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Abstract: We propose a multi-focus image fusion method, in which a fully convolutional network for focus detection (FD-FCN) 
is constructed. To obtain more precise focus detection maps, we propose to add skip layers in the network to make both detailed 
and abstract visual information available when using FD-FCN to generate maps. A new training dataset for the proposed network 
is constructed based on dataset CIFAR-10. The image fusion algorithm using FD-FCN contains three steps: focus maps are ob-
tained using FD-FCN, decision map generation occurs by applying a morphological process on the focus maps, and image fusion 
occurs using a decision map. We carry out several sets of experiments, and both subjective and objective assessments demonstrate 
the superiority of the proposed fusion method to state-of-the-art algorithms. 
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1  Introduction 

 
Image fusion refers to the technology combining 

images of the same target collected by multiple sen-
sors to obtain a higher-quality image (Saha et al., 
2013; Chen and Qin, 2015). The existing algorithms 
can be divided into three levels from low to high: 
pixel, feature, and decision. Pixel-level fusion algo-
rithms operate directly on the data obtained by sen-
sors, and are closely related to super-resolution re-
construction (Kim and Kwon, 2010), image denoising 
(Huhle et al., 2010), and navigation (Bavirisetti and 
Dhuli, 2016). Pixel-level fusion is also the basis of 
feature- and decision-level fusion. Multi-focus image 

fusion is a hot topic in pixel-level fusion, and it has 
been widely used in cameras and microscopes (Li  
et al., 2017). It is well known that it is almost impos-
sible for an optical imaging system to obtain an image 
in which all the objects at different distances are in 
focus. Multi-focus image fusion is a process that uses 
images with different focuses from the same scene to 
obtain an all-in-focus image (Zhang Q and Levine, 
2016). At present, multi-focus image fusion can be 
roughly divided into two classes: transform-domain- 
based methods and spatial-domain-based methods (Li 
et al., 2013b). 

Transform-domain-based algorithms are the 
ones in which source images are transformed into 
other spaces before information fusion. In recent 
years, many fusion methods in this class have been 
developed, e.g., the fusion method based on Lapla-
cian pyramid transformation (Juočas et al., 2019), the 
wavelet analysis based method, curvelet transform, 
and (subsampled or non-subsampled) contourlet 
transform (Zhang BH et al., 2013; Yang et al., 2015). 
These recent algorithms have overcome some short-
comings in early transform-domain-based algorithms, 
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such as pseudo-Gibbs phenomena and computational 
complexity problems. Zhou et al. (2014) proposed a 
multi-scale focus measurement method based on the 
image structure to determine the gradient weights for 
a multi-focus image fusion method. The fusion 
method based on morphological filtering proposed by 
Li et al. (2013a) can well solve the fusion problem of 
dynamic focus problems. Although the method based 
on the transform domain can effectively avoid the 
block effect, it cannot extract the pixels from the 
multi-focus images directly, causing the original im-
age information to be less preserved. In addition, the 
fused image is often unacceptable because of artificial 
effect. 

Compared with transform-domain-based algo-
rithms, spatial-domain-based algorithms can retain 
more visual information from the original images. In 
addition, they are more efficient and easier to im-
plement. These methods can be roughly divided into 
three categories: pixel-, block-, and region-based 
methods. For example, Saha et al. (2013) emphasized 
the relatively unique features of a source image with 
respect to the other source images so as to fuse multi- 
focus images. Huang and Jing (2007) proposed a 
block-based method by a pulse-coupled neural net-
work (PCNN). Aslantas and Kurban (2010) proposed 
a novel optimal method for multi-focus image fusion 
using a differential evolution algorithm. Bai et al. 
(2015) proposed a new quadtree-based algorithm for 
multi-focus image fusion, in which the source images 
are decomposed into blocks with optimal sizes in a 
quadtree structure. However, spatial-domain-based 
methods always cause spectral distortion and block 
effect, so many other works are devoted to solving 
these problems. 

Although much attention has been paid to multi- 
focus image fusion based on traditional algorithms, 
these algorithms have some defects and need further 
improvement. In recent years, there has been an in-
creasing interest in methods based on convolutional 
neural networks (CNNs), which have been widely 
used in computer vision, and achieved excellent re-
sults in facial recognition, pose estimation, image 
classification, patch similarity analysis, semantic 
segmentation, etc. (Ayyalasomayajula et al., 2019; 
Ren et al., 2019; Wang et al., 2019; Zhu et al., 2019). 
Many results are much better than those obtained by 
the traditional methods, because the CNN for image 

