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Abstract: Accurate acceleration acquisition is a critical issue in the robotic exoskeleton system, but it is difficult
to directly obtain the acceleration via the existing sensing systems. The existing algorithm-based acceleration
acquisition methods put more attention on finite-time convergence and disturbance suppression but ignore the
error constraint and initial state irrelevant techniques. To this end, a novel radical bias function neural network
(RBFNN) based fixed-time reconstruction scheme with error constraints is designed to realize high-performance
acceleration estimation. In this scheme, a novel exponential-type barrier Lyapunov function is proposed to handle
the error constraints. It also provides a unified and concise Lyapunov stability-proof template for constrained and
non-constrained systems. Moreover, a fractional power sliding mode control law is designed to realize fixed-time
convergence, where the convergence time is irrelevant to initial states or external disturbance, and depends only
on the chosen parameters. To further enhance observer robustness, an RBFNN with the adaptive weight matrix is
proposed to approximate and attenuate the completely unknown disturbances. Numerical simulation and human
subject experimental results validate the unique properties and practical robustness.

Key words: Acceleration reconstruction; Fixed-time convergence; Constrained control; Barrier Lyapunov
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1 Introduction

Wearable exoskeleton is a powered anthropo-
morphic electromechanical system for strength en-
hancement, load carrying, exercise rehabilitation,
and walking assistance (Xue et al., 2019). An in-
creasing number of people show a strong need for the
assistive robotic exoskeleton, e.g., walking assistance
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for elderly and disabled people with weakened skele-
tal muscles, load carrying for individual combat sys-
tems, and injury prevention for industrial workers
(Xue et al., 2018). Regarding walking assistance,
Kim J et al. (2018, 2019) developed an autonomous
and portable hip soft exosuit to augment human
walking and running, and experiments showed a re-
duced metabolic rate of walking by 9.3% and running
by 4.0%. Seo et al. (2018) proposed a robotic lower-
limb exoskeleton named GEMS-L to assist in walk-
ing and getting up. Chen Q et al. (2018) developed
a dynamic balance gait control algorithm for spinal
cord injury patients to stand and walk again. Zhang
et al. (2019) proposed a unified admittance shaping
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based assistive controller to reduce muscle activation
and increase agility. To achieve the optimal assis-
tive performance, Kang et al. (2019) explored the
relationship between the assistance magnitude and
the energetic cost benefits and found a U-shape
trend metabolic cost. He Y et al. (2019) proposed
a novel autonomous exoskeleton named Auto-LEE
to maintain balance and provide walking assistance
without extra support. As for the power amplifica-
tion exoskeleton, Long et al. (2018) developed a hy-
draulically actuated exoskeleton, where an intention-
driven control scheme was proposed to achieve hu-
man adaptive assistance. To improve the robustness
of hydraulic actuation, Chen S et al. (2017) proposed
a cascade force control strategy to address the non-
linear high-order dynamics and modeling uncertain-
ties. Kim H et al. (2017) developed a hydraulic lower
extremity exoskeleton and hybrid locomotion control
algorithms to enhance mobility. In recent years, ar-
tificial muscle has attracted a lot of attention for its
light weight, compactness, and high flexibility, and
it has been successfully applied in various wearable
equipment (Dong et al., 2018).

As a typical human-robot interaction system,
collaborative control is particularly important for
assisting as needed. In this category, both load-
carrying control, such as sensitivity amplification
control in BLEEX (Kazerooni et al., 2005; Zoss
et al., 2006), and active impedance control (Aguirre-
Ollinger et al., 2007), e.g., inertial, damping, and
stiffness compensation or integral impedance shap-
ing algorithms (Nagarajan et al., 2016), are heav-
ily dependent on acceleration signals. Moreover, ac-
celeration is directly correlated with the interaction
force with Newton’s second law and has the fastest
response to interaction dynamics. Consequently, mo-
tion intention estimation, based on the acceleration
observation, has been studied in Huo et al. (2016)
and Kuo et al. (2018), where the voluntary muscle
forces were evaluated via a complete kinetic model.
As a result, acceleration is extremely essential in dy-
namical modeling, assistance planning, and motion
intention estimation of exoskeleton systems. How-
ever, it cannot be directly measured from existing
commonly applied sensors (e.g., encoders or opti-
cal measurement systems). Furthermore, due to the
complex interaction disturbances and fast-changing
acceleration signals, accurate acceleration estimation
remains challenging.

