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Abstract: The current boom in the Internet of Things (IoT) is changing daily life in many ways, from wearable devices to con-
nected vehicles and smart cities. We used to regard fog computing as an extension of cloud computing, but it is now becoming an 
ideal solution to transmit and process large-scale geo-distributed big data. We propose a Byzantine fault-tolerant networking 
method and two resource allocation strategies for IoT fog computing. We aim to build a secure fog network, called “SIoTFog,” to 
tolerate the Byzantine faults and improve the efficiency of transmitting and processing IoT big data. We consider two cases, with 
a single Byzantine fault and with multiple faults, to compare the performances when facing different degrees of risk. We choose 
latency, number of forwarding hops in the transmission, and device use rates as the metrics. The simulation results show that our 
methods help achieve an efficient and reliable fog network. 
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1  Introduction 
 

In recent years, we have witnessed the boom in 
the Internet of Things (IoT) and the hypergrowth of 
cloud computing, which again overturned our per-
ception of information technology. By 2020, more 
than 20 billion IoT devices will be manufactured and 
put into use after a 15% annual increase (IHS Markit, 
2017). Originally, as an extension of cloud computing, 
fog computing relied on the collaborative end-user 
clients or near-user edge devices to provide a sub-
stantial amount of storage capacity and communica-
tion solutions. Now, fog has already become a re-
search hotspot, not only broadening our perspective in 
distributed computation, but also providing brand 

new ideas to exploit the potential of “Things” besides 
the “Internet.” 

Byzantine fault tolerance (BFT) describes the 
dependability of fault-tolerant computing systems, 
especially distributed ones. The problem of Byzantine 
generals or BFT was first proposed by Lamport et al. 
(1982). In the BFT, a group of generals is trying to 
reach an agreement to decide whether to attack ene-
mies or retreat from them according to their votes in 
the majority. Considering the appearances of mes-
sengers or the presence of traitors who want to disrupt 
the whole group, the final agreement may run in an 
opposite direction of the loyal generals’ original in-
tentions. A Byzantine fault is the inconsistency of 
different messages that the generals received from a 
single general, and the Byzantine failure is the system 
malfunction caused by a Byzantine fault. 

Occurrence of Byzantine faults can be very 
common in distributed systems, such as fog networks. 
Sometimes fog nodes may fail, and there is imperfect 
information about whether a particular node has 
failed. The only way to solve this problem is to find 
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the failed node. However, we cannot ask a running 
distributed system to stop and troubleshoot all nodes. 
Instead, a relative compromise is a solution to a fault- 
tolerance mechanism. That is, what we prefer to do is 
to cope with BFT while introducing as little impact as 
possible to the network computing performance. 

In this study, we focus on the issue of BFT in 
resource allocation of fog computing for IoT appli-
cations. Fault tolerance enables a system to continue 
to work when some of its components go down. 
Therefore, a good fault-tolerance performance can 
greatly tolerate the interruption of retransmissions in 
network communications and reduce extra energy 
consumption and time costs. 

In fog computing, large central servers are car-
ried out by a massive number of geo-distributed 
small- and medium-sized fog devices at the edge of 
the network structure. Thus, rather than setting dedi-
cated standby replicas for all fog devices, we can 
simply make the fog devices help each other for state 
machine replication. Thus, a fog device can serve as 
the replica of its neighbor to tolerate the influence of a 
possible Byzantine fault. Taking the mobility of IoT 
devices into account, the relationship between repli-
cas and primary devices can also change while the 
entire network is running. Therefore, we need a dy-
namic resource allocation strategy to solve the BFT in 
fog computing. The main contributions of our work 
are as follows: 

1. A three-tiered heterogeneous fog network 
model is designed, in which the fog device routers can 
provide services to IoT users, such as sensors, smart 
devices, and vehicles. 

2. A Byzantine-resilient fog networking method 
and a two-resource allocation strategy are proposed to 
tolerate the influence of Byzantine faults. 

3. The cases of a single Byzantine fault and 
multiple faults are considered to test the performance 
of the methods when facing different degrees of risk. 

4. Total latency, number of forwarding hops in 
the transmission, and the device use rates are chosen 
as the metrics for analysis of the simulation results. 

 
 

2  Related work 
 

In this section, we present the related work on 
fog computing and the BFT problem. 