feature extraction has a wider range of applications. 
Li et al. (2002) first used neural networks to handle 
multi-focus image fusion. The neural network in their 
algorithm is only equivalent to a classifier that for-
mulates fusion rules. Recent experiments (Liu et al., 
2017) regard one pair of image blocks with a size of 
16×16 in a multi-focus image as one instance and then 
convert the multi-focus image fusion problem into a 
binary classification problem, using a CNN to judge 
the relationship of this pair of image blocks. 
Amin-Naji et al. (2019) deemed that the results of an 
ensemble of CNNs are better than those of one single 
CNN. Hence, they proposed an ensemble learning 
based CNN for multi-focus image fusion. Mustafa et 
al. (2019) proposed a complete unsupervised end-to- 
end trainable deep CNN model for multi-focus image 
fusion. Zhao et al. (2019) proposed a novel end-to- 
end deep learning based approach for multi-focus 
image fusion with a natural enhancement, which 
combines multi-level visually distinctive features. 

In this paper, we propose a fully convolutional 
network (FCN) for focus detection (FD-FCN) in the 
spatial space. Based on the detection results, pixels in 
focused regions are selected to construct an all-in- 
focus image. To improve the accuracy of the results, 
we combine multi-scale information in the network 
structure. Compared with traditional image fusion 
methods, the proposed method based on a CNN is 
simpler and easier to understand. It does not require 
artificially designing complex fusion rules or select-
ing thresholds. Experimental results demonstrate that 
our method has strong robustness, and can effectively 
avoid block effects, artificial effects, and other issues. 
In addition, the FCN can process source images with 
an arbitrary size. The main contributions of this study 
can be summarized as follows: 

1. A new FCN with skip layers, denoted as 
FD-FCN, is proposed for focus detection. 

2. A new training dataset for FD-FCN is con-
structed based on dataset CIFAR-10. 

3. The algorithm can be easily extended to a 
fusing image sequence. 

 
2  Fully convolutional network 

 
In the field of computer vision, CNNs are ex-

tensively adopted for image classification, object 
detection, and so on. The CNN was proposed by 
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LeCun and Bengio (1995), and it can be seen as an 
extended version of traditional artificial neural net-
works. However, CNN’s structure is more complex, 
because its capabilities are stronger, and the number 
of parameters is greatly reduced. In general, a CNN is 
a feedforward neural network with multiple hidden 
layers, making it capable of extracting global features 
from images. 

The basic components of a CNN are convolu-
tional layers, pooling layers, fully connected layers, 
and output layers. Taking the most general classifica-
tion network as an example, after several convolu-
tional operations to extract features, its output is a 
vector through the fully connected layer, and the 
output of the fully connected layer is fed to the soft-
max layer. Finally, we obtain a vector whose values 
correspond to the probability of belonging to each 
category, and the maximum value of this category is 
the final result.   

However, in a trained CNN, except for the 
number of feature maps in each layer, the number of 
neurons in the fully connected layer cannot be 
changed. This leads to the fact that the size of the 
feature maps cannot be changed when the feature 
maps feed into the fully connected layer, although the 
convolutional operation does not limit the size of 
input images. In other words, in the process of train-
ing and testing, the size of the input image must be the 
same, which makes it difficult to apply the CNN to 
many fields, such as semantic segmentation and im-
age fusion. 

To solve this problem, Shelhamer et al. (2017) 
invented the FCN based on the CNN. The main con-
tribution of the new network is to remove the fully 
connected layers. Without the restriction of fully 
connected layers, it will obtain a matrix with the same 
number of layers as classes, and this network can 
handle arbitrarily sized images. This feature makes 
FCNs be widely used for semantic segmentation 
problems. 

The aim of pixel image fusion is to generate a 
more informative image with source images of the 
same size, and the size of source images is not fixed in 
practical applications. FCN makes it possible to deal 
with image fusion using deep learning. Hence, we 
propose a multi-focus image fusion algorithm using 
an FCN. In the algorithm, the output of the network is 
the focus detection result. As the model learns on 

large-scale datasets, it can generate more precise 
focus detection results than traditional methods in 
theory. 

 
 

3  The proposed fusion algorithm 

3.1  Framework 

In a multi-focus image fusion algorithm, the key 
issue is to detect focused regions. However, it is still 
an open problem. In this study, we detect focused 
regions using the theory of deep learning. We assume 
that two source images, denoted as A and B, are well 
registered. A new FCN is designed to obtain a focus 
map. The overall flow diagram of the proposed 
method (Fig. 1) can be summarized as follows: 

1. Input the source images A and B into our 
trained FD-FCN to obtain the focus maps (score maps) 
of A and B, which are denoted as SA and SB,  
respectively. 

2. Conduct a series of morphological processing 
steps on focus maps to obtain the final decision map 
Ds. 

3. Based on Ds, the fused image can be obtained 
by F=Ds×A+(1−Ds)×B. 

The network structure of the proposed FD-FCN 
is presented in Section 3.2. The training process is 
shown in Section 3.3. The morphological processing 
is discussed in Section 3.4. 

