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Abstract: We present a double-layered control algorithm to plan the local trajectory for automated trucks equipped with four hub 
motors. The main layer of the proposed control algorithm consists of a main layer nonlinear model predictive control (MLN-MPC) 
controller and a secondary layer nonlinear MPC (SLN-MPC) controller. The MLN-MPC controller is applied to plan a dynami-
cally feasible trajectory, and the SLN-MPC controller is designed to limit the longitudinal slip of wheels within a stable zone to 
avoid the tire excessively slipping during traction. Overall, this is a closed-loop control system. Under the off-line co-simulation 
environments of AMESim, Simulink, dSPACE, and TruckSim, a dynamically feasible trajectory with collision avoidance opera-
tion can be generated using the proposed method, and the longitudinal wheel slip can be constrained within a stable zone so that the 
driving safety of the truck can be ensured under uncertain road surface conditions. In addition, the stability and robustness of the 
method are verified by adding a driver model to evaluate the application in the real world. Furthermore, simulation results show 
that there is lower computational cost compared with the conventional PID-based control method. 
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1  Introduction 
 

As an emerging technology, autonomous trucks 
(ATs) have the potential to improve the efficiency of 
land transportation. In the USA, the first autonomous 
cargo truck made by Uber was officially launched in 
2016, reported by Wired (https://www.wired. 
com/2016/10/ubers-self-driving-truck-makes-first- 
delivery-50000-beers/). Furthermore, in recent years, 
the surge in trade has an increasing demand for 
trucking and truck drivers (Mittal et al., 2018). 
Therefore, the development of ATs is an urgent and 
reasonable project. In addition, the research on bat-
tery technology has made electric trucks technically 
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and commercially feasible (Mareev et al., 2018), so 
truck electrification is an interesting research area. 

Many algorithms have been presented for con-
trolling vehicle wheel slip (Amodeo et al., 2010). An 
adaptive wheel control algorithm based on slip opti-
mization was developed by Kim J and Lee (2018) to 
trade off the conflict between maximizing traction 
and minimizing energy consumption. A control algo-
rithm was developed with a wheel slip controller 
based on the sliding mode framework to improve the 
electric vehicle safety (de Castro et al., 2013). In 
addition, to optimize energy efficiency and dynamic 
performance, the braking torques among two actua-
tors can be distributed by the algorithm proposed by 
de Castro et al. (2012), which relies on a wheel torque 
allocator and a robust adaptive wheel slip controller. 

As in autonomous cars, trajectory planning ca-
pability is a key for ATs. Local trajectory planning for 
ATs requires an accurate and difficult decision in real 
time based on ATs’ kinematically and dynamically 
feasible limits and lane boundaries (Katrakazas et al., 
2015). Many local trajectory planning methods adopt 
mainly one of the following noted techniques: poten-
tial fields, cell decomposition, and optimal control 
(Dixit et al., 2018). 

Glaser et al. (2010) proposed that the potential 
field algorithms assign repulsive forces to obstacles 
and attractive forces to a safe region of the vehicle and 
compute trajectories along the steepest gradient in the 
resulting potential field, including artificial potential 
fields (Barraquand et al., 1992) and vector field his-
tograms (Borenstein and Koren, 1991). The algorithm 
proposed by Kitazawa and Kaneko (2017) was ex-
perimentally verified for only low-speed maneuvers, 
because it depends seriously on the accuracy of the 
generated potential field. Additionally, kinematic 
constraints of the vehicle cannot be handled perfectly, 
which may cause safety issues during high-speed 
traveling scenarios (Shim et al., 2012). Cell decom-
position algorithms such as rapidly exploring random 
tree (RRT) are applied to plan collision-free paths. 
However, the computational complexity of the 
methodology may increase traffic density. Further-
more, on-board computing on busy roads is increas-
ingly jeopardized (Ma et al., 2014). An optimal con-
trol algorithm minimizing mainly a performance in-
dex such as kinetic energy change (Shamir, 2004), 
jerk (Chu et al., 2012), or lateral acceleration (Shim 

et al. 2012) is applied to obtain a feasible trajectory to 
execute the overtaking maneuver. Experimental re-
sults in Chu et al. (2012) and Shim et al. (2012) 
demonstrated that the algorithm can generate  
collision-free trajectories with low computational 
requirements. 

The model predictive control (MPC) method, an 
algorithm that can address system constraints and 
nonlinearities, has been used for local trajectory 
planning in many state-of-the-art vehicles. Re-
searchers have tried to reduce the computational 
complexity using a point mass vehicle model (Kim B 
et al., 2016) and a linear kinematic bicycle vehicle 
model (Gao YQ et al., 2014). Researchers have pro-
posed many solutions to address this problem such as 
translating the problem from a time-dependent system 
to a position-dependent system (Gao Y et al., 2012), 
relaxing collision avoidance constraints (Nilsson 
et al., 2014), and approximate linearization (Carvalho 
et al., 2013). However, these solutions require accu-
rate knowledge of the states (such as obstacles and 
computing platform performance). Cesari et al. (2017) 
demonstrated that the computing constraint problem 
can be addressed with a real-time prototyping system, 
but it is still difficult to generate a dynamically fea-
sible trajectory in the real world. 

Note that all algorithms mentioned above were 
executed under the assumption that the exact 
knowledge of the environment is known in the tra-
jectory planning system. However, in the real world, 
the system may be disturbed by information errors 
such as road surface conditions and weather condi-
tions (Dixit et al., 2018). These errors may impact ego 
vehicle’s dynamic limits and even its safety. The 
system constraint, especially for road surface condi-
tion, is a key influence factor affecting the dynamic 
and safety performance of the vehicle in the path- 
planner system. Researchers always consider it an 
accurately known constant when considering the 
constraint of road surface adhesion conditions, but the 
road adhesion coefficients between the right and left 
sides of the vehicle may be different in a real envi-
ronment. So, the generated trajectory may not be able 
to satisfy vehicle’s dynamics and safety requirements. 
Therefore, uncertain road conditions, especially in 
rainy or snowy weather, may cause a vehicle to slip 
longitudinally or laterally, and should be considered 
in the trajectory planning system. To present the 
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properties of longitudinal or lateral tire forces, a 
three-directional coupled vehicle-road system was 
developed by Li and Yang (2015). To obtain more 
realistic vehicle trajectories for estimating vehicle 
safety measures, a vehicle dynamics model-integrated 
simulation was developed by CarSim (So et al., 2014). 
A framework for designing and operating a global 
production network was introduced by Lanza et al. 
(2019), which is a useful application in the intelligent 
transportation industry. 