2.1  Fog computing 

Fog computing first served as an extension of 
cloud computing as a way to share responsibility to 
data storage and process at the edge of the network 
structure by Cisco Systems Inc. (Bonomi et al., 2012). 
Vaquero and Rodero-Merino (2014) from the 
Hewlett-Packard Company (HP) offered a compre-
hensive view of fog computing and correlated it with 
existing technologies, such as cloud, sensor networks, 
peer-to-peer networks, and network virtualization 
function (NFV), to reach a definition of the “fog.” 
Satyanarayanan et al. (2009) and Satyanarayanan 
(2017) conducted mobility-enhanced small-scale 
instances of cloud datacenters and the cloudlet to 
mobile edge computing (MEC) in IoT. Liu et al. 
(2016) focused on streaming media in heterogeneous 
edge networks and proposed a device-to-device re-
lay-assisted scheme to solve video frame recovery for 
picocell edge users. Tao M et al. (2017) integrated 
cloud and fog computing to build a hybrid network 
model for vehicle-to-grid (V2G) and the 5th genera-
tion wireless systems services (5G). Stojmenovic and 
Wen (2014) analyzed the real-world application sce-
narios of the fog, such as in smart grids, smart traffic, 
and software-defined networks (SDNs). In these 
scenarios, the man-in-the-middle attack is regarded as 
a typical security issue to represent new features in 
the fog. Yi et al. (2015) focused on the new security 
and privacy challenges besides those inherited from 
the cloud, and proposed ideas for solutions. Alrawais 
et al. (2017) considered the fog and the IoT as a whole 
and put forward a mechanism to improve the distri-
bution of certificate revocation information to en-
hance the security among IoT devices in the fog. Li et 
al. (2018) introduced deep learning to solve problems 
in edge computing. Hu et al. (2017) addressed face 
identification and resolution technology, and imple-
mented a prototype system to evaluate their proposed 
security and privacy preservation method. 

Compared with cloud computing, fog computing 
was originally intended to share the high load of a 
central architecture and to save the extra costs that 
occur between cloud servers and IoT devices at the 
edge of a network. Jalali et al. (2016) believed that fog 
computing could reduce the energy consumption 
compared with cloud computing. Tao XY et al. (2017) 
investigated the energy efficiency in mobile-edge 
computing and applied a request offloading scheme to 
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improve the performance of energy consumption and 
bandwidth capacity. Perera et al. (2017) studied the 
existing research and the problems in fog computing 
for sustainable smart cities. Castillo-Cara et al. (2018) 
put forward a fog-node design to deal with the energy 
consumption problem and network resilience provi-
sioning in wireless sensor networks (WSNs). Zeng et 
al. (2018) studied how to explore energy generation 
diversity in a cyber physical fog system (CPFS) while 
considering source rate control, service replica de-
ployment, and load balancing. Wu et al. (2018b) 
combined information-centric networks (ICNs) with 
designing content awareness filtering to increase the 
safety factor of fog computing. 

2.2  Byzantine fault tolerance problem 

Fault tolerance refers to the property that no 
global errors or interruptions occur in a system be-
cause of local faults. Therefore, fault-tolerant design 
is very common and important in fields related to an 
overall system structure (Khosravi and Kavian, 2016; 
Gao et al., 2017; Zhang et al., 2018). Since BFT was 
first proposed by Lamport et al. (1982), it has been 
studied for decades. Castro and Liskov (2002) first 
explored in depth the practice of BFT and imple-
mented a generic program library and the first BFT 
network file system (NFS). Their experiment results 
showed that an NFS with BFT, i.e., a BFS, performs 
better than the NFS protocol without replicas. Dris-
coll et al. (2003, 2004) redefined the concepts of 
Byzantine problems, including the widely known 
existence of Byzantine faults and their possibility of 
leading to Byzantine failures. They pointed out some 
misunderstanding about Byzantine attack conditions, 
and proposed countermeasures. Kotla et al. (2010) 
proposed a speculative BFT protocol, the Zyzzyva, to 
simplify the design of BFT state machine replication 
and to ensure that responses to the correct clients 
become stable. They compared the Zyzzyva with 
existing BFT protocols, including cost, throughput, 
and latency, and proved that Zyzzyva can maintain 
properties of safety and liveness. 

