy transfer (Benzi et al.,
1984; Parisi and Frisch, 1985; She and Leveque, 1994;
Frisch, 1995). This leads to the definition of the
multi-fractal formalism for a quantitative and de-
scriptive account of the breaking of self-similarity of

the velocity random field v(x) at inertial range. In
this formalism, intermittency is a direct consequence
of the irregular geometrical structure of the reparti-
tion of energy transfer, which takes places over a
spatial set of multi-fractal nature.

In the K41 theory, at each point x, the
difference is ‖v(x + r) − v(x)‖ ∼ rh (r → 0) with
a same value for every x : h = 1/3, which im-
plies that the energy dissipation scalar field ε(x)

is smooth and the scaling law for the velocity ran-
dom field Δv(x, lr)

.
= l1/3Δv(x, r) with Δv(x, r) =

v(x + r) − v(x) and .
= means equality in law. Yet,

the energy dissipation field is intermittent and, in
fact, the scaling law occurs over a hierarchy of dense
sets of multi-fractal nature. Moreover, the notion of
a unique singularity exponent h must be extended
and replaced by singularity exponents varying from
point to point (Turiel et al., 2008).

In the canonical description of multi-fractality
(Arneodo et al., 1995), one considers the expectation
(moment) E[‖v(x+r)−v(x)‖q ] = E[‖Δv(x, r)‖]q ∼
rζ(q) with ζ(q) being a nonlinear function of the order
moment q (anomalous scaling). If Fh denotes the set
of points x such that ‖v(x+ r) − v(x)‖ ∼ rh, then
the mapping h �→ D(Fh) is called the singularity
spectrum, with D(Fh) being the Hausdorff dimen-
sion of the set Fh. The multi-fractal formalism can
be extended outside the domain of fluid turbulence
to any function or measure, or to any complex sig-
nal (Boffetta et al., 2002; Turiel et al., 2014). From
that viewpoint, the singularity spectrum previously
defined appears as a particular case (the case where
the signal under study is the mapping x �→ ‖v(x)‖)
of a more general setting available for general func-
tions or measures, and the effective computation of
singularities is achieved with wavelets.

Let ψ : R → R be a specific function called
‘analyzing wavelet’, s > 0 a strictly positive real
number (the ‘scale’), and ψs the ‘symmetrized scaled
version’ of ψ:

ψs(x) =
1√
s
ψ
(
−x

s

)
. (1)

Let φa(x) = x − a be a translation in the
signal domain and γs(x) = sx the scale operator.
The continuous wavelet transform (CWT) of a sig-
nal f ∈ L2(R) is the function of the variables: a ∈ R
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(position) and s > 0 (scale):

(Wf)(a, s) =
1√
s
〈f |ψ ◦ γ1/s ◦ φa〉 = f ∗ ψs(a),

(2)
where f is correlated with the two-indexed family
1√
s
ψ ◦ γ1/s ◦ φa of ‘atoms’ depending on position

and scale. If the analyzing wavelet has nψ vanishing
moments, then (Wf)(a, s) ∼ sh(a) s → 0, where
h(a) is the singularity of function f at a, provided
nψ > h(a). There are many ways of computing a sin-
gularity spectrum in the canonical multi-fractal for-
malism. The most elementary way, although not effi-
cient numerically, consists in evaluating h �→ D(Fh)
from the CWT. Without going into details, we men-
tion here the basic ideas in order to get a grasp of
the multi-fractal formalism and to introduce more
sophisticated methods of computing a singularity
spectrum. A ‘partition function’ is defined with
the CWT: Z(q, s) =

∫
R
|(Wf)(x, s)|qdx. It can

be shown that, in the case of multi-fractal signals,
on has Z(q, s) ∼ sτ(q), s → 0, and the singularity
spectrum can be derived as a Legendre transform of
q �→ τ(q) : Dh = D(Fh) = min

q
(qh+ τ(q)+Df ) with

Df being a constant equal to the dimension of the
support of singularities of f . When τ(q) is smooth,
one has q = dDh

dh , τ(q) = qh − Dh + Df . The gen-
eral shape of the singularity spectrum Dh is given

in Fig. 2. The left part of the spectrum is particu-
larly interesting, as it is associated with the strongest
transitions in signal f .