Several methods have been investigated so far to
obtain the ideal differential signal from limited mea-
surements, and they can be roughly divided into two
categories: model-free and model-based approaches.
In the model-free scheme, the desired acceleration
is directly calculated from the measurable velocity
signal, where the state transition equations are not
necessary. Direct difference from velocity is the most
intuitive approach; however, it is quite sensitive to
measurement noise, especially to non-differentiable
noises. Acceleration reconstruction through a state
observer is an alternative approach. The Luenberger
state observer is a commonly applied differential ob-
server, where the estimation errors are injected into
the observer via linear feedback to ensure that the
constructed acceleration will approach the true sig-
nal (Luenberger, 1966). In this case, the desired
performance (e.g., convergence rate and noise sup-
pression) is balanced by zero-pole placement. To
further improve performance, an extended state ob-
server was introduced into this scheme to attenuate
the disturbance (Li et al., 2011). Higher observa-
tion accuracy is obtained because the convergence
rate and noise suppression are decoupled. The above
linear theory based observers guarantee only asymp-
totic convergence, which means that the observation
errors will converge to zero as time goes to infin-
ity. To obtain a higher convergence rate and better
disturbance rejection performance, a finite-time ob-
server such as Levant’s arbitrary order sliding mode
robust differentiator was proposed (Shtessel et al.,
2014), but the Lyapunov stability and exact conver-
gence time were not available. Regarding the kinetic
model-based scheme, several acceleration reconstruc-
tion approaches have been developed. According to
the cyclic feature of the quasi-cyclic signal in the ex-
oskeleton system, a real-time delayless estimation of
derivatives from noisy sensor signals was proposed
(Tanghe et al., 2018), where the original and the
derivative of the previous cycle were fed into a com-
plementary fusion filter as the virtual measurement.
In this approach, delayless acceleration was obtained
by fusing prior virtual and current measurements. In
the model-based finite-time observer category, a class
of sliding mode observers for the nonlinear system
have been first proposed to achieve finite-time con-
vergence (Tan et al., 2010). Different from linear ob-
servers, a nonlinear discontinuous switching control
was introduced to achieve finite-time convergence,
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whereas traditional observers can guarantee only
asymptotic convergence. In this framework, a ro-
bust finite-time velocity observer was proposed us-
ing homogeneous and Lyapunov theories, where the
external disturbance on estimation precision can be
suppressed to a relatively low level (He S and Lin,
2018). A full-order finite-time observer that uses
only output position feedback has been designed to
achieve finite-time tracking for robotic manipulators
(Abooee et al., 2017). A neural network and a fast-
integral terminal sliding mode based finite-time ve-
locity observer were developed to achieve higher es-
timation precision, where the neural network was
proposed to approximate and attenuate system un-
certainties, while the remaining disturbance was han-
dled with fast terminal sliding mode control (Yang
Y et al., 2017). A fixed-time velocity reconstruc-
tion scheme with state constraints was proposed in
Wang et al. (2019b), where full-state observation
errors were guaranteed within the prescribed con-
straints. A sliding mode observer was developed to
reconstruct the full states, where the reconstructed
signal can approximate the true value to any accu-
racy in the presence of structural uncertainties and
actuator faults (Xiao and Yin, 2016).

In summary, in the model-free scheme, the lin-
ear theory based observer can guarantee only asymp-
totic convergence, and the exact convergence time is
not available in Levant’s arbitrary order robust dif-
ferentiator observer. In contrast, model-based meth-
ods have more potential for faster convergence and
quantitative evaluation. However, the transient per-
formance of observation errors and fixed-time con-
vergence are still not guaranteed. In the above re-
search, the convergence time is highly dependent on
the initial states, and the observation error might ap-
pear to be largely an overshoot. Note that the initial
states are difficult to obtain due to the uncertainty of
the absolute attitude of the exoskeleton base, and the
initial acceleration calculated by the joint angle often
includes bias, which might result in distortion. More-
over, in the coupling system, the additional acceler-
ation by the human interaction force is completely
unmeasurable, which will lead to a sudden change of
initial acceleration. As a consequence, the inaccurate
states would definitely degrade the observer perfor-
mance and even cause instability. In addition, the
large overshoot on the acceleration estimation errors
may result in a completely wrong control output,

which will cause system damage or even threaten
human safety. Thus, the maximum estimation er-
rors must be limited in a reasonable region. These
drawbacks seriously limit the practical applications
of an acceleration observer. However, to the best
knowledge of the authors, the initial state irrelevant
and observation error constraint techniques in ac-
celeration observation have not been well explored,
which finally motivates this study.

