
Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557

1546

SIoTFog: Byzantine-resilient IoT fog networking*

Jian-wen XU1, Kaoru OTA1, Mian-xiong DONG‡1, An-feng LIU2, Qiang LI3
1Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran 0508585, Japan

2School of Information Science and Engineering, Central South University, Changsha 410083, China
3MOE Key Laboratory of Symbol Computation and Knowledge Engineering, Jilin University, Changchun 130012, China

E-mail: {17096011, ota, mxdong}@mmm.muroran-it.ac.jp; afengliu@mail.csu.edu.cn; li_qiang@jlu.edu.cn

Received Aug. 31, 2018; Revision accepted Nov. 18, 2018; Crosschecked Dec. 17, 2018

Abstract: The current boom in the Internet of Things (IoT) is changing daily life in many ways, from wearable devices to con-
nected vehicles and smart cities. We used to regard fog computing as an extension of cloud computing, but it is now becoming an
ideal solution to transmit and process large-scale geo-distributed big data. We propose a Byzantine fault-tolerant networking
method and two resource allocation strategies for IoT fog computing. We aim to build a secure fog network, called “SIoTFog,” to
tolerate the Byzantine faults and improve the efficiency of transmitting and processing IoT big data. We consider two cases, with
a single Byzantine fault and with multiple faults, to compare the performances when facing different degrees of risk. We choose
latency, number of forwarding hops in the transmission, and device use rates as the metrics. The simulation results show that our
methods help achieve an efficient and reliable fog network.

Key words: Byzantine fault tolerance; Fog computing; Resource allocation; Internet of Things (IoT)
https://doi.org/10.1631/FITEE.1800519 CLC number: TP393

1 Introduction

In recent years, we have witnessed the boom in
the Internet of Things (IoT) and the hypergrowth of
cloud computing, which again overturned our per-
ception of information technology. By 2020, more
than 20 billion IoT devices will be manufactured and
put into use after a 15% annual increase (IHS Markit,
2017). Originally, as an extension of cloud computing,
fog computing relied on the collaborative end-user
clients or near-user edge devices to provide a sub-
stantial amount of storage capacity and communica-
tion solutions. Now, fog has already become a re-
search hotspot, not only broadening our perspective in
distributed computation, but also providing brand

new ideas to exploit the potential of “Things” besides
the “Internet.”

Byzantine fault tolerance (BFT) describes the
dependability of fault-tolerant computing systems,
especially distributed ones. The problem of Byzantine
generals or BFT was first proposed by Lamport et al.
(1982). In the BFT, a group of generals is trying to
reach an agreement to decide whether to attack ene-
mies or retreat from them according to their votes in
the majority. Considering the appearances of mes-
sengers or the presence of traitors who want to disrupt
the whole group, the final agreement may run in an
opposite direction of the loyal generals’ original in-
tentions. A Byzantine fault is the inconsistency of
different messages that the generals received from a
single general, and the Byzantine failure is the system
malfunction caused by a Byzantine fault.

Occurrence of Byzantine faults can be very
common in distributed systems, such as fog networks.
Sometimes fog nodes may fail, and there is imperfect
information about whether a particular node has
failed. The only way to solve this problem is to find

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the JSPS KAKENHI, Japan (No. JP16K00117)
and the KDDI Foundation, Japan

 ORCID: Mian-xiong DONG, http://orcid.org/0000-0002-2788-
3451
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2018

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1800519&domain=pdf

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557 1547

the failed node. However, we cannot ask a running
distributed system to stop and troubleshoot all nodes.
Instead, a relative compromise is a solution to a fault-
tolerance mechanism. That is, what we prefer to do is
to cope with BFT while introducing as little impact as
possible to the network computing performance.

In this study, we focus on the issue of BFT in
resource allocation of fog computing for IoT appli-
cations. Fault tolerance enables a system to continue
to work when some of its components go down.
Therefore, a good fault-tolerance performance can
greatly tolerate the interruption of retransmissions in
network communications and reduce extra energy
consumption and time costs.

In fog computing, large central servers are car-
ried out by a massive number of geo-distributed
small- and medium-sized fog devices at the edge of
the network structure. Thus, rather than setting dedi-
cated standby replicas for all fog devices, we can
simply make the fog devices help each other for state
machine replication. Thus, a fog device can serve as
the replica of its neighbor to tolerate the influence of a
possible Byzantine fault. Taking the mobility of IoT
devices into account, the relationship between repli-
cas and primary devices can also change while the
entire network is running. Therefore, we need a dy-
namic resource allocation strategy to solve the BFT in
fog computing. The main contributions of our work
are as follows:

1. A three-tiered heterogeneous fog network
model is designed, in which the fog device routers can
provide services to IoT users, such as sensors, smart
devices, and vehicles.

2. A Byzantine-resilient fog networking method
and a two-resource allocation strategy are proposed to
tolerate the influence of Byzantine faults.

3. The cases of a single Byzantine fault and
multiple faults are considered to test the performance
of the methods when facing different degrees of risk.

4. Total latency, number of forwarding hops in
the transmission, and the device use rates are chosen
as the metrics for analysis of the simulation results.

2 Related work

In this section, we present the related work on
fog computing and the BFT problem.