3.2  Network structure of FD-FCN 

As shown in Fig. 1, the FD-FCN we established 
is an FCN with skip layers, capable of merging multi- 
scale features. This network is composed mainly of 
convolutional layers, pooling layers, and upsampling 
layers. After a series of operations, the network out-
puts a map that is half the size of the source image. 
Then, we will create a focus map that has the same 
size as the source image using bilinear interpolation. 
In the focus map, each element represents the proba-
bility of the corresponding pixel belonging to focused 
regions. Three aspects of this structure should be 
specified: 

1. FCN 
It can be seen from Fig. 1 that the first layer of 

the network is the data input layer. The main structure 
consists of three modules, and each module includes 
mainly three convolutional layers and one pooling  
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layer. The convolutional layer is the core of FD-FCN, 
used to extract features. As the size of the training 
dataset grows, each neuron will learn to filter out 
corresponding features. In FD-FCN, the size of the 
convolutional kernels in the convolutional layer is 
3×3. This process of convolution can be expressed as 

 
,  z W x b                           (1) 

 
where  is the convolutional operator, W and b rep-
resent the weight and bias matrices respectively, and x 
and z represent the input and output of the convolu-
tion respectively. 

The pooling layer is used for downsampling 
feature maps. This process can further reduce the 
number of parameters and avoid overfitting. The 
pooling methods include mean pooling, maximum 
pooling, etc. Since maximum pooling has been 
widely used, all those used in FD-FCN are set as 
maximum pooling, that is, selecting the largest ele-
ment in the area.  

Taking the training process as an example, the 
size of images in the training set used in our experi-
ments is 32×32. After the first module, the size of the 
feature map becomes 16×16, and then reduces to 8×8 
and 4×4. In the end, we obtain an original map that is 
half the size of the original image (16×16), and will 
obtain a map that has the same size as the source 
image by bilinear interpolation. The map expresses  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the probability of the pixel in the source image be-
longing to focused regions. 

Note that the model uses a smaller convolutional 
kernel, and it has been demonstrated that the 3×3 
convolutional kernel on small images converges 
faster and that the performance is significantly im-
proved compared to larger convolutional kernels. In 
addition, a 1×1 convolutional kernel is used for di-
mensionality reduction and to improve the network 
expressiveness. We use the ReLU activation function, 
which is sparser than the sigmoid function. ReLU not 
only avoids the vanishing gradient, but also allows the 
model to converge as quickly as possible. The func-
tion is defined as 

 

, 0,
ReLU( )

0, 0.
x x

x
x


  

                   (2) 

 
2. Multi-scale feature combinations 
As shown in Fig. 1, we add skip layers in the 

structure. In FD-FCN, we will operate several 
downsamplings, and consequently the resolution of 
the image will decrease. For convolutional networks, 
shallow convolutional layers have a smaller percep-
tual domain and extract more local features, while 
deep convolutional layers with a larger perceptual 
domain can extract more abstract features. Due to the 
characteristics of multi-focus image fusion, we need 
both detailed and abstract features. It is difficult to 

{

}

Fig. 1  Overall flow diagram of the proposed method 
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deal with the pixels around the boundaries of focused  
and defocused regions using just the abstract infor-
mation preserved in deep layers. To process these 
regions more precisely, we need more detailed fea-
tures. Therefore, we combine different layers’ feature 
maps to obtain a multi-scale score map. The final 
score map combines different scales for more precise 
results. As shown in Fig. 1, Pool3 is upsampled and 
then merged with Pool2 to obtain Fuse1, and Fuse1 is 
upsampled and then merged with Pool1 to obtain 
Fuse2. After the last upsampling, the score map 
combined with multi-scale results has the same size as 
the source images. 

3. Shallower network structure 
In other image processing fields, source images 

are often downsampled to a very small size, and then 
upsampled to obtain the final result. Taking the 
FCN-32 in semantic segmentation as an example, the 
original images with size 32×32 are reduced to 1×1 
after several downsamplings, and then are upsampled 
to generate the prediction map. When dealing with 
multi-focus image fusion problems, we find that the 
results of more downsampling operations are rough, 
but the feature maps obtained using fewer downsam-
pling operations can better determine the clarity of 
each pixel. Therefore, the FD-FCN performs only 
three downsamplings. 

