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Abstract: We aim to further study the global stability of Boolean control networks (BCNs) under aperiodic sampled-
data control (ASDC). According to our previous work, it is known that a BCN under ASDC can be transformed
into a switched Boolean network (SBN), and further global stability of the BCN under ASDC can be obtained by
studying the global stability of the transformed SBN. Unfortunately, since the major idea of our previous work is
to use stable subsystems to offset the state divergence caused by unstable subsystems, the SBN considered has at
least one stable subsystem. The central thought in this paper is that switching behavior also has good stabilization;
i.e., the SBN can also be stable with appropriate switching laws designed, even if all subsystems are unstable. This
is completely different from that in our previous work. Specifically, for this case, the dwell time (DT) should be
limited within a pair of upper and lower bounds. By means of the discretized Lyapunov function and DT, a sufficient
condition for global stability is obtained. Finally, the above results are demonstrated by a biological example.

Key words: Aperiodic sampled-data control; Boolean control networks; Unstable subsystem; Discretized
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1 Introduction

The Boolean network (BN) is a class of discrete-
time systems, whose nodes can take only “1” or “0”
at each time. A series of logical functions are used to
update the states of these nodes. Kauffman (1969)
first used a BN to quantify the interactions of gene
regulatory systems. The interactions among diverse
genes complicate living cells. Genes collectively (as
a network) act on the production of cells, tissues,
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and organisms. Very often, instead of studying one
single gene, the global (holistic) behavior of a genetic
network is more crucial and significant. Actually,
many formalisms of learning genetic regulatory net-
works have been proposed. Among such mathemati-
cal models, BNs have received much attention. Using
BNs, one can study and investigate many practical
questions related to the complex behavior of large
genetic networks in real biological systems.

BNs have been extensively studied in recent
years. Apart from their broad applications in sys-
tems biology (Akutsu et al., 1999; Shmulevich et al.,
2002a, 2002b), other applications such as game the-
ory (Cheng, 2014; Ding XY et al., 2017), cryptogra-
phy (Lu et al., 2018a, 2018c), modeling of systems
of machines (Torres et al., 2018a, 2018b), and corre-
lated default risk (Gu et al., 2013) can be found in
the literature.
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In particular, BNs with logical expressions can
be translated into algebraic forms by means of a
semi-tensor product (STP) of matrices (Cheng and
Qi, 2010; Cheng et al., 2011a). This method also
has many applications (Lu et al., 2017; Li HT et al.,
2018). All information about the logic and structure
is contained in the corresponding network transition
matrices. Based on this powerful tool, research find-
ings on the control field of BNs emerge continually,
ranging from controllability (Ding Y et al., 2017;
Tong et al., 2018; Zhong et al., 2019), observabil-
ity (Yu et al., 2019), optimal control (Wu and Shen,
2017; Zhu QX et al., 2018), output tracking (Li YY
et al., 2019), synchronization (Zhong et al., 2016;
Yang et al., 2019), and reachability (Guo, 2018),
to disturbance decoupling (Liu et al., 2017; Li BW
et al., 2019a, 2019b). A Boolean control network
(BCN) is a BN with binary inputs.

Stability and stabilization are important re-
search fields of BNs (BCNs), and they have been
deeply studied (Cheng et al., 2011b; Li R et al.,
2014; Guo et al., 2015; Li BW et al., 2018; Li YY
et al., 2018; Liu RJ et al., 2018, 2019; Sun et al.,
2018; Zhu SY et al., 2018; Li HT et al., 2019). Most
of the above results are obtained using STP and the
matrix expression of logic. Wang and Li (2012) and
Li and Wang (2017) constructed Lyapunov functions
for BNs and presented the Lyapunov-based stability
analysis for BNs. After that, the Lyapunov function
has been effectively adopted to research the stability
and stabilization problems of BNs (BCNs). For ex-
ample, by designing a co-positive Lyapunov function,
the weighted l1-gain analysis was considered, and
then the l1 model reduction problem for BCNs was
studied in Meng et al. (2016). Meng et al. (2017b)
analyzed stability and l1 gain of BNs with Marko-
vian jump parameters. For time-dependent switched
Boolean networks (SBNs), Meng et al. (2017a) con-
sidered their stability and guaranteed the cost. A
BCN under aperiodic sampled-data control (ASDC)
was converted into an SBN in Lu et al. (2018b).
At the same time, by means of the switching-based
Lyapunov function, global stability was investigated.
Based on the control Lyapunov function, Li and Ding
(2019) investigated the feedback stabilization prob-
lem of logical control networks. It is noteworthy that
SBNs considered in Meng et al. (2017a) and Lu et al.
(2018b) contain at least one stable subsystem. To
the best of our knowledge, there is no work on the

global stability of SBNs containing all unstable sub-
systems. Moreover, how to design a switching policy
which can make a switching system with all subsys-
tems unstable achieve stability has always been a
challenging issue.