Therefore, to limit the longitudinal slip of wheels 
within a stable zone to avoid the tire excessively 
slipping during traction and to generate a dynamically 
feasible trajectory, a double-layered nonlinear MPC 
algorithm is proposed, consisting of a main layer 
nonlinear MPC (MLN-MPC) controller and a sec-
ondary layer nonlinear MPC (SLN-MPC) controller. 
The MLN-MPC controller is applied to plan the tra-
jectory features of two system inputs: one is the yaw 
rate of the truck and the other is truck acceleration. 
The real-time information of the yaw rate can be eas-
ily obtained by sensors, and the acceleration is de-
termined by the hub motor torque. This torque is one 
of the system inputs of the SLN-MPC controller be-
cause the ego truck is driven by four hub motors. 
Considering an uncertain road adhesion coefficient, 
the SLN-MPC controller is designed to limit the lon-
gitudinal slip of four wheels within a stable zone to 
ensure truck safety, making these control issues 
time-domain constraints of a nonlinear MPC problem. 
The trajectories generated from the double-layered 
nonlinear MPC algorithm have been verified with 
respect to the effectiveness of the truck longitudinal 
slip and lateral acceleration by a co-simulation using 
AMESim, Simulink, dSPACE, and TruckSim soft-
ware. Furthermore, to verify the stability and ro-
bustness of the proposed method, a driver model has 
been added to evaluate the application in the real 
world. To evaluate the computational complexity and 
efficiency of the algorithm, the computational time of 
these methods is addressed in simulation. 
 
 
2  Determination of the output torque for hub 
motors in the SLN-MPC controller 
 

For vehicles driven by hub motors, the actual 
hub motor output torque is a direct factor in deter-
mining the magnitude of a truck’s acceleration. 

Therefore, it is necessary to control the output torque 
of the hub motors before designing the MLN-MPC 
controller. In this section, we focus mainly on con-
trolling motor’s torque by constraining the longitu-
dinal slip of the truck within a stable zone as a control 
target. Therefore, before designing the motor output 
torque controller, it is necessary to describe the lon-
gitudinal slip model of the vehicle. 

2.1  Vehicle longitudinal slip control model 

Because real-time road surface condition in-
formation is a key factor affecting the dynamics and 
safety performance of the vehicle in the path-planner 
system, it cannot be ignored in real-world applica-
tions. However, the real-time road adhesion coeffi-
cient is usually hard to accurately detect. To address 
this problem, a longitudinal slip control model is built 
into the path-planner system. Furthermore, the tire 
slip level can influence the force, and can be ex-
pressed by the wheel angular velocity (ω), vehicle 
velocity (v), and tire rolling radius (r), denoted as 

 

,  fl, fr, rl, rr,
max( , )

−
= =i

i
v ω r

k i
v η

              (1) 

 
where η is a small constant which is set to 0.15 m/s 
(after simulation comparison), avoiding a zero de-
nominator and other numerical problems such as the 
fact that ki→∞ is incompatible with the tire charac-
teristics, and fl, fr, rl, and rr represent the front left, 
front right, rear left, and rear right wheels,  
respectively. 

Considering that the value of the slip ki should be 
kept small (approximately, ki=0−0.03) to improve tire 
durability and ensure vehicle safety, and that the tire 
model is approximately linear when ki is small, the 
tire model can be formulated as a linear approxima-
tion based on the slip limitation and tire magic for-
mula model. After linear approximation, the longitu-
dinal force can be expressed as  

 

, , , , fl, fr, rl, rr,x i x i x iF K k i= =                (2) 
 

where Fx is the longitudinal force, Kx the longitudinal 
slip stiffness, and kx the longitudinal tire slip. 

The direct permanent magnet synchronous mo-
tor (PMSM) is selected as the hub motor model in this 
study, because it has a good power factor, slightly  
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high efficiency, and low torque ripple or noise (Las-
karis and Kladas, 2010). The motor’s maximum 
power is 75 kW and its maximum torque is 1000 N∙m. 
To provide the required torque to the torque controller, 
the desired motor’s closed-loop dynamics can be 
denoted as 

 

m c
1 ,

1
T T

τs
=

+
                             (3) 

 
where τ=20 s is the close-loop response time, s the 
time function, and Tc the motor command torque. 

Constraints of the actuators in the truck should 
be considered, especially the physical constraints of 
the hub motors. As a significant factor in determining 
the magnitude of truck acceleration, the motor com-
mand torque Tc should be limited by the maximum 
torque of the motor, expressed as 

 
m,max c m,max .T T T− ≤ ≤                      (4) 

 
Therefore, the wheel longitudinal slip ratio dy-

namics can be expressed as  
 

m, ,

,

,fl ,fr ,rl ,rr air roll

( ) 1

( ),

i x i i
i

i

x x x x

r T rF kk
vJ mv

F F F F F F
ω

− +
= −

⋅ + + + − −



   (5) 

 
where m is the total mass of the vehicle, Jω,i the mo-
ment of inertia of the four wheels, Fair the force of air 
resistance, and Froll the force of rolling resistance. 