3.3  Training dataset  

To obtain better fusion results, we need a large 
and effective training set. However, there are no such 
datasets in the multi-focus image fusion field. It is a 
good choice to construct a dataset that is suitable for 
training the FD-FCN from an existing dataset in other 
fields. CIFAR-10, which has been widely used in 
object recognition, is selected as the base dataset to 
construct our object dataset. Compared with other 
datasets, the data features of CIFAR-10 are more 
complex. The dataset contains 10 categories, and each 
category has 6000 color images with size 32×32. In 
addition, these color images are independent of each 
other without overlapping.  

When generating a training dataset, we take the 
original image as the focused region. At the same time, 
Gaussian blur is applied to all images with a variance 
of 15, simulating the defocused region. After these 
processes, our training dataset eventually includes 
60 000 clear images and 60 000 blurred images. Be-

cause the images in the CIFAR-10 dataset are from 
the actual image, they contain a lot of information.  

In some cases, to obtain more detailed infor-
mation, we need to obtain information about the pixel- 
level images. There are many pixel-level label algo-
rithms (Shelhamer et al., 2017) in some related re-
search areas. We also use pixel-level labels in the 
experiment to obtain a more accurate clarity score for 
each pixel in the image. Although the size of the im-
age used for training is definite, we can control the 
scale of the network according to the size of the labels, 
and find that when the size of labels is set to 16×16, 
the experiment performs well. So, in our experiment, 
the label of unprocessed clear images which are used 
to indicate the “focused region” is a 16×16 matrix full 
of 1, while the label of Gaussian-blurred images in-
dicating the “defocused region” is a 16×16 matrix full 
of 0. In the training process, unlike the single-label 
problem, we calculate the loss value of the label ma-
trix and network output by applying the mean square 
error (MSE), which has been widely used in regres-
sion problems. 

When training the FD-FCN, each focused image 
and its blurred version are input into the network, and 
the network generates focus maps for the two images 
separately. Elements in each focus map are in [0, 1]. 
The focused regions tend to generate elements close 
to 1 in the focus map, and the defocused regions tend 
to generate elements close to 0 in the focus map. 
Hence, when testing, the framework can generate a 
focus map according to the real distribution of the 
focused and defocused regions. 

3.4  Morphological processing  

As shown in Fig. 2, in general, we select pixels 
by comparing scores in score maps. In the experiment, 
we make a difference map D between two score maps. 

 
, D SA SB                          (3) 

 
where SA and SB are the focus maps (score maps) of 
source images A and B, respectively. 

 
1, ( , ) 0,

Bn( , )
0, ( , ) 0,

D x y
x y

D x y


  

             (4) 

 
where Bn is the binary map. 
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Inevitably, there are some small closed region 
errors in our algorithm. We deal with these errors to 
improve the quality of the fused image. As shown in 
Fig. 2, we remove these small holes in the binary 
image Bn. Then we refine Bn using a guided filter 
(He et al., 2013), which can transfer the structures of 
Bn to Ds; that is to say, we use it to smooth the edges: 

 
GF( , , ),r eDs Bn                         (5) 

 
where r is the local window radius and e the regular-
ization parameter. As shown in Fig. 2, we finally 
obtain a decision map Ds, and then obtain the fused 
image F according to  
 

 ( , ) Ds( , ) ( , ) 1 Ds( , ) ( , ) .F x y x y A x y x y B x y    (6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4  Experimental results and discussion 

4.1  Focus detection results and fused images 

We performed a series of experiments to exam-
ine the focus maps generated by FD-FCN and deci-
sion maps. Fig. 3 shows 10 sets of score maps, deci-
sion maps, and fused images generated by our algo-
rithm, where (1)–(5) are color images, and (6)–(10) 
are gray images. Note that (3)–(5) and (8)–(10) in  
Fig. 3 are unregistered or dynamic images. For ex-
ample, in (4), the sizes of the lions in the two source 
images are different, so are the backgrounds. The girl 
in (9) has different postures. Compared to the static 
multi-focus image that has been registered, research 

on the fusion of unregistered and dynamic images is 
lacking. Because our algorithm directly selects pixels 
from the source image based on the clarity of different 
pixels, it avoids the contamination of information in 
the blurred area, and will not produce artifacts or 
other bad effects. 

4.2  Comparison experiments 

4.2.1  Experimental settings 

To examine the superiority of the proposed al-
gorithm, we chose six state-of-the-art algorithms for 
comparison, including the image matting fusion (IMF) 
algorithm (Li et al., 2013b), discrete wavelet trans-
form (DWT) based algorithm (Yang et al., 2014), 
multi-scale weighted gradient (MWG) based algo-
rithm (Zhou et al., 2014), nonsubsampled contourlet 
transform (NSCT) based algorithm (Yang et al., 2015), 
guided filtering (GF) based algorithm (Li et al., 
2013a), and CNN-based algorithm (Liu et al., 2017).  