Based on the above statements, we consider
the global stability of SBNs containing all unsta-
ble subsystems. In Meng et al. (2017a) and Lu
et al. (2018b), using the Lyapunov function and the
method of average dwell time (DT), some sufficient
conditions for global stability of the SBN with at
least one stable subsystem were obtained. The main
idea of this method is to use stable subsystems to
offset the state divergence caused by unstable sub-
systems. That is to say, the existence of stable
subsystems ensures the global stability of the SBN.
Therefore, the above method is not applicable to
the situation in which all subsystems are unstable.
As is well known, all the subsystems being unsta-
ble does not mean that the switched system must
be unstable. According to Xiang and Xiao (2014),
Feng et al. (2017), and Liu Z et al. (2018), even if all
subsystems are unstable, the switched system can be
stabilized with appropriate switching laws designed,
which makes a switched system carefully switch be-
tween unstable subsystems. Here, to achieve the
global stability of an SBN containing all unstable
subsystems, the DT should be limited within a pair
of upper and lower bounds, and the discretized Lya-
punov function is used.

We summarize our main contributions as fol-
lows: First, the proposed method can not only solve
the global stability problem of the BCN under ASDC
when all subsystems of the transformed SBN are un-
stable, but also adapt to work on the global stabil-
ity of SBNs with all subsystems unstable. Thus,
the problems left in Meng et al. (2017a) and Lu
et al. (2018b) are solved. Second, compared with
direct research on the global stability of SBNs with
all unstable subsystems, the problem considered in
this study is more complex. Although we transform
this problem into studying the global stability of the
transformed SBN with all subsystems unstable, the
switching instant must be the sampling instant of
the original BCN under ASDC. Therefore, the con-
struction of the Lyapunov function and the definition
of DT are different from those in Xiang and Xiao
(2014), Feng et al. (2017), Meng et al. (2017a), Liu
Z et al. (2018), and Lu et al. (2018b).
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2 Preliminaries

2.1 Notations and definitions

The basic notations used in this study are listed
in Table 1.

Table 1 Basic notations

Notation Description

Z Set of integers
R Set of real numbers
R
n Set of n-dimensional column vectors

Ik k × k identity matrix
Lm×n Set of all m× n logical matrices

In addition, denote D := {1, 0}, besides Dn :=

D ×D . . .×D
︸ ︷︷ ︸

n

. Δk :=
{

δ1k, δ
2
k, . . . , δ

k
k

}

, where δik is

the ith column of Ik with degree k. In particular,
Δ := Δ2 and Δn := Δ×Δ× · · · ×Δ

︸ ︷︷ ︸

n

. Here, 1 ∼ δ12

and 0 ∼ δ22 . An m× n logical matrix A is defined as
follows:

A = [δi1m, δi2m, . . . , δinm ],

where i1, i2, . . . , in ∈ {1, 2, . . . ,m}, and for simplic-
ity, A = δm[i1, i2, . . . , in].

Let A ∈ R
m and B ∈ R

n. Then W[m,n]AB =

BA, where W[m,n] = [In⊗δ1m, In⊗δ2m, . . . , In⊗δmm ]

is an mn×mn swap matrix. �x� = max{n ∈ Z|n ≤
x, x ∈ R}.

Let x = x1x2 · · ·xn with xi ∈ Δ, i =

1, 2, . . . , n. Then x2 = Φnx, whereΦn = δ22n [1, 2
n+

2, 2× 2n + 3, . . . , (2n − 2) · 2n + 2n − 1, 22n].

Definition 1 The STP of two matrices A ∈
Mm×n and B ∈ Mp×q is defined as (Cheng et al.,
2011a)

A�B = (A⊗ Iα/n)(B ⊗ Iα/p),

where ⊗ is the tensor (or Kronecker) product and
α = lcm(n, p) is the least common multiple of n and
p.