D
h

Most probable h

q = 0

Slope = q

Fig. 2 General shape of the singularity spectrum
h �→ Dh as the Legendre transform of q �→ τ(q)

As we explained earlier, this method of comput-
ing a singularity spectrum is not the most accurate
and it has been extended and modified in various
directions: the wavelet transform modulus maxima
(WTMM) and log-cumulant analysis method (Venu-
gopal et al. (2006) and the references herein); we
will not expand upon the canonical formalism in this
work, but rather turn to a micro-canonical formu-
lation, which is able to compute alternate ‘spectra’,
based on the log-histogram approach (Turiel et al.,
2008), with high numerical precision and an efficient
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Fig. 1 Norm of the geostrophic surface current for the 1st January 2010. The red rectangles represent the
four areas of study. References to color refer to the online version of this figure
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algorithm. In this method, we consider the gradient
measure associated with signal f , although f is not
differentiable. Moreover, in the case of acquired
data, which consists of finite signals acquired at fixed
spatial resolution, we consider the data provided by
∇f computed either by finite differences or by tak-
ing the inverse Fourier transform of (−ixf̂ ,−iyf̂ ) (f̂ :
Fourier transform of f ). The gradient measure μ is
the measure on R

2 whose density is ∇f : dμ = ∇f dλ

(λ: Lebesgue measure on R
2). Let Br(x) be the ball

of radius r centered at point x. Then one has

μ(Br(x)) = α(x)rh(x) + o
(
rh(x)

)
(r → 0), (3)

with h(x) being the singularity exponent of mea-
sure μ at x. For most signals, the exponent h(x)
is an independent prefactor α(x). For small scales r
(such that the o

(
rh(x)

)
term becomes negligible), the

dependence on the scale parameter is concentrated
in the factor rh(x), so the knowledge of the expo-
nent h(x) allows interpretation of the type of transi-
tion which is taking place at x. Points are classified
accordingly by the ‘transition fronts’ or ‘singularity
manifolds’ of the system. We denote by Fh the sin-
gularity manifold associated to the singularity value
h, defined as follows (Turiel et al., 2008):

Fh = {x : h(x) = h}. (4)

As in canonical formulation, we denoteD(h) the
Hausdorff dimension of manifold Fh. We retrieve
in the microcanonical formalism a spectrum in the
form of the mapping quantity h �→ D(h), and the
canonical exponents τ(p), associated to the structure
functions of order p, are related to the spectrumD(h)

in the following way:

τ(p) = inf
h

(ph+ 2−D(h)). (5)

Conversely, if D(h) is convex, the spectrum can
be retrieved from the canonical exponents by apply-
ing a Legendre transform:

D(h) = inf
p

(ph+ 2− τ(p)). (6)

Suppose that we evaluate the singularity at a
resolution scale r0 which is small enough (typically
the scale of the acquisition). The distribution of

singularities at this scale, ρr0(h), must verify

ρr0(h) = A0r
2−D(h)
0 + o

(
r
2−D(h)
0

)
. (7)

Consequently, provided that we know the reso-
lution scale r0, we can retrieve a spectrum by just
evaluating the empirical histogram of singularity ex-
ponents. We will further assume, to simplify the
analysis, that there exists a singularity manifold Fh1

of maximum dimensionality, D(h1) = 2. Applying
such assumption to Eq. (7), we obtain the following
estimate of the spectrum:

D(h) = 2 − log
(
ρr0(h)/ρ

M
r0

)
log r0

, (8)

where ρMr0 = maxh(ρr0(h)). Eq. (8) is referred to as
the ‘histogram method’ for the evaluation of the sin-
gularity spectrum. In the rest of this article, we rely
entirely on this method of computing the spectra.

4 Results

Fig. 3 shows the absolute vorticity of geostrophic
and Ekman currents for the 1st January 2010 taken
out of the experimentation dataset and the corre-
sponding singularity exponents. On the left part,
Fig. 4 shows, for the 1st January 2010 in the Agul-
has retroflection area, the norm of geostrophic cur-
rents (Fig. 4a), the singularity exponents (Fig. 4c),
and the associated spectrum (Fig. 4e). On the right
part, Figs. 4b, 4d, and 4f show the same data for the
norm of the geostrophic part and Ekman currents.
Readers will notice the difference in the left part of
the spectra, which is the most informative part of
the spectra with respect to the strongest transition
fronts and coherent structures, and consequently to
the statistics of oceanic turbulence, as recorded in
the data. This difference is quantitatively expressed
by the marked difference in kurtosis between the two
spectra.