2.1 Fog computing

Fog computing first served as an extension of
cloud computing as a way to share responsibility to
data storage and process at the edge of the network
structure by Cisco Systems Inc. (Bonomi et al., 2012).
Vaquero and Rodero-Merino (2014) from the
Hewlett-Packard Company (HP) offered a compre-
hensive view of fog computing and correlated it with
existing technologies, such as cloud, sensor networks,
peer-to-peer networks, and network virtualization
function (NFV), to reach a definition of the “fog.”
Satyanarayanan et al. (2009) and Satyanarayanan
(2017) conducted mobility-enhanced small-scale
instances of cloud datacenters and the cloudlet to
mobile edge computing (MEC) in IoT. Liu et al.
(2016) focused on streaming media in heterogeneous
edge networks and proposed a device-to-device re-
lay-assisted scheme to solve video frame recovery for
picocell edge users. Tao M et al. (2017) integrated
cloud and fog computing to build a hybrid network
model for vehicle-to-grid (V2G) and the 5th genera-
tion wireless systems services (5G). Stojmenovic and
Wen (2014) analyzed the real-world application sce-
narios of the fog, such as in smart grids, smart traffic,
and software-defined networks (SDNs). In these
scenarios, the man-in-the-middle attack is regarded as
a typical security issue to represent new features in
the fog. Yi et al. (2015) focused on the new security
and privacy challenges besides those inherited from
the cloud, and proposed ideas for solutions. Alrawais
et al. (2017) considered the fog and the IoT as a whole
and put forward a mechanism to improve the distri-
bution of certificate revocation information to en-
hance the security among IoT devices in the fog. Li et
al. (2018) introduced deep learning to solve problems
in edge computing. Hu et al. (2017) addressed face
identification and resolution technology, and imple-
mented a prototype system to evaluate their proposed
security and privacy preservation method.

Compared with cloud computing, fog computing
was originally intended to share the high load of a
central architecture and to save the extra costs that
occur between cloud servers and IoT devices at the
edge of a network. Jalali et al. (2016) believed that fog
computing could reduce the energy consumption
compared with cloud computing. Tao XY et al. (2017)
investigated the energy efficiency in mobile-edge
computing and applied a request offloading scheme to

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557

1548

improve the performance of energy consumption and
bandwidth capacity. Perera et al. (2017) studied the
existing research and the problems in fog computing
for sustainable smart cities. Castillo-Cara et al. (2018)
put forward a fog-node design to deal with the energy
consumption problem and network resilience provi-
sioning in wireless sensor networks (WSNs). Zeng et
al. (2018) studied how to explore energy generation
diversity in a cyber physical fog system (CPFS) while
considering source rate control, service replica de-
ployment, and load balancing. Wu et al. (2018b)
combined information-centric networks (ICNs) with
designing content awareness filtering to increase the
safety factor of fog computing.

2.2 Byzantine fault tolerance problem

Fault tolerance refers to the property that no
global errors or interruptions occur in a system be-
cause of local faults. Therefore, fault-tolerant design
is very common and important in fields related to an
overall system structure (Khosravi and Kavian, 2016;
Gao et al., 2017; Zhang et al., 2018). Since BFT was
first proposed by Lamport et al. (1982), it has been
studied for decades. Castro and Liskov (2002) first
explored in depth the practice of BFT and imple-
mented a generic program library and the first BFT
network file system (NFS). Their experiment results
showed that an NFS with BFT, i.e., a BFS, performs
better than the NFS protocol without replicas. Dris-
coll et al. (2003, 2004) redefined the concepts of
Byzantine problems, including the widely known
existence of Byzantine faults and their possibility of
leading to Byzantine failures. They pointed out some
misunderstanding about Byzantine attack conditions,
and proposed countermeasures. Kotla et al. (2010)
proposed a speculative BFT protocol, the Zyzzyva, to
simplify the design of BFT state machine replication
and to ensure that responses to the correct clients
become stable. They compared the Zyzzyva with
existing BFT protocols, including cost, throughput,
and latency, and proved that Zyzzyva can maintain
properties of safety and liveness.

BFT is now widely accepted as a basic security
necessity, especially for distributed systems with
system-level consensus requirements and mutual
clock synchronization (Driscoll et al., 2004). Aublin
et al. (2013) designed a redundant-BFT (RBFT) ap-
proach to closely monitor the performance of

instances from the primary device to replicas on dif-
ferent machines. Bessani et al. (2014) optimized the
BFT protocols by applying an open Java-based library
source to make state machine replication robust. Li et
al. (2014) designed a secure SDN to tolerate Byzan-
tine attacks on the communication links between
SDN controllers and switches. Wu et al. (2018a)
proposed optimization algorithms to achieve secure
cluster management in SDNs. Zhang et al. (2015)
focused on the cognitive radio network (CRN) and
introduced the Byzantine attack and defense in co-
operative spectrum sensing, which is one of the key
security issues in a CRN. Miller et al. (2016) argued
that the former synchronous BFT protocols critically
relied on the network time assumptions and proposed
an asynchronous one to extend the adaptability to
asynchronous systems, such as blockchain technolo-
gy.

3 Problem formulation

In this section, we design the system model and

formulate the problem of BFT in fog computing.
In contrast to a traditional centralized network

design, fog computing prioritizes the local distributed
devices at the edge of the network to provide
low-latency resource-constrained processing and
storage services. In fog, there exist more complex
relationships between users and service providers
such as fog devices; that is, each user may not stay in
contact with the same service provider all the time.
Rather than a dedicated wide bandwidth, fog users
prefer to flexible dynamic resource allocation, which
saves extra time and energy consumption in multi-hop
forwarding.