The existing methods for evaluating the per-
formance of image fusion are generally classified into 
two categories: subjective and objective. Subjective 
methods refer to the way by organizing humans to 
evaluate the visual quality of fused images; this kind 
of methods is relatively reliable because the evalua-
tion results are in accordance with humans’ visual 
perception. However, a harsh experimental environ-
ment is required. Objective methods predict the visual 
quality of fused images by modeling a human visual 
system (HVS). They can fully avoid the drawbacks of 
subjective methods. In our experiments, the proposed 
fusion algorithm is compared with six state-of-the-art 
algorithms using both subjective and objective eval-
uation methods. The objective measures adopted in 
the experiments are as follows: 

1. Mutual information (MI) (Qu et al., 2002) 
The measure MI is defined as 
 

1 1

2
0 0

( , )MI ( , ) log ,
( ) ( )

L L
AF

AF AF
i j A F

p i j
p i j

p i p j

 

 

        (7) 

 
where pA and pF are the normalized histograms of 
source image A and fused image F respectively, and 
pAF is the normalized joint histogram of A and F. The 
MIBF between fused image F and another source 
image B can be calculated in the same way. We set 
MI=MIAF+MIBF. MI is used to calculate the amount of  

Fig. 2  Structure of morphological processing and a 
demonstration example 

Score 
map SA

Score 
map SB

Difference 
map D

Binary 
map Bn

Decision 
map Ds

Fused 
image F

Subtract SA and 
SB to obtain D

Binarize D to
obtain Bn

Remove the small 
holes and use the 
guided filter to 
obtain Ds
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Fig. 3  Ten sets of examples: (a) source image A; (b) source image B; (c) score map SA; (d) score map SB; (e) decision map 
Ds; (f) fused image F 
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information that F retains from A and B. The larger 
the MI, the better the fusion quality. 

2. Edge information preservation ( F
ABQ ) (Xydeas 

and Petrovic, 2000) 
The measure F

ABQ  is defined as 
 

1 1

1 1

( , ) ( , ) ( , ) ( , )
,

( , ) ( , )

M N
AF A BF B

i jF
AB M N

A B

i j

Q i j i j Q i j i j

Q
i j i j

 

 

 

 

  


  




  

(8) 
 

where QAF and QBF denote the similarities of the fused 
image F with the two source images A and B on the 
edge information respectively, and ωA and ωB are 
weights of QAF and QBF respectively. The measure 

F
ABQ  evaluates the quality of the fused image by cal-

culating the amount of edge information transferred 
from the source images to the fused image, which can 
be considered an evaluation measure of spatial 
structure similarity. 

3. Piella measure (Qe) (Piella and Heijmans, 
2003) 

Based on the structural similarity model, Piella 
and Heijmans (2003) proposed an evaluation measure 
representing the significant information that is trans-
ferred from the source image to the fused image. The 
global evaluation index was obtained by weighting 
the summation of each small window, and Qe is an 
index of edge fusion quality evaluation. 

 
1

e ( , , ) ( , , ) ( , , ) ,A B F A B F A B Fw wQ Q Q       (9) 
 

where A′, B′, and F′ are the edge images of images A, 
B, and F respectively, and α is a parameter balancing 
the two factors. We set α=0.5 in the experiments. 
Qw(A, B, F) calculates the local similarity of images 
A, B, and F, and the details can be found in Piella and 
Heijmans (2003). 

4. Radon Wigner-Ville-based blur metric 
(Saleem et al., 2011) 

Based on renyi entropy, Saleem et al. (2011) 
proposed a new image quality metric, defined as  

 

R 3
1

1 ( ),F
N

i
i

Q R
N 

                       (10) 

where N is the total number of image Radon profiles, 
Fi is the ith Radon profile of fused image F, and R3(Fi) 
is expressed as  
 

3
3 2

1( ) log ( , ) .
2

Fi F
n k

R W n k
 

   
 
  

Here,  

( , ) 2DFT{ [ ] [ ]},  ,F FF
m k

W n k n m n m m N


      
 

where DFT means discrete Fourier transform and 
<N> means any set of N consecutive integers. Ac-
cording to its theory, the value of QR decreases with 
increasing blur in fused images. 

5. Visual information fidelity for fusion (VIFF) 
(Han et al., 2013) 

VIFF measures the quality of fused images from 
the perspective of information sharing. VIFF estab-
lishes a link between visual indicators and image 
information, and is an indicator that has been pre-
sented in recent years with high complexity and good 
results. The measure contains four stages: 

(1) Source and fused images are filtered and di-
vided into blocks.  

(2) Visual information is evaluated with or 
without distortion information in each block.  