In this study, symbol � can be omitted, since
there is no confusion.
Lemma 1 Let f(xxx1,xxx2, . . . ,xxxn) ∈ D be an n-ary
logical function. It can be expressed in a multi-linear
form as follows (Cheng et al., 2011a):

f(xxx1,xxx2, . . . ,xxxn) = Mfx1x2 . . .xn,

where the structure matrix Mf ∈ L2×2n is deter-
mined uniquely.

2.2 Converting a BCN under ASDC into an
SBN

Consider the following BCN under ASDC:
{

X(t+ 1) = f (X(t), U(t)) ,

U(t) = e (X(tk)) , tk ≤ t < tk+1,
(1)

where X(t) ∈ Dn is the state variable, U(t) ∈ Dm is
the ASDC input variable, and tk (k = 0, 1, . . .) are
sampling instants. The mappings f : Dn+m → Dn

and e : Dn → Dm are logical functions.
Using Lemma 1, we can represent logical func-

tions f and e by their unique structure matrices
M and E, respectively. Here X(t) and U(t) are
represented by their vector forms x(t) ∈ Δ2n and
u(t) ∈ Δ2m , respectively. System (1) is given as
follows:

x(t+ 1) = Mu(t)x(t), (2)

u(t) =Ex(tk), tk ≤ t < tk+1, (3)

where M ∈ L2n×2n+m and E ∈ L2m×2n .
Denote hk � tk+1− tk as the kth sampling inter-

val, where hk ∈ Zh � {i1, i2, . . . , il} (i1 < i2 < · · · <
il) and ij (j = 1, 2, . . . , l) are positive integers. Ac-
cording to Lu et al. (2018b), system (2) under ASDC
(Eq. (3)) can be translated into an SBN, which can
be described as follows:

x(tk+1) = (MW[2n,2m])
hkx(tk)Φ

hk−1
m u(tk)

= (MW[2n,2m])
hk(I2n ⊗Φhk−1

m E)Φnx(tk)

� Fσ(tk)x(tk),

(4)

where the switching signal σ(tk) ∈ Zσ �
{1, 2, . . . , l}. Note that Eq. (4) switches only at
the sampling instant, but the switch may not oc-
cur at every sampling instant. The corresponding
details have been well discussed in Lu et al. (2018b).
Thus, the switching time sequence is given below:
0 = t0 = tk(0) < tk(1) < tk(2) < · · · < tk(i) < tn,
where tk(j) ∈ {t0, t1, . . . , tn} (j = 0, 1, . . . , i) and
t0, t1, . . . , tn are sampling instants.

3 Main results

In this section, we analyze the global stability
of system (2) under Eq. (3). We consider the case
in which all subsystems of the corresponding Eq. (4)
are unstable.
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Definition 2 System (2) is said to be globally
stable at xe, if for any initial state x(0) ∈ Δ2n , the
corresponding trajectory x(t) converges to xe.

Here, we assume xe = δ2
n

2n (a coordinate trans-
formation in Cheng et al. (2011a) can ensure this).
Lemma 2 System (2) is globally stable at xe if and
only if the corresponding Eq. (4) is globally stable at
xe and δ2

n

2n = MEδ2
n

2nδ
2n

2n .
Here, we assume that system (2) satisfies δ2

n

2n =

MEδ2
n

2nδ
2n

2n .
Let Z � {k(0), k(1), . . . , k(i−1)}. Define

τk(j) = k(j+1) − k(j)

as the DT, where j = 0, 1, . . . , i − 1 and τk(j) ∈
[τmin, τmax] with τmin = infk(j)∈Z τk(j) and τmax =

supk(j)∈Z τk(j) .
Remark 1 Note that the DT should be limited
within a pair of upper and lower bounds to ensure
global stability, since too small or too large DT may
lead Eq. (4) containing all unstable subsystems to be
unstable.
Definition 3 The set of vectors {βa,q|a ∈ Zσ, q =

0, 1, . . . , L} is defined as a set of Lyapunov coef-
ficients of Eq. (4) if ∀r = 1, 2, . . . , 2n − 1 and
∀a, b ∈ Zσ, the following equations/inequalities are
satisfied:

βT
a,qδ

2n

2n = 0, q = 0, 1, . . . , L, (5)

βT
a,qδ

r
2n > 0, q = 0, 1, . . . , L, (6)

[

βT
a,q(Fa − I) +

1

h
(βT

a,q+1 − βT
a,q)Fa

−λaβ
T
a,q

]

δr2n < 0, q = 0, 1, . . . , L− 1, (7)
[

βT
a,q+1(Fa − I) +

1

h
(βT

a,q+1 − βT
a,q)Fa

−λaβ
T
a,q+1

]

δr2n < 0, q = 0, 1, . . . , L− 1, (8)

Faδ
2n

2n = δ2
n

2n , (9)
[

βT
a,L(Fa − I) − λaβ

T
a,L

]

δr2n < 0, (10)

βT
b,0 ≤ μbβ

T
a,L, 0 < μb < 1, a 
= b, (11)

where λa > 0 and h = �τmin

L
�.