To tolerate the influence of Byzantine faults, we
need to set replicas for network nodes as backups to
restore and recover data when necessary. In fog, we
do not need to prepare dedicated devices for BFT but
can assign neighbor fog devices to serve as replicas.

3 1,n f  (1)

where f is the number of Byzantine faults, and n is the
number of the devices. As shown in Eq. (1), existing
BFT protocols, including PBFT (Castro and Liskov,
2002), Zyzzyva (Kotla et al., 2010), and honey badger

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557 1549

BFT (Miller et al., 2016), elaborate that we need at
least 3f devices as replicas besides the primary device
to tolerate f Byzantine faults, while all communica-
tions are synchronous or in bounded delays. For
example, if the number of Byzantine faults reaches
three, we need at least 10 fog nodes to avoid the
Byzantine failure.

3.1 System outline

We formulate the mathematical model of a
three-tiered heterogeneous IoT fog network (Fig. 1)
(Stojmenovic and Wen, 2014; Reznik et al., 2017).
We aim to reduce the impact of Byzantine faults on
resource allocation in fog computing. Therefore, we
consider that this three-tiered model can more intui-
tively show the relationship between fog nodes (ser-
vice providers) and users (service receivers) than the
models with more tiers.

User nodes (u1, u2, …, un) in the user tier send

requests upwards to ask routers to serve as fog nodes
(f1, f2, …, fn) in the fog tier for computational re-
sources through access points. The cloud tier serves
as reliable data centers providing stable network
connections. Communications between the user tier
and fog tier are wireless broadcasting, those inside the
fog tier are wired broadcasting, and those between the
fog tier and the cloud tier are wired point-to-point.

Fig. 2 shows the BFT threat model in our work.
When users choose some fog nodes as service pro-
viders, they also need to accept some permission for
authority. The situation is similar to a pop-up window
that appears before installation or the first time one

opens an App on a smart device. For example, when a
user chooses f1 to finish a task on a mobile phone, for
account certification, the user allows f1 to use the
camera when a service is provided. In normal cases, f1
will send a message to make the user turn off the
camera after certification. However, when f1 is con-
trolled by someone who wants to obtain additional
personal privacy information, the message can be
modified and remain open. To guarantee the operation
of the fog network, we cannot extensively interrupt
service to troubleshoot some individual malicious
nodes. It is better to draw support from a suitable
fault-tolerant strategy to tolerate possible system
failures.

To implement B yzantine fault tolerance in this

three-tiered fog network, we need geo-distributed
routers to work as fog nodes to help each other when
facing Byzantine faults. We choose f1 as a service
provider and set replicas f2, f3, and f4 to ensure state
machine replication when necessary. Take the case of
a single Byzantine fault into account, in which three
replicas are required by one primary fog node. The
entire process of Byzantine-resilient communication
in the design of the fog network is as follows:

1. A mobile user in the user tier requests com-
putational resources from the fog tier.

2. A fog node in the fog tier within the suitable
distance to the user accepts the request and forwards it
to the other three fog nodes as replicas.

3. Both the primary fog node and the replicas
execute the task and send back responses to the
original user.

Therefore, the original user can check the

Fig. 2 BFT threat model in the fog service

Fig. 1 A three-tiered heterogeneous IoT fog network
Solid and dotted lines stand for the Ethernet and wireless
connections, respectively

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557

1550

responses even if f1 wants to keep the camera on, and
he/she can still tolerate a Byzantine failure from the
single fault by checking responses from f2 to f4.

3.2 Performance metrics

To analyze the performance of the proposed BFT
resource allocation strategy, we choose the total la-
tency and the number of forwarding hops in the
transmission as the two main metrics.

To achieve the BFT and tolerate the Byzantine
failures, we operate at the expense of decreasing
computing performance in the fog network. That is to
say, in the process of multiple fog nodes working
together to complete a user request, an additional
information exchange is implemented to eliminate the
possible impact of the failed nodes. In practice, la-
tency is a basic metric which is widely used for per-
formance evaluation. We use a latency to prove that
our methods can achieve a BFT with as little time cost
as possible:

pkt pkt

all trans prop proc

pkt pkte2e
 hop

bit prop MTR

() ()
 .

n n

i i

L L L L

s i s il
n

r v r

  

   
 (2)

As shown in Eq. (2), the total end-to-end latency

Lall includes mainly three parts: transmission latency
Ltrans, propagation latency Lprop, and processing pro-
cedure latency Lproc. Ltrans represents the time to push
all bits of packets into the transmission medium, such
as the wires and the air, and Ltrans is independent of the
distance between any two nodes and relates only to
the total size of the packets. In contrast, Lprop depends
on the travel distance between the sender and the
receiver, and on the property of the transmission me-
dium. npkt is the number of packets, and spkt the size of
the packets. rbit is the bandwidth or bit rate of the
transmission link. For wireless communication, vprop
is equal to the speed of light c; for wired communi-
cation, it ranges from 0.59c to 0.77c. le2e is the
end-to-end length added up by all distances between
any two nodes that take part in the current commu-
nication. To calculate Lprop, we need to know the
maximum transfer rate rMTR of the fog devices and the
total packet size spkt:

all trans prop
user 1 2 2 3.L L L L    (3)

To obtain the latency in practice (Fig. 2), we
need to calculate each part of the three steps, as shown
in Eq. (3). For step 1, we sum up Ltrans and Lprop, since
there is only one connection between the user and the
primary fog node f1.