(3) The VIFF of each sub-band is calculated as 
follows:  

 

, 1 2

, 1 2

FVID ( , ,. . . , , )
VIFF ( ) ,

FVIND ( , ,. . . , , )
I I I I

I
I I I I

k b n Fb
k F

k b n Fb

 


  (11) 

 
where FVIDk,b(I1, I2, …, In, IF) and FVINDk,b(I1, 
I2, …, In, IF) are visual information of the fusion with 
and without distortion at the kth level, bth block,  
respectively. 

(4) The overall quality measure is determined by 
weighting the VIFF of each sub-band: 

 

1 2VIFF( , ,. . . , , ) VIFF ( ),I I I I In F k k F
k

p    (12) 

 
where pk are the weighting coefficients (with k being a 
positive integer, k=4 in the experiment), set to be 
[0.465, 0, 0.070, 0.465] according to the experimental 
results in Han et al. (2013). Obviously, a larger VIFF 
indicates a better fusion performance. 
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In the proposed algorithm, there are two param-
eters: local window radius r and regularization  
parameter e. To determine the optimal values for these 
two parameters, we ran the proposed algorithm with 
different settings on the test set, and calculated the 
MSE between the generated decision map and ground 
truth. Fig. 4 shows the averaged MSE with different 
parameter settings. It reveals that the algorithm with 
r=8 and e=0.32 can generate the best decision map 
generally.  

4.2.2  Comparative experiments 

The proposed algorithm was compared with six 
state-of-the-art algorithms. Because of the space lim-
itation, we list only four test image sets, which cover 
gray-gray and color-color image fusion.  

Fig. 5 shows a set of fused color images named 
“Golf.” Because this set of source images has more 
detailed information, the fusion algorithms’ ability to 
deal with details can be well compared. Figs. 5a and 
5b display the source images with different focuses.  
Figs. 5c–5i show the images fused by the different 
algorithms. The red and yellow boxes are at the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

borders between focused and defocused regions with 
more detailed information. These two areas can better 
evaluate the quality of the fused image. In general, 
although the IMF method retained the detailed in-
formation better, there was a lot of noise in the fused 
image. These patches also appeared in the shoulder 
area that we have marked with red rectangles; alt-
hough the small ball in the corner of the red box was 
well preserved, the obvious spots of the whole image 
affected the overall effect. DWT also retained the 
details, but the image had block effects. MWG made a 
big mistake in the red box. NSCT, GF, and CNN 
worked well overall, but the details of the balls in the 
red and yellow boxes did not show up, such as the 
small ball in the yellow box next to the stick. Table 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Quantitative evaluation of Fig. 5 

Algorithm MI F
ABQ  Qe QR VIFF 

IMF 7.199 840 0.741 351 0.789 912 1.742 883 0.584 032 
DWT 5.312 529 0.683 448 0.792 999 1.555 027 0.490 717 
MWG 7.080 758 0.740 648 0.800 766 1.691 695 0.611 451 
NSCT 6.435 876 0.745 110 0.802 505 1.699 236 0.588 021 

GF 7.180 822 0.754 383 0.801 949 1.734 907 0.610 761 
CNN 7.395 021 0.754 614 0.801 807 1.745 298 0.613 490 

FD-FCN 7.556 523 0.755 076 0.802 554 1.753 202 0.616 000 
The best results are in bold 

e

Fig. 4  Averaged mean square error (MSE) between the 
generated decision map and ground truth 

Fig. 5  The first set of colored images “Golf”: (a) source 
image A; (b) source image B; (c) fused image by IMF; (d) 
fused image by DWT; (e) fused image by MWG; (f) fused 
image by NSCT; (g) fused image by GF; (h) fused image 
by CNN; (i) fused image by FD-FCN 
References to color refer to the online version of this figure
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shows the quantitative evaluation in Fig. 5. The best 
results are marked in bold. From the table, it can be 
seen that the proposed algorithm gives the largest 
quality indexes for all the objective measures. 

Fig. 6 shows a set of fused colored images 
named “Child.” IMF also generated some unexpected 
spots in the fused images at the edge of the shoulder. 
DWT still had an obvious block effect. NSCT pro-
duced obvious artifacts around the boundaries of the 
objects. By magnifying the border between the fo-
cused and defocused areas, we can see that our fused 
image was clearer than others. Table 2 shows the 
quantitative evaluation of “Child,” from which we 
can see that our method had better performance. 

Fig. 7 shows the source and fused images named 
“Clock.” To examine the details of the fused images,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

we amplified the region marked with a red box in each 
fused image. We can see from the figure that “3” was 
blurred and there was some noise in the fused image 
by IMF. Although the DWT algorithm preserved de-
tailed visual information, there were obvious block 
effects. MWG and NSCT generated obvious distor-
tions around the digit “8” in the red box. Compared to 
other images, some noise can be seen in GF. Both 
CNN and FD-FCN performed well, but the quantita-
tive evaluation in Table 3 indicates that FD-FCN 
generated a fused image with higher visual quality. 