In addition, the road adhesion coefficient be-
tween the tire and road surface is closely related to the 
longitudinal slip of the wheels (Mutoh, 2012). Fig. 1 
depicts the relationship between the road adhesion 
coefficient and the longitudinal slip of the wheels. It 
can be seen from Fig. 1 that the longitudinal slip is in 
the nonlinear region and that it is difficult to achieve 
precise control of an unstable tire (|k|>kp) in the real 
world. Thus, the longitudinal slip of each wheel 
should be limited to a stable zone to ensure that the 
tire is within a linear region and to avoid the wheel 
spinning out under slippery road conditions, ex-
pressed as 

 

max max max p,    .k k k k k− ≤ ≤ =                  (6) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
2.2  Design of the SLN-MPC longitudinal slip 
controller 

Nonlinear MPC is an algorithm that uses a model 
to predict the future dynamics of a controlled plant. At 
each sampling time, based on the current measure-
ment information, a finite time-domain open-loop 
optimization problem is solved online, and the first 
element of the obtained control sequence is applied to 
the controlled object. At the next sampling instant, the 
optimization problem is refreshed with the newly 
measured value and is resolved (Chen, 2013). Three 
steps can be included to briefly describe the algo-
rithm’s principle, i.e., predicting the future states of a 
system, solving the optimization problem, and ap-
plying the first element of the optimized solution to 
the system. 

Note that these steps are executed repeatedly at 
each sampling time. Furthermore, the measurements 
obtained at each sampling instant will be used as the 
initial conditions for predicting future states regard-
less of the model that is used.  

Therefore, before designing the SLN-MPC con-
troller, the control requirements that the control sys-
tem must meet include limiting the longitudinal slip 
within the stable zone (Fig. 1) and limiting the motor 
torque according to constraint (4), so the design of the 
SLN-MPC controller can be implemented mainly in 
two steps: 

Step 1: establishing a time-based discretized 
model 

To obtain a finite-dimensional optimization 
control problem, the Euler method is used to discre-
tize the system’s state-space model, so the state-space  

Fig. 1  Relationship between the road adhesion coefficient 
and the longitudinal slip 
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model for the SLN-MPC controller can be expressed 
as 
 

4
m, ,

, air roll
1,

( ) 1
.i x i i

i x i i
iω i

r T rF xx K x F F
vJ mv =

− +  
= − − − 

 
∑  

(7) 
Define t1 as the sampling interval and adopt it in 

the state-space model. The system can be expressed 
as 

 

1( 1) ( ( ),  ( )) ( ),kk f k k t k+ = +x x u x             (8) 

( ) ( ),yk k=y C x                             (9) 

 
where x=[kfl, kfr, krl,, krr]T is the state variable, u=[Tm,fl, 
Tm,fr, Tm,rl, Tm,rr]T the control input, y=[kfl, kfr, krl,, krr]T 
the system output, f 

k the system state changing gra-
dient at time k, derived from Eq. (7), and Cy=diag(1, 1, 
1, 1) the output matrix. 

The control sequence U(k) and system output 
sequence Y(k) at sampling instant k are expressed as  
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where Nc1 and Np1 are the control horizon and predic-
tive horizon (Np1≥Nc1≥1), respectively. 

Based on the current state variables and previous 
system inputs, these state variables and outputs at the 
next instant can be calculated and updated individu-
ally. At the same time, the input sequence that satis-
fies the objective functions and constraints in the 
control time domain is used as the system input of the 
MLN-MPC controller, which will be described later.  

Step 2: designing the optimization function 
Combined with the problem described above, 

the hub motor’s torque is used as the system input for 
the SLN-MPC controller. First, the longitudinal slip 
of wheels must be constrained within a stable zone to 
achieve accurate longitudinal slip control. It can be 

seen from Eq. (2) that the longitudinal force increases 
in proportion to the longitudinal slip. Thus, the lon-
gitudinal slip should be selected as an objective 
function, which can be achieved by adding cost 
function JSL1: 

 
p

1 2
SL1 2 2 2 2

1 fl fr

3 4
2 2 2 2

rl rr

=
( | ) ( | )

,
( | ) ( | )

N

j

Q QJ
k k j k δ k k j k δ

Q Q
k k j k δ k k j k δ

=


+ + + + +


+ + + + + + 

∑

 
(12) 

where δ is a small constant (δ=0.0001) used to avoid a 
zero denominator and Q1–Q4 are positive weight 
factors to adjust the slip control performance of 
wheels. 

For longitudinal force control, the trade-offs 
among truck safety, the road adhesion condition, and 
vehicle actuator constraints should be used to deter-
mine the values of hub motor torque inputs, because 
the truck will be unstable if the longitudinal force 
becomes large. Therefore, another cost function JSL2 
can be developed:  
 

p

p

4
2

SL2
1 1

4
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∑∑
        (13) 

 
where r(k+j) is the optimal longitudinal slip (here, set 
r(k+j)=kp,i(k)) and S1–S4 are the weight factors. 

Therefore, the constrained optimization problem 
can be expressed by the total objective function (14), 
consisting of longitudinal slip cost function JSL1 and 
longitudinal force cost function JSL2: 
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c, m,max ps.t. ( | ) ,  1,  2, ...,  ,iT k j k T j N+ ≤ =   (15) 

 
where i∈{fl, fr, rl, rr}. 

Finally, the SLN-MPC controller is designed 
integrally, and its principle block diagram is shown in 
Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
3 Trajectory planning algorithm using 
MLN-MPC 
 

Because the longitudinal slip of the truck should 
be constrained within a stable zone, the SLN-MPC 
method is used to determine the value of the hub 
motor torque, so that the reasonable acceleration of 
the truck can be determined. To ensure vehicle driv-
ing safety, the truck’s yaw rate should be constrained. 
Finally, vehicle acceleration αk and yaw rate ψ  are 
selected as system inputs for the MLN-MPC con-
troller. It is necessary to detail the vehicle’s kinemat-
ics model before designing the algorithm. 