A result on the global stability of system (2) is
obtained below. Here, note that all subsystems in
Eq. (4) can be unstable.
Theorem 1 Consider system (2) under Eq. (3).
If there exist a set of Lyapunov coefficients {βa,q >

0|a ∈ Zσ, q = 0, 1, . . . , L} as defined in Definition 3

and a constant τmax ≥ τmin such that for any a, b ∈
Zσ, a 
= b, the following inequality holds:

lnμb + τmax ln(λa + 1) < 0, (12)

then system (2) is globally stable at xe.
Proof We first prove that Eq. (4) is globally
stable at xe. For any σ(tk) ∈ Zσ, we construct the
following Lyapunov function of Eq. (4):

Vσ(tk)(tk) = βT
σ(tk)

(k)x(tk). (13)

Denote tk(1) , tk(2) , . . . , tk(i) as the switching instants.
For any t ∈ [tk(j) , tk(j+1) ), j = 0, 1, . . . i − 1, the ath

subsystem is activated, i.e., σ(tk(j) ) = a.
The interval [k(j), k(j)+τ∗) where τ∗ = L�τmin

L
�

is divided into L segments described as

Nk(j),q = [k(j)+qh, k(j)+(q+1)h), q = 0, 1, . . . , L−1,

of equal length h = �τmin

L
�. Thus,

[k(j), k(j) + τ∗) =
L−1
⋃

q=0

Nk(j),q.

The vector function βa(k) where k ∈ [k(j), k(j) +

τ∗) is chosen to be linear within each segment
Nk(j),q, q = 0, 1, . . . , L− 1. Let

βa,q = βa(k
(j) + qh) > 0, q = 0, 1, . . . , L− 1.

Then

βa(k) = βa(k
(j) + qh+ r)

=
(

1− r

h

)

βa,q +
r

h
βa,q+1

= βa,q +
1

h
(βa,q+1 − βa,q)(k − k(j) − qh),

where k ∈ Nk(j),q, r ∈ {0, 1, . . . , h − 1}, and q =

0, 1, . . . , L− 1. Then we have

βa(k + 1)

=βa,q +
1

h
(βa,q+1 − βa,q)(k + 1− k(j) − qh)

=βa,q +
1

h
(βa,q+1 − βa,q)(k − k(j) − qh)

+
1

h
(βa,q+1 − βa,q)

=
(

1− r

h

)

βa,q +
r

h
βa,q+1 +

1

h
(βa,q+1 − βa,q),

where k ∈ Nk(j) ,q.



264 Sun et al. / Front Inform Technol Electron Eng 2020 21(2):260-267

Afterwards, for k ∈ [k(j)+ τ∗, k(j+1)), we estab-
lish the vector function βa(k) = βa,L, where βa,L

is a constant vector. Hence, βa(k) with a ∈ Zσ is
described as follows:

βa(k) =

⎧

⎨

⎩

(

1− r

h

)

βa,q +
r

h
βa,q+1, k ∈ Nk(j) ,q,

βa,L, k ∈ [k(j) + τ∗, k(j+1)),

where r ∈ {0, 1, . . . , h− 1}.
When k ∈ Nk(j),q, we know that

ΔVa(tk)

=Va(tk+1)− Va(tk)

=βT
a (k + 1)x(tk+1)− βT

a (k)x(tk)

=βT
a (k + 1)Fax(tk)− βT

a (k)x(tk)

=

{[
(

1− r

h

)

βT
a,q+

r

h
βT
a,q+1+

1

h
(βT

a,q+1−βT
a,q)

]

Fa

−
[(

1− r

h

)

βT
a,q +

r

h
βT
a,q+1

]
}

x(tk)

=

[
(

1− r

h

)

βT
a,q(Fa − I) +

r

h
βT
a,q+1(Fa − I)

+
1

h
(βT

a,q+1 − βT
a,q)Fa

]

x(tk)

=

{
(

1− r

h

)
[

βT
a,q(Fa − I) +

1

h
(βT

a,q+1 − βT
a,q)Fa

]

+
r

h

[

βT
a,q+1(Fa−I)+

1

h
(βT

a,q+1−βT
a,q)Fa

]}

x(tk).