To address these challenges, in this study we
present an adaptive fixed-time acceleration recon-
struction scheme with error constraints. The bases
of this scheme are the design of the exponential-
type barrier Lyapunov function (EBLF), the frac-
tional power sliding mode control law, and radi-
cal bias function neural networks (RBFNNs), which
are used to realize the error constraint, fixed-time
convergence, and disturbance rejection, respectively.
The main contributions are as follows:

1. We present a new EBLF to address the error
constraint issues and reveal the equivalence between
EBLF and the commonly used quadratic function
when there are no constraints. Different from the log-
type barrier Lyapunov function, EBLF is a more gen-
eral Lyapunov function that can also be applied in
a non-constraint system. Moreover, EBLF provides
an alternative barrier Lyapunov function design tem-
plate, where the stability proof is more concise.

2. An acceleration reconstruction scheme is de-
veloped to achieve high-performance observation.
Other methods can realize only disturbance sup-
pression and finite-time convergence, whereas this
study presents a more general solution to address
another two practical application problems. The
convergence time is irrelevant to the initial states
or disturbance, and dependent on only the chosen
parameters. Moreover, the observation errors are
strictly limited within the prescribed error bounds.

3. The proposed scheme provides high-precision
acceleration estimation in an actual exoskeleton sys-
tem, which will contribute to developing better
acceleration-dependent control algorithms. More-
over, fixed-time convergence and initial state irrel-
evance techniques enhance the practicality of the re-
construction algorithm, where no prior knowledge is
required in the form of perturbation or the initial
states. Furthermore, the error constraint provides
a specific quantitative index for the design of a safe
robotic exoskeleton controller.



708 Xue et al. / Front Inform Technol Electron Eng 2020 21(5):705-722

2 Problem formulation and preliminar-
ies

The problem is to let the reconstructed signal
track actual acceleration as accurately as possible
in the shortest time while maintaining internal sta-
bility. To be more specific, in the presence of in-
teraction disturbance and system uncertainties, an
acceleration reconstruction scheme is designed such
that (1) the acceleration reconstruction errors never
exceed the prescribed constraints and (2) the obser-
vation errors are guaranteed to converge in a fixed
time, which is completely independent of the initial
states and disturbances.

2.1 Exoskeleton platform

We have developed a powered hip assistive ex-
oskeleton (Fig. 1), which is composed of a hybrid
soft-rigid waist belt, a backpack with power supply,
driver boards and control modules, and two series
elastic actuators (SEA) connected with two links
down to the thigh. The exoskeleton has four de-
grees of freedom (DOF) aligned with the hip, where
two active joints are in the flexion-extension direc-
tion to provide active assistance, while the other two
passives are in the adduction-abduction direction for
walking agility. It can be seen that the actuation sys-
tem and joint DOF configuration of exoskeletons are
the same as those of traditional robots; thus, the ki-
netic model can be formed with traditional Newton-
Euler or Lagrange methods. The essential charac-
teristic of the robotic exoskeleton is the human-in-
the-loop model, where the exoskeleton dynamics can
not only be affected by internal disturbances from
the driving system but also strongly disturbed by
unpredictable ever-changing body movements.

Control pack and battery
Passive joint
adduction/abduction

Powered joint
flexion/extension

Thigh frame

Thigh bandage

Fig. 1 Prototype of the developed hip assistive
exoskeleton

2.2 Exoskeleton dynamics

Consider an n-DOF robotic exoskeleton system,
in which the kinetic model can be expressed as

H(q)q̈ +C(q, q̇)q̇ +G(q) = τ̄ + δ̄(q, q̇), (1)

where q ∈ R
n×1, q̇ ∈ R

n×1, and q̈ ∈ R
n×1 represent

the vectors of joint positions, velocities, and acceler-
ations, respectively. H(q) ∈ R

n×n is the positive-
definite inertial matrix, while C(q, q̇) ∈ R

n×n de-
notes the Coriolis and centrifugal matrix. G(q) ∈
R

n×1 stands for the gravity term and τ̄ ∈ R
n×1 is the

force applied to the exoskeleton joints. δ̄(q, q̇) repre-
sents the unknown lumped disturbance, which con-
sists of external disturbance, internal disturbance,
and modeling uncertainties. τ̄ and δ̄ are assumed to
be continuous. If we take the first derivative of both
sides of Eq. (1), we have

Ḣq̈ +H
...
q + Ċq̇ +Cq̈ + Ġ = τ + δ, (2)

where τ and δ are the time derivatives of τ̄ and δ̄,
respectively. The disturbance δ is assumed to be
continuous and depends only on the velocity and ac-
celeration. A similar assumption was made in Wang
et al. (2019a).