3.1  Vehicle kinematics model with two degrees of 
freedom 

To yield a good trade-off between model com-
plexity and prediction accuracy, the heavy truck 
kinematics model is simplified to a four-wheel vehi-
cle kinematics model in a Frenét coordinate frame. As 
depicted in Fig. 3, CG is the truck’s center of gravity, 
δ1,2 and β indicate the steering angle and side angle of 
the truck, respectively, ν denotes the truck speed, ψ is 
the heading angle, and Fy,fl, Fy,fr, Fy,rl, and Fy,rr are the 
tire lateral forces of the front left, front right, rear left, 
and rear right wheels, respectively. 

To simplify the analytical model and combine 
the truck structure properties in practical applications, 

the following assumptions are made: 
Assumption 1    Only the front wheels can be steered 
and the steering angles of the front left and front right 
wheels are equal when the vehicle is steering, i.e., 
δ1=δ2=δ (Fig. 3). 
Assumption 2    The road curvature ρ is a function of 
the vehicle’s longitudinal position coordinate x and is 
known. 
 
 
 
 
 
 
 
 
 
 
 
 

 
According to the two-degree-of-freedom model 

described in Fig. 3, the kinematics model of the ve-
hicle can be expressed as 

 

,fl ,fr ,rl ,rr
1 ( ),x x x xx x F F F F
m

ψ= + + + +      (16) 

,fl ,fr ,rl ,rr
1 ( ),y y y yy y F F F F
m

ψ= − + + + +    (17) 

,e s= − ψ ψ ρ                             (18) 

1 ( cos sin ),
1 y

s x e y e
e ψ ψρ

= −
−

            (19) 

 
where ey and eψ represent the lateral position error and 
angular error relative to the road centerline, respec-
tively, ρ the curvature of the lanes, and s the longitu-
dinal coordinate of the truck along the road. The 
longitudinal force Fx,i and lateral force Fy,i can be 
expressed as 
 

, , ,cos sin ,x i x i y iF f fδ δ= −                (20) 

, , ,sin cos ,y i x i y iF f fδ δ= +                (21) 

 
where fx,i and fy,i are the longitudinal and lateral forces 
in the coordinate frame aligned with the tire axes, 
respectively. 

Fig. 2  SLN-MPC block diagram 
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Fig. 3  Four-wheel vehicle kinematics model 
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3.2  Design of the MLN-MPC controller for tra-
jectory generation 

In this work, because a double-layered nonlinear 
MPC controller is used to control the longitudinal slip 
of the wheels and to generate a trajectory for the truck, 
a sampling time problem between the SLN-MPC and 
MLN-MPC models is involved. The sampling instant 
of the MLN-MPC controller always lags behind the 
SLN-MPC controller one sampling instant. This oc-
curs because vehicle acceleration αk, one of the inputs 
of the MLN-MPC controller, is determined by the hub 
motor command torque Tc, which is obtained by the 
SLN-MPC controller through rolling optimization. In 
addition, the sampling interval of the algorithm is 
small, so the actual trajectory error generated due to 
the influence of the sampling instant lag can be  
negligible. 

Therefore, based on the nonlinear vehicle kin-
ematics model (Fig. 3), we can determine that the 
system input of the MLN-MPC controller is μk=[αk, 

kψ ]T. Furthermore, the system state variables can be 
determined by X(k)=[xk, yk, ψk]T, where xk and yk de-
note the longitudinal and lateral positions at the center 
mass of the truck, respectively, and ψk is the heading 
angle. To obtain a desired trajectory, the system out-
put Y(k)=[xk, yk, ψk]T can be determined. In addition, 
t2 is defined as the sampling interval and is adopted in 
the state-space model. As in the MLN-MPC controller, 
Np2 is defined as the predictive horizon and Nc2 the 
control horizon (Np2≥Nc2≥1). Therefore, the MLN- 
MPC controller at sampling instant k can be expressed 
as follows: 

 

2( 1) ( ) ( ( ),  ( )) ,kk k f k k t+ = +X X X µ     (22) 

( ) ( ),yk k=Y C X                      (23) 
 
where f 

k is the changing gradient of the system states 
at time k and Cy=diag(1, 1, 1) is the system output 
matrix. 

In addition, to generate a desirable trajectory, the 
collision avoidance constraints and the cost function 
should be formulated, detailed as follows: 

Step 1: establishment of collision avoidance 
constraints 

For the collision avoidance constraints, the truck 
must fulfill at least two requirements while avoiding 
obstacles: travel on a given lane and operate in a sta-

ble region at a specific time, satisfying the feasible 
dynamics of the truck. Therefore, these problems can 
be converted into the constraints of system inputs and 
state variables. These constraints can be denoted as 
follows: 

 

min max ,k≤ ≤a a a                         (24) 

max max ,k− ≤ ≤  ψ ψ ψ                        (25) 
 min max ,kv v v≤ ≤                          (26) 

 
where maxψ  is the physical limitation controlled by 
the steering mechanisms and νmax limits the velocity 
of the truck’s center mass.  

Simultaneously, in the process of generating the 
trajectory, the vehicle must be able to avoid obstacles 
(i.e., other vehicles) in the environment. Thus, the 
following assumption is made: 
Assumption 3    Obstacles surrounding the truck at 
the current time and in the future are known as a 
function of time. 

To address this problem, the solution used in 
Anderson et al. (2010) can formulate collision 
avoidance constraints. Here, the surrounding obsta-
cles of the truck are mapped into a region of the lane. 
Additionally, it can be assumed that the boundaries of 
the region are known a priori as a function of time and 
distance along the road. Assume that L ( ,  )ye d t  and 

U ( ,  )ye d t  (d denotes the longitudinal position coor-

dinate along the road) denote the distances of the 
lower and upper boundaries of the road centerline, 
respectively. The collision avoidance constraints can 
be denoted as 

 
L U( ( ),  ) ( ) ( ( ),  ).y y ye s t t e t e s t t≤ ≤           (27) 

 
In general, the constraints (27) are non-convex 

and non-differentiable due to the nonlinear depend-
ence of boundaries of L ( ,  )ye d t  and U ( ,  )ye d t  on s(t). 