We now apply the methodology described in the
last section on our experimental dataset, made from
one year of daily data. The data used is made of
altimetry and wind data, both remotely sensed (Ar-
bic et al., 2013; Sudre et al., 2013) for an in-depth
description of the datasets and derived products.
We compute, for each of the four areas as shown
in Fig. 1, the monthly mean kurtosis of the spectra
of geostrophic norm and the monthly mean kurtosis
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Fig. 3 Absolute vorticity of geostrophic and Ekman currents (a) and corresponding singularity exponents (b)
for the 1st January 2010. References to color refer to the online version of this figure
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Fig. 4 For the 1st January 2010 in the Agulhas area: norm of geostrophic currents (a), singularity exponents
(c), and associated spectrum (e); norm of geostrophic and Ekman currents (b), singularity exponents (d), and
associated spectrum (f). Error bars in the spectra are computed using the method described in Turiel et al.
(2006). References to color refer to the online version of this figure

of the singularity spectra of geostrophic vorticity. If
a = [a1, a2, . . . , an] is a discrete signal, we use the
‘excess kurtosis’ defined by

κ =
1

σ4

n∑
i=1

(ai − E[a])4

n
, (9)

where E[a] is the mean value of a and σ is the stan-

dard deviation. With this definition, a standard
normal distribution has a kurtosis of zero. Positive
kurtosis means a ‘heavy tailed’ distribution and neg-
ative kurtosis a ‘light tailed’ distribution. Neat dif-
ferences in kurtosis (in particular, positive and nega-
tive) mean different organizations of the multi-fractal
hierarchy, and statistical differences in the turbu-
lence regime. Figs. 5–8 show the results of the anal-
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Fig. 5 Results of Gulf Stream area: monthly mean
kurtosis of the spectra of geostrophic norm (a) and
geostrophic vorticity (b)

Without Ekman
With Ekman

Dec Jan Feb Mar MayApr Jun Jul Aug Sep Oct Nov N

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

Dec Jan Feb Mar MayApr Jun Jul Aug Sep Oct Nov
Month

Without Ekman
With Ekman

N

(a)

(b)

Ku
rto

si
s

Ku
rto

si
s

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

0.0

Nov
Month

Fig. 6 Results of Brazil-Malvinas area: monthly mean
kurtosis of the spectra of geostrophic norm (a) and
geostrophic vorticity (b)

ysis for each area of study, at the monthly time scale
over 2010.

5 Discussions

The results lead to the following discussions:
1. Differences in kurtosis (in particular, positive

and negative) are significant and indicate different
spectra. The norms of the velocity fields clearly show
different turbulent properties between the norm of
the oceanic velocity field with and without Ekman
currents (i.e., considering wind stress forcing).

2. We note no significant difference in terms of
vorticity spectra.

From these results we conclude that wind stress
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Fig. 7 Results of Agulhas area: monthly mean kur-
tosis of the spectra of geostrophic norm (a) and
geostrophic vorticity (b)
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Fig. 8 Results of Peru-Chile area: monthly mean
kurtosis of the spectra of geostrophic norm (a) and
geostrophic vorticity (b)

does affect oceanic turbulence geographically, no-
tably with respect to latitude. On vorticity, it is
likely that other tools than the ones presented in this
paper for the statistical study of turbulence have to
be devised and tested.

6 Conclusions

In this paper, we have presented an experi-
ment using daily, remotely sensed data acquired over
one year to display different turbulence statistics
of the oceanic system, with the goal of improving
the description of the oceanic mesoscale (and sub-
mesoscale) turbulence. Positive results put forward
the differences in terms of wind stress according to
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the area of study. The results confirm the useful-
ness of the multi-fractal formalism for the study of
natural complex and turbulent acquired data. A tur-
bulent regime classification for the world’s oceans is
very useful in adapting the turbulent cascade path-
ways toward a better inference of products for super-
resolution currents (Yahia et al., 2010; Sudre et al.,
2013). The methodology can also be adapted to
high-resolution GHG fluxes (Garçon et al., 2013;
Hernández-Carrasco et al., 2015, 2018). The study
can be extended to build a monthly climatology with
the 1993–2016 period of GEKCO products for each
province, and globally.