2 3 2 3max{ | 1,2,3,4}.ifL L i   (4)

However, for steps 2 and 3, since the replicas
may differ from each other in their positions from the
user, for the primary fog node and the processing
capacity, we need to figure out the practical latency of
the primary device and each replica, and pick the
maximum one as shown in Eq. (4). Then, we can
obtain

2

1 2 2 2

trans prop trans prop proc
2 3 , ,user .f

f f f fL L L L 
    (5)

Take f2 as an example. Latencies in steps 2 and 3
include two steps for Ltrans, Lprop, and Lproc.

Moreover, we use the number of forwarding
hops in the transmission, which can reflect the quan-
tity of work in our fog network and show the practical
efficiency.

 
1

4
all hop hop hop
hop user, pri , , user

2

2 .
i if f f

i

n n n n


   (6)

As shown in Eq. (6), in contrast to the total la-
tency, to calculate the total number of forwarding
hops in the transmission, we need to consider all the
connections in the three steps in Fig. 2.

Besides the total latency and the number of
forwarding hops, to obtain a thorough understanding
of the network structure, we use the fog nodes’ use
rates and the percentages of workload capacity occu-
pied by the primary device or replicas as two auxiliary
metrics to analyze the simulation results.

The use rates stand for the overall resource oc-
cupancy of all fog nodes. We use the use rate to study
the actual working conditions of the entire IoT fog
network and the possible changes brought by resource
allocation strategies. In the simulation, we consider
the cases of both workload capacities occupied as
primary service providers and replicas. Moreover, we
separately treat the two cases to calculate the
percentages.

Table 1 summarizes the main symbols used in
this study.

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557 1551

4 Byzantine fault-tolerant resource alloca-
tion strategy

In this section, we propose resource allocation

strategies for a fog network, aimed at tolerating the
influence of Byzantine faults.

4.1 BFT fog networking

Before choosing the primary nodes and replicas
for users in the need of fog service, we build a BFT
fog network considering all neighbor relationships
among the routers as fog nodes. Therefore, we aim to
fulfill the requirements of the BFT protocol, called
“Zyzzyva” (Kotla et al., 2010).

Algorithm 1 is based on a non-recursive
breadth-first search (BFS) method to implement BFT
fast networking. To obtain the connection situation ci, j
between any two fog nodes (f1, f2, …, fn), including
geographical distances and number of forwarding
hops in routing, we need a two-dimensional position
Pi and neighbor lists recording all adjacent nodes

fi.adj. Two first-in first-out (FIFO) queues Qfog and
Qsave, variables layer, and leaves are used to build the
tree maps formulated using the BFS method. Some
key points are as follows:

1. We use Qfog as the main data structure to
consider the whole situation. The cyclic condition in
step 9 could not be broken after traversing all other
nodes, unless no existing path is found between fi and
fj.

2. Qsave is an instrumental variable to save all
non-repetitive nodes, which means no path will be
tried twice. In step 19, we drop the neighbors of fthis,
which are already covered by Qsave before pushing the
rest into two queues.

, 1

1
1

path(,) length(,).
i jn

i j n n
n

P P P P





  (7)

Algorithm 1 BFT fog networking
Input: F={f1, f2, …, fn},

 // n fog nodes are in the network structure
 Pi, // coordinates of all the fog nodes
 fi.adj, // the list of all adjacent nodes to fi
 Qfog and Qsave, // FIFO queues to keep fog nodes
 layer and leaves(layer). // layers and leaves in tree map
Output: {Ci, j|i, j{1, 2, …, n}, i≠j}.

// connections between any fi and fj
1 for i←2 to n do

2 for j←1 to i−1 do

3 Qfog← and Qsave←;
4 if find(fi.adj=j) then
5 ci, j·nhop←1, ci, j·le2e←path(Pi, Pj);
6 end if
7 push all fi.adj into Qfog and Qsave;
8 layer←1 and leaves(layer)←size of fi.adj;

9 while Qfog≠ do
10 if leaves(layer)==0 then
11 layer←layer+1;
12 end if
13 this←Qfog·pop();

14 leaves(layer)←leaves(layer)−1;
15 if find(fthis.adj=j) then
16 ci, j·nhop←layer+1 and ci, j·le2e←path(Pi, Pj);
17 break;
18 end if
19 drop any fthis.adj in Qsave and push them into
 Qfog and Qsave one by one;
20 leaves(layer)←leaves(layer)+size of f′this.adj;
21 end while
22 end for
23 end for

Table 1 Notations used in the design of the Byzantine-
resilient fog network

Symbol Meaning
U and ui A set of user nodes and one element in

it, respectively
F and fi A set of fog nodes and one element in

it, respectively
Ltrans, Lprop, and

Lproc
Transmission latency, propagation

latency, and processing latency, re-
spectively

nhop Number of forwarding hops in the
transmission

npkt and spkt The number and size of packets,
respectively

rbit Bit rate of the transmission link
le2e End-to-end length of the network

connection
vprop Wave propagation speed of the trans-

mission medium
rMTR Maximum transfer rate of the device
Ci, j The distance or number of forwarding

hops between fi and fj
Pi Position coordinates of fi

path(Pi, Pj) Summation of all connections between
fi and fj

wthis Needed workload capacity of the cur-
rent request from the user

Cpri and Crep Workload capacities of the fog nodes
occupied as primary and replicas,
respectively

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557

1552

3. Path(Pi, Pj) in steps 5 and 16 are the summa-
tion of all connections between any two of the nodes
in the full path from fi to fj. We can obtain path(·, ·) in
Eq. (7), and ni, j is the number of nodes in the path
between fi and fj.