For x(tk) 
= δ2
n

2n , according to inequalities (7) and
(8), we can obtain

ΔVa(tk) <
(

1− r

h

)

λaβ
T
a,qx(tk) +

r

h
λaβ

T
a,q+1x(tk)

= λa

[(

1− r

h

)

βT
a,q +

r

h
βT
a,q+1

]

x(tk)

= λaβ
T
a (k)x(tk)

= λaVa(tk),

where

k ∈
L−1
⋃

q=0

Nk(j) ,q = [k(j), k(j) + τ∗).

When k ∈ [k(j) + τ∗, k(j+1)), for x(tk) 
= δ2
n

2n , from
inequality (10), we have

ΔVa(tk) = Va(tk+1)− Va(tk)

= βT
a,Lx(tk+1)− βT

a,Lx(tk)

= βT
a,L(Fa − I)x(tk)

< λaβ
T
a,Lx(tk)

= λaVa(tk).

For x(tk) = δ2
n

2n , we have Va(tk+1) = Va(tk), where
k ∈ [k(j), k(j+1)).

Thus, for any k ∈ [k(j), k(j+1)), we can obtain

Va(tk+1) ≤ (1 + λa)Va(tk),

which implies

Va(tk) ≤ (1 + λa)Va(tk−1)

≤ (1 + λa)
2Va(tk−2)

≤ · · ·
≤ (1 + λa)

k−k(j)

Va(tk(j) ), k ∈ [k(j), k(j+1)).

(14)

On the other hand, by inequality (11), one can
obtain

Vb(tk(j+1) ) ≤ μbVa(tk(j+1) ), (15)

where b = σ(tk(j+1) ) ∈ Zσ and a 
= b.
Then combined with inequalities (14) and (15)

and k(i) < n < k(i+1), we have

Vσ(tn)(tn)

=Vσ(t
k(i) )(tn)

≤(1 + λσ(t
k(i) ))

n−k(i)

Vσ(t
k(i) )(tk(i))

≤(1 + λσ(t
k(i) ))

n−k(i)

μσ(t
k(i) )Vσ(t

k(i)−1
)(tk(i))

=μσ(t
k(i) )(1 + λσ(t

k(i) ))
n−k(i)

Vσ(t
k(i−1) )(tk(i))

≤ · · ·
≤μσ(t

k(i) ) · · ·μσ(t
k(1) )(1 + λσ(t

k(i) ))
n−k(i) · · ·

· (1 + λσ(t
k(0) ))

k(1)−k(0)

Vσ(t
k(0) )(tk(0) )

=(1 + λσ(t
k(i) ))

n−k(i)

⎡

⎣

i−1
∏

j=0

μσ(t
k(j+1) )

· (1 + λσ(t
k(j) ))

k(j+1)−k(j)

]

Vσ(t
k(0) )(tk(0))

<
1

μσ(t
k(i+1) )

⎡

⎣

i
∏

j=0

μσ(t
k(j+1) )(1 + λσ(t

k(j) ))
k(j+1)−k(j)

⎤

⎦

· Vσ(t
k(0) )(tk(0)).

(16)

From inequality (12), we can derive

μb(1 + λa)
τmax < 1, a 
= b, ∀a, b ∈ Zσ.

Thus, when

μ1 = maxμb, ρ1 = max(1 + λa)
τmax , a, b ∈ Zσ,
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we have ρ = μ1ρ1 < 1. Let μ2 = minμb, b ∈ Zσ.
Then inequality (16) can be converted to

Vσ(tn)(tn)<
1

μ2
ρi+1Vσ(t

k(0) )(tk(0))=
1

μ2
ρi+1Vσ(0)(0).

(17)
Therefore, in view of Eqs. (5) and (13) and inequal-
ity (6), if n → ∞, i.e., i → ∞, one can conclude that
x(tn) → δ2

n

2n , which further implies that Eq. (4) is
globally stable at xe. It means x(t) → δ2

n

2n as t → ∞.
The proof is thus completed.
Remark 2 For the global stability analysis of an
SBN x(t+ 1) = Fσ(t)x(t), the above method is still
applicable by constructing the following Lyapunov
function:

Vσ(t)(t) = βT
σ(t)(t)x(t).