So, the safety constraints (24)–(27) can be concisely 
written as 

 
( ( ),  ( )) 0.h k k ≤X µ                    (28) 

 
Step 2: formulation of cost function 
As described in the design of the SLN-MPC 
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controller in Section 2, the nonlinear MPC problem 
can incorporate all objectives in one formula. The 
constrained optimization problem can be defined as 
follows: 

 

p

FL

2 2
d

0

2 2 2
1

min ( ( ),  ( ))

( || || || ||

|| || || || )

N

v k α k
k

j k k y k c y

J k k

ω ω

ω ω ψ ω
=

−

= − +

+ − + +

∑

X U

v v α

α α e

   (29) 

2s.t.  ( 1) ( ) ( ( ),  ( )) ,kk k f k k t+ = +X X X µ    (30) 

p( ( ),  ( )) 0, 0,  1,...,  ,h k k k N≤ =X µ        (31) 
 

where ||νd−νk||2 adjusts the difference between the 
truck’s actual and desired velocities, ||αk||2 and 
||αk−αk−1||2 are used to penalize the large control input 
and improve the truck’s dynamic stability, respec-
tively, 2

kψ  can avoid sharp increase in the yaw rate of 
the vehicle, ||ey||2 is used to penalize the large lateral 
position error, and ωi (i=ν, α, j, y, c) are the weighting 
factors. 

Thus, the control principle of the MLN-MPC 
based controller block is designed (Fig. 4). The 
flowchart of the main steps of the mathematical ap-
proach to the double-layer nonlinear MPC problem is 
shown in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 

 
 
4  Simulation 

4.1  Simulation environment 

In this subsection, the effectiveness of the pro-
posed control algorithm is verified in an off-line 
co-simulation environment, consisting of AMESim, 
Simulink, TruckSim, and dSPACE (rapid control 
prototyping). The general map of the simulation en-
vironment is presented in Fig. 6. In the AMESim  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
system, to make the vehicle dynamics model more 
like a real vehicle, fully integrated sub-models are 
built, including vehicle aerodynamics, a braking 
system, a suspension system, a tire model, road in 
formation, and a steering system model. 

The Simulink simulation environment includes 
mainly an SLN-MPC based longitudinal slip con-
troller, a calculation model for acceleration, and an 
MLN-MPC based trajectory generator. To solve the 
nonlinear optimization function of constraints (14) 
and (15) in the SLN-MPC controller, the optimized 
routine e04wd is used. This routine is one of the 
solvers in the Numerical Algorithms Group (NAG) 
toolbox, and its function is to solve the sequence 
quadratic program (SQP) problem. In this study, the 
nonlinear optimization function of constraints (14) 
and (15) is implemented by the SQP method in this 
solver. Furthermore, the MLN-MPC problem in 
Eqs. (29)–(31) is solved with the Ipopt nonlinear 
programming solver via the YALMIP toolbox in 
Simulink. Because the YALMIP toolbox can solve 
several problems such as linear programming (LP), 
quadratic programming (QP), and second-order cone 
programming (SOCP), this problem (Eqs. (29)–(31)) 
can be solved by converting it into a QP problem. In  

Fig. 4  MLN-MPC block diagram 
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addition, the trajectory generated by the MLN-MPC 
controller is considered a reference trajectory fol-
lowed by the truck model in the TruckSim software to 
verify its effectiveness. In short, the whole simulation 
environment is a closed-loop simulation system. 

4.2  Simulation scenarios and setup 

Because the longitudinal slip of the truck is the 
main consideration, to clearly demonstrate the feasi-
bility of the proposed method, we use wet and slip-
pery road conditions in the simulation. The simulation 
is executed under the following conditions: 
Scenario 1    The ego truck overtakes a leading ve-
hicle at 75 km/h on a wet and slippery soil road 
(μ≈0.45). 
Scenario 2    The ego truck overtakes a leading ve-
hicle at 75 km/h on a wet and slippery asphalt road 
(μ≈0.40). 
Scenario 3    The ego truck overtakes a leading ve-
hicle at 80 km/h on a wet and slippery soil road. 
Scenario 4    The ego truck overtakes a leading ve-
hicle at 80 km/h on a wet and slippery asphalt road. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For collision avoidance in these scenarios, based 
on Assumption 3 in Section 3, it is assumed that there 
are no other static or moving obstacles on the road 
except for the leading vehicle, and that the leading 
vehicle travels straight at 40 km/h. Furthermore, the 
lower boundary L ( ,  )ye d t  and upper boundary 

U ( ,  )ye d t  are both set equal to 5 m. The predictive 

horizon and control horizon in the SLN-MPC con-
troller are both chosen as 5 (i.e., Np1=Nc1=5). Con-
sidering the real-time capability of the SLN-MPC 
algorithm, the sampling time t1 is set to 10 ms. For the 
MLN-MPC controller, the predictive horizon and 
control horizon are both set to 5 (i.e., Np2=Nc2=5). The 
sampling interval t2 is set to 10 ms. The weighting 
factors ων=17, ωα=200, ωj=3, ωy=0.8, and ωc=0.5 are 
determined by multiple tests. The simulation param-
eters of the weight factors in the SLN-MPC controller 
and the collision avoidance constraints in the MLN- 
MPC controller are presented in Tables 1 and 2,  
respectively.  