4. A tree map is obtained using the BFS method,
and we use the layer and leaves(layer) to record the
current layer and how many nodes are within this
layer.

To set the primary fog node and replicas for the
user in a request, we need to ensure protocol com-
munications between any two different nodes; that is
to say, although our fog network is not a real full
connected network, we can still make sure that fi can
exchange messages with fj at any time after a limited
number of forwarding hops. The time complexity of
Algorithm 1 is O(n2(1+n))=O(n3+n2)=O(n3).

4.2 BFT resource allocation strategy

To tolerate Byzantine faults in our fog network,
we set the nearby fog nodes as replicas to achieve
state machine replication. Thus, each replica needs to
repeat what the primary fog node is doing and send
back the processing result to the user.

One phase minimum distance (OPMD) gives an
entire procedure to set one primary fog node and three
replicas for workload wthis requested by the current
user. Cpri and Crep are the resource allocation results,
where a part of the workload capacity is set as the
primary fog node or replicas. We sort all the fog nodes
by their distances away from the position of the cur-
rent user, and judge whether the remaining workload
capacity Cleft is full, and whether fog node is being
requested twice. Some key points are as follows:

1. We use fneed as a set of temporary choices of
fog nodes during the 3f+1 cycles, and regard the first
choice as the primary fog node.

2. !find(fneed(1 to i−1)=fneed(i)) in step 3 is aimed
to make sure that the currently chosen fneed(i) is not
included in the former one.

OPMD focuses on shortening the communica-
tion distances between users and fog nodes, which
may extensively cut down on the Lprop in Eq. (2).
Algorithm 2 makes full use of the advantages of fast
networking in the BFS method and can find all re-
quired 3f+1 fog nodes in a simple and straightforward

way. The time complexity of Algorithm 2 is
O((3f+1)(n+1))=O(3fn+3f+n+1)=O(fn).

However, OPMD may also place an extra burden
on communications among the primary fog nodes and
replicas providing service for the same users to some
extent. Therefore, we put forward a two-phase algo-
rithm to optimize this issue among the primary fog
nodes and replicas.

Algorithm 2 One phase minimum distance
Input: wthis, // workload needed by the user
 Cpri and Crep, // capacities of fog nodes used as primary
 // devices and replicas, respectively
 cthis, j, // connections between the user and fog node fj
 fneed, // 3f+1 fog nodes as primary devices and replicas
 Cleft. // resource capacity of fog nodes
Output: resource allocation results for all users

1 for i←2 to 3f+1 do

2 find fj with minimum cthis, j·le2e and set it as fneed(i)
3 if !find(fneed(1 to i−1)=fneed(i)) &&
 fneed(i)·Cleft≥wthis then
4 if i=1 then

5 fneed·Cpri←fneed·Cpri+wthis;

6 else
7 fneed·Crep←fneed·Crep+wthis;

8 end if
9 fneed·Cleft←fneed·Cleft−wthis;

10 else
11 continue;
12 end if
13 end for

Compared with OPMD, two-phase shortest path
(TPSP) adopts a two-phase design which uses the
optimal fog node as the primary one, and lets the
primary one look for its 3f replicas. Thus, after using
one of the fog nodes as fj, subsequent sorting and
other work will be carried out around it, instead of the
current user who requests wthis. Some key points are
as follows:

1. The sum of fpri and frep is equal to fneed in TPSP.
2. Step 5 shows two selections when choosing

suitable neighbor fog nodes as replicas, showing dif-
ferent performances, such as the majority of total
latency as shown in Eq. (2). Ltrans pays more attention
to the number of forwarding hops, and Lprop relies on
the transmission distance.

3. The time complexity of Algorithm 3 is
O(1+3f(n+1))=O(3fn+3f+1)=O(fn).

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557 1553

Algorithm 3 Two-phase shortest path
Input: wthis, // workload needed by the user
 Cpri and Crep, // capacities of fog nodes used as the
 // primary device and replicas, respectively
 fpri and frep, // fog nodes set as the primary device and
 // replicas, respectively
 cthis, j, // connections between the user and fog node fj
 fneed, // 3f+1 fog nodes as primary device and replicas
 Cleft. // resource capacity of fog nodes
Output: resource allocation results for all users.

1 find fj with minimum cthis, j·le2e && fj·Cleft≥wthis and set
 it as fpri(i);
2 fpri·Cpri←fpri·Cpri+wthis;
3 fpri·Cleft←fpri·Cleft−wthis;
4 for i←1 to 3f do
5 find fj with least cpri, j·nhop or minimum cpri, j·le2e and

 set it as frep(i);
6 if frep≠fpri && !find(frep(1 to i−1)=frep(i)) &&

 frep(i)·Cleft≥wthis then
7 frep·Crep←frep·Crep+wthis;
8 frep·Cleft←frep·Cleft−wthis;
9 else
10 continue;
11 end if
12 end for

5 Simulations and analysis

In this section, we carry out simulations to
evaluate the performance of the resource allocation
strategies designed for a BFT fog network in two
cases: with a single Byzantine fault and with multiple
Byzantine faults. The simulation scenario is a 10 km2
square open area in which we set up 100 routers with
access points as fog nodes. There are 50–500 mobile
IoT users requesting for fog service from nearby fog
nodes.