BFT is now widely accepted as a basic security 
necessity, especially for distributed systems with 
system-level consensus requirements and mutual 
clock synchronization (Driscoll et al., 2004). Aublin 
et al. (2013) designed a redundant-BFT (RBFT) ap-
proach to closely monitor the performance of  

instances from the primary device to replicas on dif-
ferent machines. Bessani et al. (2014) optimized the 
BFT protocols by applying an open Java-based library 
source to make state machine replication robust. Li et 
al. (2014) designed a secure SDN to tolerate Byzan-
tine attacks on the communication links between 
SDN controllers and switches. Wu et al. (2018a) 
proposed optimization algorithms to achieve secure 
cluster management in SDNs. Zhang et al. (2015) 
focused on the cognitive radio network (CRN) and 
introduced the Byzantine attack and defense in co-
operative spectrum sensing, which is one of the key 
security issues in a CRN. Miller et al. (2016) argued 
that the former synchronous BFT protocols critically 
relied on the network time assumptions and proposed 
an asynchronous one to extend the adaptability to 
asynchronous systems, such as blockchain technolo-
gy. 

 
 

3  Problem formulation 
 
In this section, we design the system model and 

formulate the problem of BFT in fog computing. 
In contrast to a traditional centralized network 

design, fog computing prioritizes the local distributed 
devices at the edge of the network to provide 
low-latency resource-constrained processing and 
storage services. In fog, there exist more complex 
relationships between users and service providers 
such as fog devices; that is, each user may not stay in 
contact with the same service provider all the time. 
Rather than a dedicated wide bandwidth, fog users 
prefer to flexible dynamic resource allocation, which 
saves extra time and energy consumption in multi-hop 
forwarding. 

To tolerate the influence of Byzantine faults, we 
need to set replicas for network nodes as backups to 
restore and recover data when necessary. In fog, we 
do not need to prepare dedicated devices for BFT but 
can assign neighbor fog devices to serve as replicas. 

 

3 1,n f                            (1) 
 

where f is the number of Byzantine faults, and n is the 
number of the devices. As shown in Eq. (1), existing 
BFT protocols, including PBFT (Castro and Liskov, 
2002), Zyzzyva (Kotla et al., 2010), and honey badger 
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BFT (Miller et al., 2016), elaborate that we need at 
least 3f devices as replicas besides the primary device 
to tolerate f Byzantine faults, while all communica-
tions are synchronous or in bounded delays. For 
example, if the number of Byzantine faults reaches 
three, we need at least 10 fog nodes to avoid the 
Byzantine failure. 

3.1  System outline 

We formulate the mathematical model of a 
three-tiered heterogeneous IoT fog network (Fig. 1) 
(Stojmenovic and Wen, 2014; Reznik et al., 2017). 
We aim to reduce the impact of Byzantine faults on 
resource allocation in fog computing. Therefore, we 
consider that this three-tiered model can more intui-
tively show the relationship between fog nodes (ser-
vice providers) and users (service receivers) than the 
models with more tiers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
User nodes (u1, u2, …, un) in the user tier send 

requests upwards to ask routers to serve as fog nodes 
(f1, f2, …, fn) in the fog tier for computational re-
sources through access points. The cloud tier serves 
as reliable data centers providing stable network 
connections. Communications between the user tier 
and fog tier are wireless broadcasting, those inside the 
fog tier are wired broadcasting, and those between the 
fog tier and the cloud tier are wired point-to-point. 

Fig. 2 shows the BFT threat model in our work. 
When users choose some fog nodes as service pro-
viders, they also need to accept some permission for 
authority. The situation is similar to a pop-up window 
that appears before installation or the first time one 

opens an App on a smart device. For example, when a 
user chooses f1 to finish a task on a mobile phone, for 
account certification, the user allows f1 to use the 
camera when a service is provided. In normal cases, f1 
will send a message to make the user turn off the 
camera after certification. However, when f1 is con-
trolled by someone who wants to obtain additional 
personal privacy information, the message can be 
modified and remain open. To guarantee the operation 
of the fog network, we cannot extensively interrupt 
service to troubleshoot some individual malicious 
nodes. It is better to draw support from a suitable 
fault-tolerant strategy to tolerate possible system 
failures. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
To implement B yzantine fault tolerance in this 

three-tiered fog network, we need geo-distributed 
routers to work as fog nodes to help each other when 
facing Byzantine faults. We choose f1 as a service 
provider and set replicas f2, f3, and f4 to ensure state 
machine replication when necessary. Take the case of 
a single Byzantine fault into account, in which three 
replicas are required by one primary fog node. The 
entire process of Byzantine-resilient communication 
in the design of the fog network is as follows: 

1. A mobile user in the user tier requests com-
putational resources from the fog tier. 

2. A fog node in the fog tier within the suitable 
distance to the user accepts the request and forwards it 
to the other three fog nodes as replicas. 