A conventional proportional-integral-differential 

Fig. 6  General map of the simulation environment 
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(PID) based control algorithm is executed to control 
the longitudinal slip within a stable zone to obtain 
contrasting simulation results. Simulation parameter 
settings and the road surface conditions in different 
scenarios are consistent with those of the proposed 
SLN-MPC based control algorithm, so that rationality 
in the comparison of the simulation can be ensured. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.3  Simulation results and discussion 

Fig. 7 indicates the trajectories generated by the 
MLN-MPC controller in different simulation sce-
narios. Here, the red fields indicate the obstacles, 
including the lane boundaries and the leading vehicle. 
Assuming that there is only one obstacle vehicle, 
these three red boxes denote the positions of the ob-
stacle vehicle at three simulation moments. The black 
dotted line is the road centerline, and these curves 
represent the trajectories generated by the MLN-MPC 
controller under four different simulation conditions.  

In these simulation scenarios, to present the real- 
time position relationship between the ego vehicle 
and the obstacle vehicle during overtaking maneuver, 
the corresponding positions of the two vehicles at 
time instants t1–t6 have been marked. It can be seen 
from Figs. 8–11 that the ego vehicle can safely and 

quickly overtake the obstacle vehicle, because the 
initial speed of the ego vehicle is greater than that of 
the obstacle vehicle. Furthermore, it can be concluded 
that the ego truck running with a higher initial speed 
starts earlier to execute a lane change than the ego 
truck running with a lower initial speed. However, for 
the truck running with a higher initial speed, it is time 
to return to the original lane after overtaking. Simi-
larly, when the initial speed of the ego truck is invar-
iable, the ego truck in the better road conditions starts 
earlier to execute lane change than the ego truck on 
the worse road conditions and returns to the original 
lane later after overtaking. 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Simulation parameters of weight factors in the 
SLN-MPC controller 

Weight factor Value 
Q1 0.30 
Q2 0.78 
Q3 0.97 
Q4 0.12 
S1 0.04 
S2 0.66 
S3 0.93 
S4 0.52 

 
 
 
 
Table 2  Simulation parameters of collision avoidance 
constraints 

Collision avoidance  
constraint Value 

αmin 0 
αmax 3.5 m/s2 

maxψ  0.7 rad/s2 
vmin 0 
vmax 40 m/s 
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To present the relative distance between the two 

vehicles in these scenarios, the real-time trends of the 
relative distance from the simulation results are 
shown in Fig. 12. A denotes the relative distance 
between the points at which the ego truck starts lane 
change in these four scenarios. B indicates the relative 
distance between the points where the ego truck ends 
the initial lane change. C presents the relative distance 
between the points where the ego truck overtakes the 
leading vehicle. D shows the relative distance be-
tween the points where the ego truck starts returning 
to the original lane. E denotes the relative distance 
between the points where the ego truck returns to the 
original lane. It can be seen from Fig. 12 that the time 
to reach the critical points (A, B, C, D, and E) of the 
vehicle in Scenario 1 is always the earliest. However, 
the time to reach these critical points in Scenario 4 is 
always the latest. This phenomenon can be explained 
by the fact that the ego truck in Scenario 1 has a lower 
initial speed and the road condition is poorer. It can 
also be known from Fig. 12 that the smallest relative 
distance is approximately 5 m, and that this distance 
can satisfy a safe distance in an overtaking maneuver 
in the real world. 

Because the longitudinal slip of the wheels is 
used as a system constraint in the proposed algorithm,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the longitudinal slip during overtaking is tested in this 
simulation to further verify the feasibility of this 
method. The simulation results are presented in 
Figs. 13–16. To distinguish the longitudinal slip gen-
erated by the SLN-MPC controller from the slip 
generated by the conventional PID-based control 
algorithm, ki-MPC and ki-PID are used to present their 
slip values, separately. When the ego truck starts to 
travel, the slip ki (i=fl-MPC, fr-MPC, rl-MPC, 
rr-MPC) increases dramatically because of the large 
driving torque generated by the motor. However, the 
stability of the truck is not jeopardized due to the role 
of cost functions JSL1 and JSL2. Note that there are two 
significant increases near 3.5 and 7.5 s in the entire 
simulation. This phenomenon is caused by the fact 
that the ego truck performs lane change before over-
taking and returns to the original lane after overtaking 
during these two periods. However, it can be seen 
from the peaks of these two periods that no maximum 
longitudinal slip ratio exceeds 0.05 (within the stable 
zone). In addition, from Figs. 13–16, it can be sum-
marized that there is a largest and a smallest longitu-
dinal slip rate of the ego truck in Scenario 3 (Fig. 15) 
and Scenario 2 (Fig. 14), respectively. This is because 
there is a higher initial speed of the truck and a poorer 
road condition in Scenario 3, whereas in Scenario 2, 
there is a lower initial speed and a better road  
condition. 

For the results of comparative simulation with 
the PID-based method, when the ego truck starts to 
travel, the slip ki (i=fl-PID, fr-PID, rl-PID, rr-PID) 
increases rapidly and significantly, exceeding the 
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desired slip zone at t=1 s. Like the trends of ki-MPC, 
there are two large increases near t=3 and t=7 s in the 
four simulation scenarios. This is caused by the fact 
that the ego truck performs lane change before 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

overtaking and returns to the original lane after 
overtaking during the two periods. Furthermore, the 
change in ki-PID has a larger fluctuation than the 
change in ki-MPC in the whole simulation because of 
error compensation in the PID-based method. 

To verify the computational cost of these meth-
ods, the computational time in simulation is presented 
in Fig. 17. The orange and red areas denote the 
elapsed time to control the longitudinal slip by the 
PID-based (t=1.437 s) and SLN-MPC algorithms 
(t=0.821 s), respectively. The green and purple fields 
indicate the total time to control the longitudinal slip 
and generated trajectories by the PID+MLN-MPC 
(t=1.753 s) and SLN-MPC+MLN-MPC (t=1.137 s) 
algorithms, respectively. It can be concluded that the 
proposed algorithm SLN-MPC+MLN-MPC requires 
less time and is more efficient. 