As shown in Table 2, we consider the conditions
of both wireless and Ethernet connections with their
respective transmission bit rate and wave propagation
speed. The workload capacity of a single fog node
would be 32, 64, 128, 256, or 512 MB, according to a
single Byzantine fault or multiple faults. We use
multiple time slots to collect requests, and then pro-
cess them and store the results. We repeat each set of
simulations 10 times with different numbers of IoT
users.

5.1 A single Byzantine fault

We consider first the case of a single Byzantine
fault (f=1), which means that we aim to tolerate the

influence of a single fault in the procedure of an-
swering a request from an IoT user. Therefore, we
need to choose four fog nodes for one user in each
time slot as the primary device and replicas. The
workload capacity range set of the fog nodes is {32,
64, 128, 256}.

As shown in Fig. 3, we calculate the total latency

and the number of forwarding hops in the transmis-
sion for different numbers of users. In Fig. 3a, all the
four methods show a linear increase from 50 to 500
IoT users requesting for fog services from 100 routers.
Although the differences among the four methods are
not large when there are only a few users, the gap
between the random and the other three methods
appears with the growth of the number of users. The
performance of OPMD is relatively poor compared
with the TPSP-dist and TPSP-hop methods, which
matches our expectation. Compared with TPSP which
applies two phases in fog node selections, the same
treatments for the primary fog device and replicas do
generate some impacts on the total latency. That is,
the position of the primary fog node is more than an
issue not only when receiving the request but also
when distributing it to all replicas. Therefore, the
overlong distance or redundant forwarding hops be-
tween the primary fog node and replicas may cost
extra time in data transmission.

The number of total forwarding hops is the
second metric that we use to compare and analyze the
simulation results of BFT resource allocation in the
three-tiered heterogeneous IoT fog network. In Fig.
3b, we can see that TPSP-hop still holds the lead in
terms of practical efficiency, whereby more trans-
mission hops mean extra energy consumption in the
transmissions between the IoT users and the fog
nodes. In particular, when there are a large number of

Table 2 Experimental setup

Parameter Value
Bit rate of transmission

Wireless (802.11ad) 6.8 Gb/s
Ethernet 10 Gb/s
Maximum transfer unit (802.11) 2304 bytes

Wave propagation speed of transmission

Wireless (air)
c

(speed of light)
Ethernet (thick coax) 0.77c

Maximum transfer rate (SATA3) 750 MB/s

Workload capacity of the fog node 32–512 MB

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557

1554

users, TPSP-hop behaves better in dealing with situ-
ations where demand exceeds supply. Thus, service
capacities could be insufficient relative to the user’s
needs, and sometimes the user has to choose a service
node with a relatively high cost in terms of time and
energy consumption.

5.2 Multiple Byzantine faults

Because it is not sure whether only one Byzan-
tine fault would occur in the BFT communication
procedure (Fig. 2), we should take multiple Byzantine
faults into account. In this simulation, f relates to the
size of the requested workload capacity, which means
that the possibility of multiple Byzantine faults is
proportional to the number of resources allocated to
users. To fulfill the urgent need of available resources,
we adjusted the workload capacity range set of the
number of fog nodes to {64, 128, 256, 512}.

Compared with the case of a single Byzantine
fault in Fig. 3a, the case of multiple Byzantine faults

in Fig. 4a does not show considerable performance
degradation in the total latency. For the numbers of
forwarding hops in Figs. 3b and 4b, as more replicas
are set to ensure the state machine replication when
necessary, the numbers of total transmission hops in
the three methods increase by more than 50%.
Therefore, our approach is not limited to a single fault.
It can maintain performance when the multiple ones
occur. Another point is that TPSP-dist fluctuates and
loses the advantage over OPMD when number of
users exceeds 450. The reason may be that, as the
relationship among fog nodes becomes more complex,
making a decision in the second phase of TPSP-dist
fails to find a better choice of suitable replicas.

5.3 Device use rates and percentages of the pri-
mary devices and replicas

To figure out the composition and the actual
working conditions of the IoT fog network, we add
the fog nodes’ use rates as well as the percentages of

50 100 150 200 250 300 350 400 450 500
Number of user nodes

0

50

100

150

200

OPMD

TPSP-dist

TPSP-hop

Random

(a)

N
um

be
r

of
 f

or
w

ar
d

in
g

h
op

s
(×

1
04

)

Fig. 3 Simulation results in the case of a single Byzantine fault: (a) total latency; (b) number of forwarding hops in
transmission
The red and yellow lines represent the simulation results of different standards when choosing suitable neighbor fog nodes, as
shown in step 5 of Algorithm 3. The yellow line considering the number of forwarding hops shows less total latency than the red
one, which illustrates that the time cost of Ltrans takes up a larger proportion than that of Lprop. References to color refer to the
online version of this figure

N
u

m
b

er
 o

f f
o

rw
ar

di
ng

 h
o

ps
 (

×
1

04
)

Fig. 4 Simulation results in the case of multiple Byzantine faults: (a) total latency; (b) number of total forwarding hops in
transmission
References to color refer to the online version of this figure

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557 1555

workload capacity occupied by the primary devices or
replicas as auxiliary metrics to provide more details.