3. Both the primary fog node and the replicas 
execute the task and send back responses to the 
original user. 

Therefore, the original user can check the  

Fig. 2  BFT threat model in the fog service 

 

Fig. 1  A three-tiered heterogeneous IoT fog network 
Solid and dotted lines stand for the Ethernet and wireless 
connections, respectively 
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responses even if f1 wants to keep the camera on, and 
he/she can still tolerate a Byzantine failure from the 
single fault by checking responses from f2 to f4. 

3.2  Performance metrics 

To analyze the performance of the proposed BFT 
resource allocation strategy, we choose the total la-
tency and the number of forwarding hops in the 
transmission as the two main metrics. 

To achieve the BFT and tolerate the Byzantine 
failures, we operate at the expense of decreasing 
computing performance in the fog network. That is to 
say, in the process of multiple fog nodes working 
together to complete a user request, an additional 
information exchange is implemented to eliminate the 
possible impact of the failed nodes. In practice, la-
tency is a basic metric which is widely used for per-
formance evaluation. We use a latency to prove that 
our methods can achieve a BFT with as little time cost 
as possible: 

 

pkt pkt

all trans prop proc

pkt pkte2e
   hop

bit prop MTR

( ) ( )
  .

n n

i i

L L L L

s i s il
n

r v r
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   
     (2) 

 
As shown in Eq. (2), the total end-to-end latency 

Lall includes mainly three parts: transmission latency 
Ltrans, propagation latency Lprop, and processing pro-
cedure latency Lproc. Ltrans represents the time to push 
all bits of packets into the transmission medium, such 
as the wires and the air, and Ltrans is independent of the 
distance between any two nodes and relates only to 
the total size of the packets. In contrast, Lprop depends 
on the travel distance between the sender and the 
receiver, and on the property of the transmission me-
dium. npkt is the number of packets, and spkt the size of 
the packets. rbit is the bandwidth or bit rate of the 
transmission link. For wireless communication, vprop 
is equal to the speed of light c; for wired communi-
cation, it ranges from 0.59c to 0.77c. le2e is the 
end-to-end length added up by all distances between 
any two nodes that take part in the current commu-
nication. To calculate Lprop, we need to know the 
maximum transfer rate rMTR of the fog devices and the 
total packet size spkt: 

 
all trans prop
user 1 2 2 3.L L L L                      (3) 

To obtain the latency in practice (Fig. 2), we 
need to calculate each part of the three steps, as shown 
in Eq. (3). For step 1, we sum up Ltrans and Lprop, since 
there is only one connection between the user and the 
primary fog node f1. 

 

2 3 2 3max{ | 1,2,3,4}.ifL L i             (4) 
 

However, for steps 2 and 3, since the replicas 
may differ from each other in their positions from the 
user, for the primary fog node and the processing 
capacity, we need to figure out the practical latency of 
the primary device and each replica, and pick the 
maximum one as shown in Eq. (4). Then, we can 
obtain 

 

2

1 2 2 2

trans prop trans prop proc
2 3 , ,user .f

f f f fL L L L 
            (5) 

 

Take f2 as an example. Latencies in steps 2 and 3 
include two steps for Ltrans, Lprop, and Lproc. 

Moreover, we use the number of forwarding 
hops in the transmission, which can reflect the quan-
tity of work in our fog network and show the practical 
efficiency. 

 

 
1

4
all hop hop hop
hop user, pri , , user

2

2 .
i if f f

i

n n n n


             (6) 

 

As shown in Eq. (6), in contrast to the total la-
tency, to calculate the total number of forwarding 
hops in the transmission, we need to consider all the 
connections in the three steps in Fig. 2. 

Besides the total latency and the number of 
forwarding hops, to obtain a thorough understanding 
of the network structure, we use the fog nodes’ use 
rates and the percentages of workload capacity occu-
pied by the primary device or replicas as two auxiliary 
metrics to analyze the simulation results. 

The use rates stand for the overall resource oc-
cupancy of all fog nodes. We use the use rate to study 
the actual working conditions of the entire IoT fog 
network and the possible changes brought by resource 
allocation strategies. In the simulation, we consider 
the cases of both workload capacities occupied as 
primary service providers and replicas. Moreover, we 
separately treat the two cases to calculate the  
percentages. 

Table 1 summarizes the main symbols used in 
this study. 
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4  Byzantine fault-tolerant resource alloca-
tion strategy 

 
In this section, we propose resource allocation 

strategies for a fog network, aimed at tolerating the 
influence of Byzantine faults. 