Remark 3 Because the transformed SBN switches
only at the sampling instant, but not at each sam-
pling instant, the problem considered in this study
is more complex than directly studying the global
stability of SBNs with all subsystems unstable. The
construction of the Lyapunov function and the def-
inition of DT are also different from those in Xiang
and Xiao (2014), Feng et al. (2017), Meng et al.
(2017a), Liu Z et al. (2018), and Lu et al. (2018b).

4 A biological example

A biological example is shown to demonstrate
the validity of Theorem 1.
Example 1 Consider the BCN model studied in
Li et al. (2013), which is a reduced model for the lac
operon in the bacterium Escherichia coli:
⎧

⎪
⎨

⎪
⎩

x1(t+ 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t)),

x2(t+ 1) = ¬u1(t) ∧ u2(t) ∧ x1(t),

x3(t+ 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))).

Here, x1, x2, and x3 are state variables, represent-
ing the lac mRNA, high-concentration lactose, and
medium-concentration lactose, respectively; u1, u2,
and u3 are control inputs, representing the extracel-
lular glucose, high-concentration extracellular lac-
tose, and medium-concentration extracellular lac-
tose, respectively.

Setting
x(t) = �

3
i=1xi(t)

and
u(t) = �

3
j=1uj(t),

we obtain
x(t+ 1) = Mu(t)x(t), (18)

where

M = δ8[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

1, 1, 1, 5, 3, 3, 3, 7, 1, 1, 1, 5, 3, 3, 3, 7,

3, 3, 3, 7, 4, 4, 4, 8, 4, 4, 4, 8, 4, 4, 4, 8].

The ASDC for Eq. (18) is given in the form of Eq. (3)
as

u(t) = Ex(tk), tk ≤ t < tk+1, (19)

where E = δ8[1, 1, 4, 7, 4, 6, 8, 8].
Consider a sampling period hk ∈ {1, 2}. Then

an SBN can be obtained as follows:

x(tk+1) = Fσ(tk)x(tk), (20)

where F1 = δ8[8, 8, 8, 7, 8, 3, 4, 8] and F2 = δ8[8, 8,
8, 4, 8, 1, 8, 8].

By calculating the state transition for any ini-
tial state x(0) ∈ Δ8, the first subsystem has the
following two attractors of length 1 and length 2, re-
spectively, i.e., δ88 and (δ48 , δ

7
8). Similarly, it follows

that the second subsystem has two point attractors,
δ88 and δ48 . Based on the definition of stability in
Cheng et al. (2011a), one has that both subsystems
are unstable. Let

L = 1, λ1 = λ2 = 0.16, μ1 = μ2 = 0.86, τmin = 1.

By constraints (5)–(12), we obtain the following fea-
sible solution:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

τmax = 1,

βT
1,0 = (130, 132, 100, 146, 137, 100, 148, 0),

βT
1,1 = (176, 170, 100, 171, 172, 154, 169, 0),

βT
2,0 = (100, 146, 86, 147, 146, 132, 145, 0),

βT
2,1 = (152, 154, 117, 170, 160, 176, 173, 0).

According to Theorem 1, we know that Eq. (20) can
be globally stabilized by the switching signal σ(tk),
and that Eq. (18) under Eq. (19) is globally stable
at δ88 .

Choose the initial state x(0) = δ78 . Figs. 1–3
show the corresponding state trajectory, controller
u(t), and switching signal σ(tk). In Fig. 3, we can
see that the sampling instants are

t0 = 0, t1 = 1, t2 = 3, t3 = 4, t4 = 6, t5 = 7, t6 = 9,

and the switching time sequence is t0, t1, t2, t3, t4, t5,
satisfying k(j+1) − k(j) = 1.



266 Sun et al. / Front Inform Technol Electron Eng 2020 21(2):260-267

0 1 2 3 4 5 6 7 8 9 10
–1
0
1
2

Discrete time

x i 
(i=

1,
 2

, 3
)

11

x1 x2 x3

Fig. 1 State trajectory of Eq. (18) under initial state
x(0) = δ7
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Fig. 2 Trajectory of controller u(t) under initial state
x(0) = δ7

8
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σ(
t k)

Fig. 3 Trajectory of switching signal σ(tk) under
initial state x(0) = δ7

8

5 Conclusions

In this paper, the global stability of BCNs
under ASDCs has been studied. Using STP, we
converted a BCN under ASDC into an SBN, whose
subsystems are all unstable. Some results for global
stability of BCNs under ASDC have been obtained
by means of a discretized Lyapunov function and
DT. The validity has been demonstrated by a
biological example.
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