This method should provide the truck with a safe 
driving guarantee based on its safe driving  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 17  Comparison of the elapsed time for the two  
algorithms 
References to color refer to the online version of this figure 
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requirements. Here, the lateral acceleration of the 
truck during overtaking maneuver should be limited 
to a safe range. Therefore, in this simulation, the lat-
eral acceleration trend is verified in four simulation 
scenarios. It can be seen from Fig. 18 that the lateral 
acceleration of the truck does not exceed the safety 
threshold (αy<0.4g, g is the gravity acceleration) 
during the lane change. Based on all the simulation 
results above, the proposed method can accurately 
control the longitudinal slip within a stable zone and 
satisfy the safety requirements of the truck during 
overtaking. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
In addition, because the hub motor torque in this 

model is constrained by the maximum output torque 
and the optimal longitudinal slip, the motor torque is 
usually maintained within a smooth working range, 
but the optimal longitudinal slip may not be achieved 
in some extreme driving conditions. Therefore, we 
verify that the proposed algorithm is feasible for ap-
plications in the real world or future research. A driver 
model is shown in Fig. 19, which provides an external 
signal input of the motor torque. This model is con-
nected to the simulation system to verify the stability 
and robustness of the control algorithm when the 
motor torque is determined by driver’s behaviors. 
Sub-modules under the AMESim environment are not 
changed. In this test, two drivers provide the signal 
input of the motor torque based on the accelerator 
pedal action; the trends are shown in Fig. 20. Note 
that other pedals in the equipment have no signal 
input. Test results with these inputs are shown in 
Fig. 21. 

Overall, it can be seen from Fig. 21 that the 
ki-driver j (i=fl, fr, rl, rr, j=1, 2) generated by these two 

drivers’ behaviors is changed with pedal’s opening. 
Furthermore, under the two extreme test conditions at 
1.83 and 4.51 s, the maximum slip values of ki-driver 1 
and ki-driver 2 are 0.042 and 0.039, respectively. The 
fluctuation of slip ki-driver j can be kept within a desired 
range (0–0.05) during the whole test. Therefore, we 
conclude that the control algorithm can protect the 
truck against external irregular disturbances from 
humans or environments. 
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5  Conclusions 
 

A double-layered control algorithm has been 
developed to plan the local trajectory for autonomous 
trucks equipped with four hub motors. The results 
showed that this proposed algorithm makes it possible 
to generate a dynamically feasible and customizable 
trajectory. The longitudinal wheel slip controlled by 
the SLN-MPC controller in uncertain road conditions 
can be accurately controlled within a stable zone. This 
slip had a smaller maximum and smoother fluctuation 
than that of the conventional PID-based control 
method. In overtaking maneuver, the lateral acceler-
ation of the truck is limited to a safety range to avoid 
truck side slipping. Thus, the ego truck can complete 
overtaking maneuver safely under the formulated 
avoidance constraints. Co-simulation results showed 
that this method guarantees that the truck will operate 
safely, satisfy its driving requirements, and provide a 
feasible reference basis for applications in the real 
world. 

There are still some issues that need to be ex-
plored in the future. On the one hand, the collision 
avoidance system in this study needs to be improved, 
because it is assumed that there is only one leading 
obstacle vehicle and no other static or moving obsta-
cle around the ego truck. On the other hand, to verify 
the real-time performance, a hardware-in-the-loop 
simulation (HILS) needs to be developed in the pro-
posed double-layered nonlinear MPC controller. 
High-efficiency energy-saving measures in practical 
commercial motor applications need to be further 
studied. 
 
Contributors 

Hong-chao WANG designed the research. Hong-chao 
WANG, Wei-wei ZHANG, Hao-tian CAO, and Xun-cheng WU 
designed the algorithms and processed the data. Hong-chao 
WANG, Wei-wei ZHANG, Qiao-ming GAO, and Su-yun LUO 
drafted the manuscript. Hong-chao WANG and Wei-wei 
ZHANG revised and finalized the paper. 
 
Compliance with ethics guidelines 

Hong-chao WANG, Wei-wei ZHANG, Xun-cheng WU, 
Hao-tian CAO, Qiao-ming GAO, and Su-yun LUO declare 
that they have no conflict of interest. 
 
References 
Amodeo M, Ferrara A, Terzaghi R, et al., 2010. Wheel slip 

control via second-order sliding-mode generation. IEEE 

Trans Intell Transp Syst, 11(1):122-131.  
https://doi.org/10.1109/TITS.2009.2035438 

Anderson SJ, Peters SC, Pilutti TE, et al., 2010. An optimal- 
control-based framework for trajectory planning, threat 
assessment, and semi-autonomous control of passenger 
vehicles in hazard avoidance scenarios. Int J Veh Auton 
Syst, 8(2-4):190-216.  

 https://doi.org/10.1504/IJVAS.2010.035796 
Barraquand J, Langlois B, Latombe JC, 1992. Numerical 

potential field techniques for robot path planning. IEEE 
Trans Syst Man Cybern, 22(2):224-241.  

 https://doi.org/10.1109/21.148426 
Borenstein J, Koren Y, 1991. The vector field histogram—fast 

obstacle avoidance for mobile robots. IEEE Trans Robot 
Autom, 7(3):278-288. https://doi.org/10.1109/70.88137 

Carvalho A, Gao YQ, Gray A, et al., 2013. Predictive control 
of an autonomous ground vehicle using an iterative line-
arization approach. Proc 16th Int IEEE Conf on Intelligent 
Transportation Systems, p.2335-2340.  

 https://doi.org/10.1109/ITSC.2013.6728576 
Cesari G, Schildbach G, Carvalho A, et al., 2017. Scenario 

model predictive control for lane change assistance and 
autonomous driving on highways. IEEE Intell Trans Syst 
Mag, 9(3):23-35.  
https://doi.org/10.1109/MITS.2017.2709782 

Chen H, 2013. Model Predictive Control. Science Press, Bei-
jing, China (in Chinese).  