4.1  BFT fog networking 

Before choosing the primary nodes and replicas 
for users in the need of fog service, we build a BFT 
fog network considering all neighbor relationships 
among the routers as fog nodes. Therefore, we aim to 
fulfill the requirements of the BFT protocol, called 
“Zyzzyva” (Kotla et al., 2010). 

Algorithm 1 is based on a non-recursive 
breadth-first search (BFS) method to implement BFT 
fast networking. To obtain the connection situation ci, j 
between any two fog nodes (f1, f2, …, fn), including 
geographical distances and number of forwarding 
hops in routing, we need a two-dimensional position 
Pi and neighbor lists recording all adjacent nodes 

fi.adj. Two first-in first-out (FIFO) queues Qfog and 
Qsave, variables layer, and leaves are used to build the 
tree maps formulated using the BFS method. Some 
key points are as follows: 

1. We use Qfog as the main data structure to 
consider the whole situation. The cyclic condition in 
step 9 could not be broken after traversing all other 
nodes, unless no existing path is found between fi and 
fj. 

2. Qsave is an instrumental variable to save all 
non-repetitive nodes, which means no path will be 
tried twice. In step 19, we drop the neighbors of fthis, 
which are already covered by Qsave before pushing the 
rest into two queues. 

 
, 1

1
1

path( , ) length( , ).
i jn

i j n n
n

P P P P





          (7) 

 

Algorithm 1    BFT fog networking 
Input: F={f1, f2, …, fn}, 

    // n fog nodes are in the network structure 
     Pi, // coordinates of all the fog nodes 
     fi.adj, // the list of all adjacent nodes to fi 
     Qfog and Qsave, // FIFO queues to keep fog nodes 
     layer and leaves(layer). // layers and leaves in tree map 
Output: {Ci, j|i, j{1, 2, …, n}, i≠j}.  

// connections between any fi and fj 
1   for i←2 to n do 

2    for j←1 to i−1 do  

3     Qfog← and Qsave←; 
4     if find(fi.adj=j) then 
5       ci, j·nhop←1, ci, j·le2e←path(Pi, Pj); 
6     end if 
7     push all fi.adj into Qfog and Qsave;  
8     layer←1 and leaves(layer)←size of fi.adj; 

9     while Qfog≠ do 
10      if leaves(layer)==0 then 
11       layer←layer+1; 
12     end if 
13      this←Qfog·pop(); 

14      leaves(layer)←leaves(layer)−1; 
15      if find(fthis.adj=j) then 
16        ci, j·nhop←layer+1 and ci, j·le2e←path(Pi, Pj);  
17        break; 
18      end if 
19      drop any fthis.adj in Qsave and push them into  
         Qfog and Qsave one by one;  
20      leaves(layer)←leaves(layer)+size of f′this.adj;  
21     end while 
22    end for 
23   end for 

Table 1  Notations used in the design of the Byzantine-
resilient fog network 

Symbol Meaning 
U and ui A set of user nodes and one element in 

it, respectively 
F and fi A set of fog nodes and one element in 

it, respectively 
Ltrans, Lprop, and 

Lproc 
Transmission latency, propagation 

latency, and processing latency, re-
spectively 

nhop Number of forwarding hops in the 
transmission 

npkt and spkt The number and size of packets,  
respectively 

rbit Bit rate of the transmission link 
le2e End-to-end length of the network 

connection 
vprop Wave propagation speed of the trans-

mission medium 
rMTR Maximum transfer rate of the device 
Ci, j The distance or number of forwarding 

hops between fi and fj 
Pi Position coordinates of fi 

path(Pi, Pj) Summation of all connections between 
fi and fj 

wthis Needed workload capacity of the cur-
rent request from the user 

Cpri and Crep Workload capacities of the fog nodes 
occupied as primary and replicas, 
respectively 
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3. Path(Pi, Pj) in steps 5 and 16 are the summa-
tion of all connections between any two of the nodes 
in the full path from fi to fj. We can obtain path(·, ·) in 
Eq. (7), and ni, j is the number of nodes in the path 
between fi and fj. 

4. A tree map is obtained using the BFS method, 
and we use the layer and leaves(layer) to record the 
current layer and how many nodes are within this 
layer. 

To set the primary fog node and replicas for the 
user in a request, we need to ensure protocol com-
munications between any two different nodes; that is 
to say, although our fog network is not a real full 
connected network, we can still make sure that fi can 
exchange messages with fj at any time after a limited 
number of forwarding hops. The time complexity of 
Algorithm 1 is O(n2(1+n))=O(n3+n2)=O(n3). 