Fig. 8 is also a set of classic multi-focus images 
named “Peisi.” There were still spots in the IMF, and 
the edge of the table was blurred. DWT still had ob-
vious block effects. MWG and GF did not perform  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Quantitative evaluation of Fig. 6 

Algorithm MI F
ABQ  Qe QR VIFF 

IMF 8.064 029 0.732 390 0.726 478 1.098 585 0.599 546 
DWT 5.726 883 0.617 876 0.718 810 0.926 814 0.442 699 
MWG 7.741 579 0.729 557 0.727 447 1.094 336 0.598 777 
NSCT 6.398 577 0.708 367 0.734 095 1.062 551 0.559 535 

GF 7.707 244 0.733 896 0.728 883 1.100 844 0.601 925 
CNN 8.104 806 0.735 962 0.728 961 1.103 943 0.605 657 

FD-FCN 8.182 621 0.745 621 0.738 705 1.156 895 0.606 512 
The best results are in bold 

Fig. 6  The second set of color images “Child”: (a) source 
image A; (b) source image B; (c) fused image by IMF; (d) 
fused image by DWT; (e) fused image by MWG; (f) fused 
image by NSCT; (g) fused image by GF; (h) fused image 
by CNN; (i) fused image by FD-FCN 

Fig. 7  The first set of gray images “Clock”: (a) source 
image A; (b) source image B; (c) fused image by IMF; (d) 
fused image by DWT; (e) fused image by MWG; (f) fused 
image by NSCT; (g) fused image by GF; (h) fused image 
by CNN; (i) fused image by FD-FCN 
References to color refer to the online version of this figure
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well in the letter’s reflection on the desktop. In NSCT 
and GF, the effect of letter “P” on the left of images 
was not satisfying, and there were artifacts in some 
areas. Compared with previous images, although 
CNN performed well in all aspects, our algorithm 
performed better at the edge of the table. Table 4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

shows the quantitative evaluation of “Peisi,” which 
also indicates that our method outperformed others. 

Finally, including the images shown in the study, 
we calculated the average of the objective evaluations 
in 20 sets of comparative experiments (Table 5). From 
the experimental results, we can see that our algo-
rithm performed well. 

To check whether there are significant differ-
ences between the proposed algorithm and others, we 
adopted Demšar’s significance diagrams to show 
their performance on the five objective measures  
(Fig. 9). The diagram plots algorithms against mean 
ranks, whereby all methods are sorted according to 
their ranks. The line segment to the right of each al-
gorithm represents its corresponding critical differ-
ence. That is, the right end of the line indicates from 
which mean rank onward another classifier is out-
performed significantly. From the figure, it can be 
seen that the proposed algorithm is not significantly 
different from the CNN-based algorithm, but it per-
forms significantly better than traditional ones. 

4.3  Multi-focus image sequence fusion 

The proposed algorithm FD-FCN can be easily 
extended to fuse an image sequence that contains 
more than two source images. 

First, two source images were randomly selected 
for fusion, using the FD-FCN algorithm, and then the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Quantitative evaluation of Fig. 7 

Algorithm MI F
ABQ  Qe QR VIFF 

IMF 6.906 191 0.654 638 0.781 511 0.971 937 0.572 523 
DWT 6.157 212 0.622 260 0.784 093 0.933 390 0.498 242 
MWG 6.919 281 0.650 379 0.793 032 0.978 569 0.567 951 
NSCT 6.436 572 0.642 517 0.779 872 0.953 776 0.539 594 

GF 6.623 621 0.648 170 0.781 085 0.972 255 0.559 643 
CNN 6.914 834 0.653 912 0.791 296 0.985 868 0.569 685 

FD-FCN 6.931 562 0.654 284 0.795 830 0.981 957 0.569 727 
The best results are in bold 

Table 4  Quantitative evaluation of Fig. 8 

Algorithm MI F
ABQ  Qe QR VIFF 

IMF 6.437 273 0.637 513 0.808 964 1.073 772 0.532 681 
DWT 5.912 635 0.617 178 0.806 696 1.049 203 0.446 541 
MWG 6.549 853 0.635 880 0.810 647 1.080 996 0.537 277 
NSCT 6.336 545 0.646 272 0.814 889 1.098 662 0.528 496 

GF 6.486 647 0.643 626 0.815 015 1.034 164 0.545 344 
CNN 6.579 282 0.645 190 0.811 858 1.076 823 0.537 764 

FD-FCN 6.595 328 0.647 725 0.822 265 1.103 772 0.540 985 
The best results are in bold 

Fig. 8  The second set of gray images “Peisi”: (a) source 
image A; (b) source image B; (c) fused image by IMF; (d) 
fused image by DWT; (e) fused image by MWG; (f) fused 
image by NSCT; (g) fused image by GF; (h) fused image 
by CNN; (i) fused image by FD-FCN 
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fused image was combined with another source image 
until all the source images were fused. Finally, we can 
obtain the fused images of the image sequence. 