References
Arbic BK, Polzin KL, Scott JG, et al., 2013. On eddy vis-

cosity, energy cascades, and the horizontal resolution of
gridded satellite altimeter products. J Phys Oceanogr,
43(2):283-300. https://doi.org/10.1175/jpo-d-11-0240.1

Arneodo A, Bacry E, Muzy JF, 1995. The thermodynamics of
fractals revisited with wavelets. Phys A, 213(1-2):232-
275. https://doi.org/10.1016/0378-4371(94)00163-N

Benzi R, Paladin G, Parisi G, et al., 1984. On the multi-
fractal nature of fully developed turbulence and chaotic
systems. J Phys A, 17:3521-3531.
https://doi.org/10.1142/9789812799050_0017

Boffetta G, Cencini M, Falcioni M, et al., 2002. Predictabil-
ity: a way to characterize complexity. Phys Rep,
356(6):367-474.
https://doi.org/10.1016/S0370-1573(01)00025-4

Chelton DB, Ries JC, Haines BJ, et al., 2001. Satellite
altimetry. In: Fu LL, Cazenave A (Eds.), Satellite Al-
timetry and Earth Sciences: a Handbook of Techniques
and Applications. Academic Press, London, UK, p.1-
122.

Frisch U, 1995. Turbulence: the Legacy of A. N. Kolmogorov.
Cambridge University Press, Cambridge, UK.

Garçon VC, Bell TG, Wallace D, et al., 2013. Perspectives
and integration in SOLAS Science. In: Liss PS, Johnson
MT (Eds.), Ocean-Atmosphere Interactions of Gases
and Particles. Springer Berlin Heidelberg, p.247-306.
https://doi.org/10.1007/978-3-642-25643-1_5

Hernández-Carrasco I, Sudre J, Garçon V, et al., 2015. Re-
construction of super-resolution ocean pCO2 and air-sea
fluxes of CO2 from satellite imagery in the southeastern
Atlantic. Biogeosciences, 12(17):5229-5245.
https://doi.org/10.5194/bg-12-5229-2015

Hernández-Carrasco I, Garçon V, Sudre J, et al., 2018. In-
creasing the resolution of ocean pCO2 maps in the South
Eastern Atlantic Ocean merging multi-fractal satellite-
derived ocean variables. IEEE Trans Geosci Remote
Sens, in press.
https://doi.org/10.1109/TGRS.2018.2840526

Lee T, Stammer D, Awaji T, et al., 2010. Ocean state estima-
tion for climate research. Proc OceanObs’09: Sustained
Ocean Observations and Information for Society, p.1-9.
https://doi.org/10.5270/OceanObs09.cwp.55

Mashayek A, Ferrari R, Merrifield S, et al., 2017. Topo-
graphic enhancement of vertical turbulent mixing in
the Southern Ocean. Nat Commun, 8:14197.
https://doi.org/10.1038/ncomms14197

Parisi G, Frisch U, 1985. On the singularity structure of
fully developed turbulence. In: Ghil M, Benzi R, Parisi
G (Eds.), Turbulence and Predictability in Geophysical
Fluid Dynamics. North Holland, Amsterdam, p.84-87.

She ZS, Leveque E, 1994. Universal scaling laws in fully
developed turbulence. Phys Rev Lett, 72(3):336-339.
https://doi.org/10.1103/PhysRevLett.72.336

Sudre J, Maes C, Garçon V, 2013. On the global estimates
of geostrophic and Ekman surface currents. Limnol
Oceanogr: Fluids Environ, 3(1):1-20.
https://doi.org/10.1215/21573689-2071927

Turiel A, Pérez-Vicente CJ, Grazzini J, 2006. Numerical
methods for the estimation of multi-fractal singularity
spectra on sampled data: a comparative study. J Com-
put Phys, 216(1):362-390.
https://doi.org/10.1016/j.jcp.2005.12.004

Turiel A, Yahia H, Pérez-Vicente CJ, 2008. Microcanoni-
cal multi-fractal formalism—a geometrical approach to
multi-fractal systems: Part I. Singularity analysis. J
Phys A, 41(1):015501.
https://doi.org/10.1103/PhysRevE.74.061110

Turiel A, Isern-Fontanet J, Umbert M, 2014. Sensibility
to noise of new multi-fractal fusion methods for ocean
variables. Nonl Processes Geophys, 21(1):291-301.
https://doi.org/10.5194/npg-21-291-2014

Venugopal V, Roux SG, Foufoula-Georgiou E, et al., 2006.
Revisiting multi-fractality of high-resolution temporal
rainfall using a wavelet-based formalism. Water Resour
Res, 42(6):W06D14.
https://doi.org/10.1029/2005WR004489

Yahia H, Sudre J, Pottier C, et al., 2010. Motion analysis in
oceanographic satellite images using multiscale methods
and the energy cascade. Patt Recogn, 43(10):3591-3604.
https://doi.org/10.1016/j.patcog.2010.04.011


	Introduction and motivation
	Surface ocean dynamics
	Method
	Results
	Discussions
	Conclusions