4.2  BFT resource allocation strategy 

To tolerate Byzantine faults in our fog network, 
we set the nearby fog nodes as replicas to achieve 
state machine replication. Thus, each replica needs to 
repeat what the primary fog node is doing and send 
back the processing result to the user. 

One phase minimum distance (OPMD) gives an 
entire procedure to set one primary fog node and three 
replicas for workload wthis requested by the current 
user. Cpri and Crep are the resource allocation results, 
where a part of the workload capacity is set as the 
primary fog node or replicas. We sort all the fog nodes 
by their distances away from the position of the cur-
rent user, and judge whether the remaining workload 
capacity Cleft is full, and whether fog node is being 
requested twice. Some key points are as follows: 

1. We use fneed as a set of temporary choices of 
fog nodes during the 3f+1 cycles, and regard the first 
choice as the primary fog node. 

2. !find(fneed(1 to i−1)=fneed(i)) in step 3 is aimed 
to make sure that the currently chosen fneed(i) is not 
included in the former one. 

OPMD focuses on shortening the communica-
tion distances between users and fog nodes, which 
may extensively cut down on the Lprop in Eq. (2). 
Algorithm 2 makes full use of the advantages of fast 
networking in the BFS method and can find all re-
quired 3f+1 fog nodes in a simple and straightforward 

way. The time complexity of Algorithm 2 is 
O((3f+1)(n+1))=O(3fn+3f+n+1)=O(fn). 

However, OPMD may also place an extra burden 
on communications among the primary fog nodes and 
replicas providing service for the same users to some 
extent. Therefore, we put forward a two-phase algo-
rithm to optimize this issue among the primary fog 
nodes and replicas. 

 

Algorithm 2    One phase minimum distance 
Input: wthis, // workload needed by the user 
     Cpri and Crep, // capacities of fog nodes used as primary 
              // devices and replicas, respectively 
     cthis, j, // connections between the user and fog node fj 
     fneed, // 3f+1 fog nodes as primary devices and replicas 
     Cleft. // resource capacity of fog nodes 
Output: resource allocation results for all users 

1  for i←2 to 3f+1 do 

2   find fj with minimum cthis, j·le2e and set it as fneed(i) 
3   if !find(fneed(1 to i−1)=fneed(i)) && 
       fneed(i)·Cleft≥wthis then 
4     if i=1 then 

5      fneed·Cpri←fneed·Cpri+wthis;  

6     else 
7      fneed·Crep←fneed·Crep+wthis; 

8     end if 
9     fneed·Cleft←fneed·Cleft−wthis; 

10  else 
11    continue; 
12  end if 
13 end for 

 

Compared with OPMD, two-phase shortest path 
(TPSP) adopts a two-phase design which uses the 
optimal fog node as the primary one, and lets the 
primary one look for its 3f replicas. Thus, after using 
one of the fog nodes as fj, subsequent sorting and 
other work will be carried out around it, instead of the 
current user who requests wthis. Some key points are 
as follows: 

1. The sum of fpri and frep is equal to fneed in TPSP. 
2. Step 5 shows two selections when choosing 

suitable neighbor fog nodes as replicas, showing dif-
ferent performances, such as the majority of total 
latency as shown in Eq. (2). Ltrans pays more attention 
to the number of forwarding hops, and Lprop relies on 
the transmission distance. 

3. The time complexity of Algorithm 3 is 
O(1+3f(n+1))=O(3fn+3f+1)=O(fn). 
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Algorithm 3    Two-phase shortest path 
Input: wthis, // workload needed by the user 
     Cpri and Crep, // capacities of fog nodes used as the 
              // primary device and replicas, respectively 
     fpri and frep, // fog nodes set as the primary device and  
             // replicas, respectively 
     cthis, j, // connections between the user and fog node fj 
     fneed, // 3f+1 fog nodes as primary device and replicas 
     Cleft. // resource capacity of fog nodes 
Output: resource allocation results for all users. 