Figs. 5 and 6 show the use rates and primary
devices and replicas percentages of three resource
allocation methods in cases of a single fault and mul-
tiple faults. First, in the comparisons between the two
cases of the same method, the occupied workload
proportions of the number of replicas all increase
when more replicas are needed, and a single fog node
is set as a replica in multiple requests. Second,

the use rates of TPSP-hop are always lower than those
of the other two methods ranging from 5% to 10%
(Fig. 5), which can be the superiority in terms of ef-
ficiency. That is to say, TPSP-hop can complete the
same amount of work using fewer computational
resources. Third, compared to the second point above,
in Fig. 6, the gap between TPSP-hop and other two
methods in terms of device use rates is narrowed
when more than one Byzantine fault occurs in a single
BFT communication procedure.

Fig. 6 Device use rates and percentage of the primary
devices and replicas in the case of multiple Byzantine
faults: (a) OPMD; (b) TPSP-dist; (c) TPSP-hop
The green broken line stands for the actual occupancy rates,
which are the average of 10 time slots. The blue and red bars
are the average percentages of workload capacity occupied by
the replicas and primary devices, respectively. References to
color refer to the online version of this figure

100 200 300 400 500
Number of user nodes

0

20

40

60

80

100
Total use rate

Replica percentage

Primary percentage

(a)

0

100 200 300 400 500
Number of user nodes

0

20

40

60

80

100
Total userate

Replica percentage

Primary percentage

(b)

0

100 200 300 400 500
Number of user nodes

0

20

40

60

80

100
Total use rate

Replica percentage

Primary percentage

(c)

0

Fig. 5 Device use rates and percentage of the primary
devices and replicas in the case of a single Byzantine fault:
(a) OPMD; (b) TPSP-dist; (c) TPSP-hop
Green broken line stands for the actual occupancy rates,
which are the average of 10 time slots. The blue and red bars
are the average percentages of workload capacity occupied by
the replicas and primary devices, respectively. References to
color refer to the online version of this figure

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557

1556

In summary, from the simulations of the cases of
a single Byzantine fault and multiple faults, TPSP
with the selection standard of fewer transmission
hops shows better performance in terms of total
latency, number of forwarding hops, and device use
rates. As a result, the BFT resource allocation strategy
builds a reliable fog network structure to tolerate the
influence of a single Byzantine fault or multiple
faults.

6 Conclusions

In this paper, we aim to tolerate the influence of
Byzantine faults and improve the transmission and
processing efficiency in SIoTFog. We have designed
a three-tiered heterogeneous IoT fog network model
which consists of routers as fog nodes to provide fog
service to IoT users. To solve the problem of BFT in
fog services, we have proposed a fog networking
method based on breath-first search and two BFT
resource allocation strategies to distribute workload
capacities of the fog nodes to users upon request. We
consider both a single Byzantine fault and multiple
faults in simulations. Simulation results show that our
proposed strategies can build an efficient and reliable
fog network when faced with Byzantine faults.

In the future, we will focus on further improving
our approach to deal with the various situations that
may occur in actual network operations. There are
two performance boundaries in our proposed strate-
gies: (1) To ensure BFT in fog computing, we rely on
the mutual assistance of the geo-graphically distrib-
uted fog nodes, which means that there may be sig-
nificantly different performances for different node
distributions; (2) On a distributed network composed
of large-scale fog nodes, the fact that BFT does in-
crease the relationships among the nodes may lead to
new issues when the network topology changes.

References
Alrawais A, Alhothaily A, Hu CQ, et al., 2017. Fog computing

for the Internet of Things: security and privacy issues.
IEEE Internet Comput, 21(2):34-42.

 https://doi.org/10.1109/MIC.2017.37
Aublin PL, Mokhtar SB, Quéma V, 2013. RBFT: redundant

Byzantine fault tolerance. IEEE 33rd Int Conf on Distrib-
uted Computing Systems, p.297-306.

 https://doi.org/10.1109/ICDCS.2013.53
Bessani A, Sousa J, Alchieri EEP, 2014. State machine

replication for the masses with BFT-SMART. 44th An-
nual IEEE/IFIP Int Conf on Dependable Systems and
Networks, p.355-362.

 https://doi.org/10.1109/DSN.2014.43
Bonomi F, Milito R, Zhu J, et al., 2012. Fog computing and its

role in the Internet of Things. Proc 1st Edition of the MCC
Workshop on Mobile Cloud Computing, p.13-16.

 https://doi.org/10.1145/2342509.2342513
Castillo-Cara M, Huaranga-Junco E, Quispe-Montesinos M,

et al., 2018. FROG: a robust and green wireless sensor
node for fog computing platforms. J Sens, 2018:3406858.

 https://doi.org/10.1155/2018/3406858
Castro M, Liskov B, 2002. Practical Byzantine fault tolerance

and proactive recovery. ACM Trans Comput Syst, 20(4):
398-461. https://doi.org/10.1145/571637.571640

Driscoll K, Hall B, Sivencrona H, et al., 2003. Byzantine fault
tolerance, from theory to reality. LNCS, 2788:235-248.

 https://doi.org/10.1007/978-3-540-39878-3_19
Driscoll K, Hall B, Paulitsch M, et al., 2004. The real Byzan-

tine generals. 23rd Digital Avionics Systems Conf, p.1-11.
https://doi.org/10.1109/DASC.2004.1390734

Gao DH, Wang QF, Lei Y, 2017. Distributed fault-tolerant
strategy for electric swing system of hybrid excavators
under communication errors. Front Inform Technol
Electron Eng, 18(7):941-954.

 https://doi.org/10.1631/FITEE.1601021
Hu PF, Ning HS, Qiu T, et al., 2017. Security and privacy

preservation scheme of face identification and resolution
framework using fog computing in Internet of Things.
IEEE Internet Things J, 4(5):1143-1155.