Figs. 10 and 11 show two sets of multi-focus 
image sequence fusion. There were 20 source images 
of size 720×480, and each image in the sequence had 
its own focus. In Fig. 10, we show one set of multi- 
focus sequence images, in which there was more 
detailed information, and the difference between fo-
cus and defocus in Fig. 11 was not evident.  

4.4  Discussion 

In the experiments, both subjective and objective 
evaluations have been conducted to compare the 
performance of the proposed algorithm with those of 
others. From the subjective experiments, it can be 
seen that our algorithm accurately resisted the influ-
ence of the dynamic area and selected focus area. In  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comparative experiments, the CNN-based and the 
proposed algorithms performed the best compared to 
traditional fusion algorithms. The reason is that they 
are trained using massive focused and defocused 
image patches, which causes them to easily make 
high-quality focus maps. To make the comparison 
results more reliable, we ran 20 groups of test images. 
The results showed that the proposed algorithm  
performed the best on the four measures MI, Qe, QR, 
and VIFF. In summary, our algorithm has strong  
robustness. 

However, there are two limitations in the pro-
posed algorithm. The first is its long computation 
time, due to its many convolutional operations. Hence, 
the algorithm does not hold for highly real-time ap-
plications. The second is that FD-FCN tends to gen-
erate focus maps with isolated holes, so we need 
guided filtering to refine the maps. In future work, we  

Table 5  Quantitative evaluation of 20 sets of images 

Algorithm MI F
ABQ  Qe QR VIFF 

IMF 7.278 533 0.712 536 0.770 805 1.124 398 0.562 199 
DWT 6.729 714 0.697 489 0.767 407 1.087 096 0.543 548 
MWG 5.463 447 0.639 783 0.754 987 0.861 808 0.430 904 
NSCT 7.198 559 0.706 364 0.764 045 1.099 248 0.549 624 

GF 6.165 458 0.700 175 0.770 699 1.056 408 0.528 204 
CNN 7.118 305 0.702 635 0.768 084 1.122 336 0.561 168 

FD-FCN 7.291 804 0.712 533 0.771 495 1.130 398 0.562 352 
The best results are in bold 

Fig. 9  Results of pairwise comparisons of all image fusion algorithms: (a) MI; (b) F
ABQ ; (c) Qe; (d) QR; (e) VIFF 
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will resolve this problem by designing a multi-scale 
FD-FCN. Here, we discuss the threats to the validity 
of results from two perspectives: 

1. Internal validity: In the experiments, all the 
performance evaluation measures and the codes of 
comparative algorithms were directly or indirectly 
derived from their authors. The parameter settings in 
these codes were the defaults. All of them were run on 
the same computer. Hence, the experimental settings 
guaranteed the fairness of the results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2. External validity: We ran 20 groups of test 

images with various types. All of them were captured 
natural images rather than synthetic ones. Hence, they 
are applicable to other images. 

 
 

5  Conclusions 
 
In this paper, we have designed a fully convolu-

tional network, FD-FCN, which can be used for  

Fig. 10  The first set of multi-focus image sequence fusion “Cover”: (a) source images; (b) fused image; (c) reference 
image 

Fig. 11  The second set of multi-focus image sequence fusion “Circle”: (a) source images; (b) fused image; (c) reference 
image 
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multi-focus image fusion. The dataset used for train-
ing the network is designed by Gaussian blur, and the 
process is easy to follow. The clarity of each pixel in 
the source images is determined by our designed 
network. Then, by comparing the clarity of the cor-
responding pixel, we can obtain a clear image. Com-
bining the advantages of CNN with the reality of 
multi-focus image fusion, there are no problems of 
artificial threshold selection. We have conducted both 
subjective and objective evaluations to compare the 
performance of the proposed algorithm with those of 
six state-of-the-art algorithms. The quantitative 
evaluations of 20 sets of test images showed that the 
proposed algorithm is the best on the measures MI, Qe, 
QR, and VIFF. In addition, Demšar’s significance 
diagrams have been adopted to compare the perfor-
mances of the fusion algorithms, and experiments 
showed that the proposed algorithm outperforms the 
five traditional algorithms.  

In the future, we will design better-performing 
networks to obtain more accurate focus maps, or 
design a network that can directly generate higher- 
level results, such as direct output of fused images. 
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