1   find fj with minimum cthis, j·le2e && fj·Cleft≥wthis and set  
     it as fpri(i); 
2   fpri·Cpri←fpri·Cpri+wthis; 
3   fpri·Cleft←fpri·Cleft−wthis; 
4   for i←1 to 3f do 
5     find fj with least cpri, j·nhop or minimum cpri, j·le2e and 

          set it as frep(i); 
6     if frep≠fpri && !find(frep(1 to i−1)=frep(i)) && 

          frep(i)·Cleft≥wthis then 
7       frep·Crep←frep·Crep+wthis; 
8       frep·Cleft←frep·Cleft−wthis; 
9     else 
10     continue; 
11    end if 
12  end for 

 
 

5  Simulations and analysis 
 

In this section, we carry out simulations to 
evaluate the performance of the resource allocation 
strategies designed for a BFT fog network in two 
cases: with a single Byzantine fault and with multiple 
Byzantine faults. The simulation scenario is a 10 km2 
square open area in which we set up 100 routers with 
access points as fog nodes. There are 50–500 mobile 
IoT users requesting for fog service from nearby fog 
nodes. 

As shown in Table 2, we consider the conditions 
of both wireless and Ethernet connections with their 
respective transmission bit rate and wave propagation 
speed. The workload capacity of a single fog node 
would be 32, 64, 128, 256, or 512 MB, according to a 
single Byzantine fault or multiple faults. We use 
multiple time slots to collect requests, and then pro-
cess them and store the results. We repeat each set of 
simulations 10 times with different numbers of IoT 
users. 

5.1  A single Byzantine fault 

We consider first the case of a single Byzantine 
fault (f=1), which means that we aim to tolerate the 

influence of a single fault in the procedure of an-
swering a request from an IoT user. Therefore, we 
need to choose four fog nodes for one user in each 
time slot as the primary device and replicas. The 
workload capacity range set of the fog nodes is {32, 
64, 128, 256}. 

 
 
 
 
 
 
 
 
 
 
 

 

 
As shown in Fig. 3, we calculate the total latency 

and the number of forwarding hops in the transmis-
sion for different numbers of users. In Fig. 3a, all the 
four methods show a linear increase from 50 to 500 
IoT users requesting for fog services from 100 routers. 
Although the differences among the four methods are 
not large when there are only a few users, the gap 
between the random and the other three methods 
appears with the growth of the number of users. The 
performance of OPMD is relatively poor compared 
with the TPSP-dist and TPSP-hop methods, which 
matches our expectation. Compared with TPSP which 
applies two phases in fog node selections, the same 
treatments for the primary fog device and replicas do 
generate some impacts on the total latency. That is, 
the position of the primary fog node is more than an 
issue not only when receiving the request but also 
when distributing it to all replicas. Therefore, the 
overlong distance or redundant forwarding hops be-
tween the primary fog node and replicas may cost 
extra time in data transmission. 

The number of total forwarding hops is the 
second metric that we use to compare and analyze the 
simulation results of BFT resource allocation in the 
three-tiered heterogeneous IoT fog network. In Fig. 
3b, we can see that TPSP-hop still holds the lead in 
terms of practical efficiency, whereby more trans-
mission hops mean extra energy consumption in the 
transmissions between the IoT users and the fog 
nodes. In particular, when there are a large number of 

Table 2  Experimental setup 

Parameter Value 
Bit rate of transmission  

Wireless (802.11ad) 6.8 Gb/s 
Ethernet 10 Gb/s 
Maximum transfer unit (802.11) 2304 bytes 

Wave propagation speed of transmission  

Wireless (air) 
c  

(speed of light)
Ethernet (thick coax) 0.77c 

Maximum transfer rate (SATA3) 750 MB/s 

Workload capacity of the fog node 32–512 MB 
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users, TPSP-hop behaves better in dealing with situ-
ations where demand exceeds supply. Thus, service 
capacities could be insufficient relative to the user’s 
needs, and sometimes the user has to choose a service 
node with a relatively high cost in terms of time and 
energy consumption. 

5.2  Multiple Byzantine faults 

Because it is not sure whether only one Byzan-
tine fault would occur in the BFT communication 
procedure (Fig. 2), we should take multiple Byzantine 
faults into account. In this simulation, f relates to the 
size of the requested workload capacity, which means 
that the possibility of multiple Byzantine faults is 
proportional to the number of resources allocated to 
users. To fulfill the urgent need of available resources, 
we adjusted the workload capacity range set of the 
number of fog nodes to {64, 128, 256, 512}. 

Compared with the case of a single Byzantine 
fault in Fig. 3a, the case of multiple Byzantine faults 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in Fig. 4a does not show considerable performance 
degradation in the total latency. For the numbers of 
forwarding hops in Figs. 3b and 4b, as more replicas 
are set to ensure the state machine replication when 
necessary, the numbers of total transmission hops in 
the three methods increase by more than 50%. 
Therefore, our approach is not limited to a single fault. 
It can maintain performance when the multiple ones 
occur. Another point is that TPSP-dist fluctuates and 
loses the advantage over OPMD when number of 
users exceeds 450. The reason may be that, as the 
relationship among fog nodes becomes more complex, 
making a decision in the second phase of TPSP-dist 
fails to find a better choice of suitable replicas. 