Chu K, Lee M, Sunwoo M, 2012. Local path planning for off- 
road autonomous driving with avoidance of static obsta-
cles. IEEE Trans Intell Trans Syst, 13(4):1599-1616.  

 https://doi.org/10.1109/TITS.2012.2198214 
de Castro R, Araújo RE, Tanelli M, et al., 2012. Torque 

blending and wheel slip control in EVs with in-wheel 
motors. Veh Syst Dynam, 20(1):71-94.  

 https://doi.org/10.1080/00423114.2012.666357 
de Castro R, Araújo RE, Freitas D, 2013. Wheel slip control of 

EVs based on sliding mode technique with conditional 
integrators. IEEE Trans Ind Electron, 60(8):3256-3271.  
https://doi.org/10.1109/TIE.2012.2202357 

Dixit S, Fallah S, Montanaro U, et al., 2018. Trajectory plan-
ning and tracking for autonomous overtaking: state-of- 
the-art and future prospects. Ann Rev Contr, 45:76-86.  

 https://doi.org/10.1016/j.arcontrol.2018.02.001 
Gao Y, Gray A, Frasch J, et al., 2012. Spatial predictive control 

for agile semi-autonomous ground vehicles. Proc 11th Int 
Symp on Advanced Vehicle Control, p.1-6.  

Gao YQ, Gray A, Tseng HE, et al., 2014. A tube-based robust 
nonlinear predictive control approach to semiautonomous 
ground vehicles. Veh Syst Dynam, 52(6):802-823.  

 https://doi.org/10.1080/00423114.2014.902537 
Glaser S, Vanholme B, Mammar S, et al., 2010. Maneuver- 

based trajectory planning for highly autonomous vehicles 
on real road with traffic and driver interaction. IEEE 
Trans Intell Trans Syst, 11(3):589-606.  
https://doi.org/10.1109/TITS.2010.2046037 

Katrakazas C, Quddus M, Chen WH, et al., 2015. Real-time 



Wang et al. / Front Inform Technol Electron Eng   2020 21(7):1059-1073 1073 

motion planning methods for autonomous on-road driv-
ing: state-of-the-art and future research directions. Trans 
Res Part C, 60:416-442. 
https://doi.org/10.1016/j.trc.2015.09.011 

Kim B, Kim D, Park S, et al., 2016. Automated complex urban 
driving based on enhanced environment representation 
with GPS/map, radar, lidar and vision. IFAC- 
PapersOnLine, 49(11):190-195.  
https://doi.org/10.1016/j.ifacol.2016.08.029 

Kim J, Lee J, 2018. Traction-energy balancing adaptive control 
with slip optimization for wheeled robots on rough terrain. 
Cogn Syst Res, 49:142-156.  

 https://doi.org/10.1016/j.cogsys.2018.01.007 
Kitazawa S, Kaneko T, 2017. Control target algorithm for 

direction control of autonomous vehicles in consideration 
of mutual accordance in mixed traffic conditions. Int 
Symp on Advanced Vehicle Control, p.151-156.  

Lanza G, Ferdows K, Kara S, et al., 2019. Global production 
networks: design and operation. CIRP Ann, 68:823-841.  

 https://doi.org/10.1016/j.cirp.2019.05.008 
Laskaris KI, Kladas AG, 2010. Internal permanent magnet 

motor design for electric vehicle drive. IEEE Trans Ind 
Electron, 57(1):138-145.  

 https://doi.org/10.1109/TIE.2009.2033086 
Li SH, Yang SP, 2015. Investigation on dynamics of a three- 

directional coupled vehicle-road system. J Vibroeng, 
17(7):3887-3908. 

Ma L, Xue JR, Kawabata K, et al., 2014. A fast RRT algorithm 
for motion planning of autonomous road vehicles. Proc 
17th Int IEEE Conf on Intelligent Transportation Systems, 
p.1033-1038. 
https://doi.org/10.1109/ITSC.2014.6957824 

Mareev I, Becker J, Sauer DU, 2018. Battery dimensioning 
and life cycle costs analysis for a heavy-duty truck con-
sidering the requirements of long-haul transportation. 
Energies, 11(1):55. https://doi.org/10.3390/en11010055 

Mittal N, Udayakumar PD, Raghuram G, et al., 2018. The 
endemic issue of truck driver shortage—a comparative 
study between India and the United States. Res Trans 
Econ, 71:76-84.  
https://doi.org/10.1016/j.retrec.2018.06.005 

Mutoh N, 2012. Driving and braking torque distribution 
methods for front- and rear-wheel-independent drive-type 
electric vehicles on roads with low friction coefficient. 
IEEE Trans Ind Electron, 59(10):3919-3933.  

 https://doi.org/10.1109/TIE.2012.2186772 
Nilsson J, Gao YQ, Carvalho A, et al., 2014. Manoeuvre gen-

eration and control for automated highway driving. IFAC 
Proc Vol, 47(3):6301-6306.  

 https://doi.org/10.3182/20140824-6-ZA-1003.00619 
Shamir T, 2004. How should an autonomous vehicle overtake a 

slower moving vehicle: design and analysis of an optimal 
trajectory. IEEE Trans Autom Contr, 49(4):607-610.  

 https://doi.org/10.1109/TAC.2004.825632 
Shim T, Adireddy G, Yuan HL, 2012. Autonomous vehicle 

collision avoidance system using path planning and 
model-predictive-control-based active front steering and 
wheel torque control. Proc Inst Mech Eng Part D, 226(6): 
767-778. https://doi.org/10.1177/0954407011430275 

So J, Park B, Wolfe SM, et al., 2014. Development and vali-
dation of a vehicle dynamics integrated traffic simulation 
environment assessing surrogate safety. J Comput Civ 
Eng, 29(5):04014080.  

 https://doi.org/10.1061/(ASCE)CP.1943-5487.0000403
 


	Hong-chao WANG1, Wei-wei ZHANG‡1, Xun-cheng WU1,  Hao-tian CAO2, Qiao-ming GAO3, Su-yun LUO1