 https://doi.org/10.1109/JIOT.2017.2659783
IHS Markit, 2017. IoT Trend Watch 2017.
 https://ihsmarkit.com/Info/0117/IoT-trend-watch-2017.html

[Accessed on Aug. 29, 2018].
Jalali F, Hinton K, Ayre R, et al., 2016. Fog computing may

help to save energy in cloud computing. IEEE J Sel Areas
Commun, 34(5):1728-1739.

 https://doi.org/10.1109/JSAC.2016.2545559
Khosravi A, Kavian YS, 2016. Autonomous fault-diagnosis

and decision-making algorithm for determining faulty
nodes in distributed wireless networks. Front Inform
Technol Electron Eng, 17(9):885-896.

 https://doi.org/10.1631/FITEE.1500176
Kotla R, Alvisi L, Dahlin M, et al., 2010. Zyzzyva: speculative

Byzantine fault tolerance. ACM Trans Comput Syst, 27(4),
Article 7. https://doi.org/10.1145/1658357.1658358

Lamport L, Shostak R, Pease M, 1982. The Byzantine generals
problem. ACM Trans Program Lang Syst, 4(3):382-401.

 https://doi.org/10.1145/357172.357176
Li H, Li P, Guo S, et al., 2014. Byzantine-resilient secure

software-defined networks with multiple controllers in
cloud. IEEE Trans Cloud Comput, 2(4):436-447.

 https://doi.org/10.1109/TCC.2014.2355227
Li H, Ota K, Dong MX, 2018. Learning IoT in edge: deep

learning for the Internet of Things with edge computing.
IEEE Network, 32(1):96-101.

Xu et al. / Front Inform Technol Electron Eng 2018 19(12):1546-1557 1557

 https://doi.org/10.1109/MNET.2018.1700202
Liu Z, Dong MX, Zhou H, et al., 2016. Device-to-device

assisted video frame recovery for picocell edge users in
heterogeneous networks. IEEE Int Conf on Communica-
tions, p.1-6. https://doi.org/10.1109/ICC.2016.7511342

Miller A, Xia Y, Croman K, et al., 2016. The honey badger of
BFT protocols. Proc ACM SIGSAC Conf on Computer
and Communications Security, p.31-42.

 https://doi.org/10.1145/2976749.2978399
Perera C, Qin YR, Estrella JC, et al., 2017. Fog computing for

sustainable smart cities: a survey. ACM Comput Surv,
50(3), Article 32. https://doi.org/10.1145/3057266

Reznik A, Arora R, Cannon M, et al., 2017. Developing
software for multi-access edge computing. ETSI White
Paper 20.

Satyanarayanan M, 2017. The emergence of edge computing.
Computer, 50(1):30-39.

 https://doi.org/10.1109/MC.2017.9
Satyanarayanan M, Bahl P, Cáceres R, et al., 2009. The case

for VM-based cloudlets in mobile computing. IEEE Perv
Comput, 8(4):14-23.

 https://doi.org/10.1109/MPRV.2009.82
Stojmenovic I, Wen S, 2014. The fog computing paradigm:

scenarios and security issues. Proc Federated Conf on
Computer Science and Information Systems, p.1-8.

 https://doi.org/10.15439/2014F503
Tao M, Ota K, Dong M, 2017. Foud: integrating fog and cloud

for 5G-enabled V2G networks. IEEE Network, 31(2):
8-13. https://doi.org/10.1109/MNET.2017.1600213NM

Tao XY, Ota K, Dong MX, et al., 2017. Performance guaran-
teed computation offloading for mobile-edge cloud

computing. IEEE Wirel Commun Lett, 6(6):774-777.
 https://doi.org/10.1109/LWC.2017.2740927
Vaquero LM, Rodero-Merino L, 2014. Finding your way in the

fog: towards a comprehensive definition of fog compu-
ting. ACM SIGCOMM Comput Commun Rev, 44(5):
27-32. https://doi.org/10.1145/2677046.2677052

Wu J, Dong MX, Ota K, et al., 2018a. Big data analysis-based
secure cluster management for optimized control plane in
software-defined networks. IEEE Trans Network Serv
Manag, 15(1):27-38.

 https://doi.org/10.1109/TNSM.2018.2799000
Wu J, Dong MX, Ota K, et al., 2018b. FCSS: fog computing

based content-aware filtering for security services in in-
formation centric social networks. IEEE Trans Emerg
Top Comput, in press.

 https://doi.org/10.1109/TETC.2017.2747158
Yi SH, Li C, Li Q, 2015. A survey of fog computing: concepts,

applications and issues. Proc Workshop on Mobile Big
Data, p.37-42. https://doi.org/10.1145/2757384.2757397

Zeng DZ, Gu L, Yao H, 2018. Towards energy efficient ser-
vice composition in green energy powered cyber–
physical fog systems. Fut Gener Comput Syst, in press.

 https://doi.org/10.1016/j.future.2018.01.060
Zhang LY, Ding GR, Wu QH, et al., 2015. Byzantine attack

and defense in cognitive radio networks: a survey. IEEE
Commun Surv Tutor, 17(3):1342-1363.

 https://doi.org/10.1109/COMST.2015.2422735
Zhang WZ, Lu K, Wang XP, 2018. Versionized process based

on non-volatile random-access memory for fine-grained
fault tolerance. Front Inform Technol Electron Eng, 19(2):
192-205. https://doi.org/10.1631/FITEE.1601477