5.3  Device use rates and percentages of the pri-
mary devices and replicas 

To figure out the composition and the actual 
working conditions of the IoT fog network, we add 
the fog nodes’ use rates as well as the percentages of  
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Fig. 3  Simulation results in the case of a single Byzantine fault: (a) total latency; (b) number of forwarding hops in 
transmission 
The red and yellow lines represent the simulation results of different standards when choosing suitable neighbor fog nodes, as 
shown in step 5 of Algorithm 3. The yellow line considering the number of forwarding hops shows less total latency than the red 
one, which illustrates that the time cost of Ltrans takes up a larger proportion than that of Lprop. References to color refer to the 
online version of this figure 
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Fig. 4  Simulation results in the case of multiple Byzantine faults: (a) total latency; (b) number of total forwarding hops in 
transmission 
References to color refer to the online version of this figure 
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workload capacity occupied by the primary devices or 
replicas as auxiliary metrics to provide more details. 

Figs. 5 and 6 show the use rates and primary 
devices and replicas percentages of three resource 
allocation methods in cases of a single fault and mul-
tiple faults. First, in the comparisons between the two 
cases of the same method, the occupied workload 
proportions of the number of replicas all increase 
when more replicas are needed, and a single fog node 
is set as a replica in multiple requests. Second,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

the use rates of TPSP-hop are always lower than those 
of the other two methods ranging from 5% to 10% 
(Fig. 5), which can be the superiority in terms of ef-
ficiency. That is to say, TPSP-hop can complete the 
same amount of work using fewer computational 
resources. Third, compared to the second point above, 
in Fig. 6, the gap between TPSP-hop and other two 
methods in terms of device use rates is narrowed 
when more than one Byzantine fault occurs in a single 
BFT communication procedure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 6  Device use rates and percentage of the primary 
devices and replicas in the case of multiple Byzantine 
faults: (a) OPMD; (b) TPSP-dist; (c) TPSP-hop 
The green broken line stands for the actual occupancy rates, 
which are the average of 10 time slots. The blue and red bars 
are the average percentages of workload capacity occupied by 
the replicas and primary devices, respectively. References to 
color refer to the online version of this figure 
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Fig. 5  Device use rates and percentage of the primary
devices and replicas in the case of a single Byzantine fault: 
(a) OPMD; (b) TPSP-dist; (c) TPSP-hop 
Green broken line stands for the actual occupancy rates,
which are the average of 10 time slots. The blue and red bars 
are the average percentages of workload capacity occupied by 
the replicas and primary devices, respectively. References to 
color refer to the online version of this figure 
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In summary, from the simulations of the cases of 
a single Byzantine fault and multiple faults, TPSP 
with the selection standard of fewer transmission 
hops shows better performance in terms of total  
latency, number of forwarding hops, and device use 
rates. As a result, the BFT resource allocation strategy 
builds a reliable fog network structure to tolerate the 
influence of a single Byzantine fault or multiple 
faults. 

 
 

6  Conclusions 
 

In this paper, we aim to tolerate the influence of 
Byzantine faults and improve the transmission and 
processing efficiency in SIoTFog. We have designed 
a three-tiered heterogeneous IoT fog network model 
which consists of routers as fog nodes to provide fog 
service to IoT users. To solve the problem of BFT in 
fog services, we have proposed a fog networking 
method based on breath-first search and two BFT 
resource allocation strategies to distribute workload 
capacities of the fog nodes to users upon request. We 
consider both a single Byzantine fault and multiple 
faults in simulations. Simulation results show that our 
proposed strategies can build an efficient and reliable 
fog network when faced with Byzantine faults. 

In the future, we will focus on further improving 
our approach to deal with the various situations that 
may occur in actual network operations. There are 
two performance boundaries in our proposed strate-
gies: (1) To ensure BFT in fog computing, we rely on 
the mutual assistance of the geo-graphically distrib-
uted fog nodes, which means that there may be sig-
nificantly different performances for different node 
distributions; (2) On a distributed network composed 
of large-scale fog nodes, the fact that BFT does in-
crease the relationships among the nodes may lead to 
new issues when the network topology changes. 
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