2.3 Preliminaries

Property 1 H is uniformly symmetric positive-
definite with lower and upper bounds (Yang ZY
et al., 2017):

0 < λHI < H(q) < λ̄HI < +∞. (3)

Property 2 Ḣ +C is uniformly positive-definite
and there exist positive upper and lower bounds such
that

0 < λHCI < Ḣ(q, q̇) < λ̄HCI < +∞. (4)

Property 3 Similar to Wang et al. (2018), we
assume that the nonlinear function Ċ(q̇, q̈)q̇ is Lip-
schitz and there exists a positive scalar c such that

‖Ċ(q̇, ˆ̈q)−C(q̇, q̈)‖ ≤ c‖ˆ̈q − q̈‖, (5)

where ˆ̈q denotes the estimate of the vector of joint
accelerations.
Lemma 1 Consider the following differential sys-
tem (Polyakov, 2011; Zhu et al., 2011):

ẋ = f(x), x(0) ∈ R
n×1, x ∈ U\{0}, (6)
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where U denotes the whole vector set of real
numbers.

Suppose that there exists a positive continuous-
differential function V (x) : U → R+ such that

V̇ (x) ≤ −(αV p(x) + βV q(x))k + φ,

where α, β, φ > 0, 0 < pk < 1, qk > 1. Then the
system is fixed-time stable. The settling time T and
convergence region D can be obtained as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T ≤ 1

αkζk(1− pk)
+

1

βkζk(qk − 1)
,

D = { lim
t→T

x|V (x) < M},

M = min

(

α− 1
p

(
φ

1− ζk

) 1
kp

, β− 1
q

(
φ

1− ζk

) 1
kq

)

,

(7)
where ζ is a positive scalar, 0 < ζ ≤ 1.
Remark 1 It can be seen from Eq. (7) that the
settling time has no initial state terms, indicating
that the system is fixed-time stable and independent
of the initial states. Moreover, because D is directly
related to α and β, the convergence region can be
arbitrarily small with properly selected parameters.
Lemma 2 The following inequality holds with
a1, a2, . . . , an ≥ 0 and c > 0:

(a1+a2+. . .+an)
c ≤max(nc−1, 1)·(ac1+ac2+. . .+acn).

(8)
Lemma 3 The inequality (|x1|+|x2|+. . .+|xn|)p ≤
|x1|p + |x2|p + . . .+ |xn|p holds for xi ∈ R, where p

is a real number satisfying 0 < p ≤ 1.
Lemma 4 With the universal approximation prop-
erty of neural networks (NNs), there exists an NN
for any continuous function f(X) such that (Fei and
Ding, 2012; Hua et al., 2013)

f(X) = (W ∗)Tϕ(X) + ε∗, ||ε∗|| ≤ εN , (9)

where ϕ(X) is the RBF vector function, W ∗ de-
notes the optimal weight matrix, ε∗ represents the
approximation error, and εN is the upper bound of
ε∗.

2.4 Exponential-type barrier Lyapunov func-
tion

A novel EBLF is designed as

Ψ(l, z) = l2
(

exp
zTz

l2 − zTz
− 1

)

, (10)

where z = [z1, z2, . . . , zn]
T denotes the state vari-

ables to be constrained and l(t) ∈ R+ is the pre-
defined continuous-differentiable constraint function
(abbreviated as l in this study). The proposed EBLF
has the following properties:

1. Suppose the state variables are bounded with
the predefined constraint. With ex − 1 ≥ x and
x ≥ 0, one has

Ψ(l, z) ≥ l2
zTz

l2 − zTz
≥ 0, (11)

which implies that the designed function is positive
when the state belongs to the set {z|‖z‖ ≤ l, z ∈
U\{0}}.

2. The proposed EBLF will approach infinity
when the state variables get close to the predefined
boundary:

lim
||z||→l

Ψ(l, z) = +∞. (12)

3. When there is no constraint on the state
variable z, i.e., l → ∞, EBLF has the form by using
L’Hopital’s rule:

lim
l→∞

Ψ(l, z) = zTz. (13)

Remark 2 It can be seen that EBLF will de-
grade into a quadratic term when l → ∞, which im-
plies that it is still an applicable Lyapunov function
when there is no constraint. Because the traditional
log-type barrier Lyapunov function will approach in-
finity when l → ∞, it can be applied only in the
constrained situation.

3 Acceleration reconstruction scheme
design

The schematic of the proposed NN-based fixed-
time acceleration reconstruction scheme is presented
in Fig. 2. To obtain an ideal acceleration esti-
mate, the fractional power sliding mode control law
is first designed to achieve fixed-time convergence,
where the feedback gains are tuned to guarantee
constrained observation errors. Regarding the dis-
turbances, an RBFNN with the adaptive weight ma-
trix law is further proposed to approximate and at-
tenuate most disturbances, while the remaining per-
turbation is left to the sliding mode control law to
suppress. The detailed explanations are as follows.
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Weight matrix W 

Input τ 

Disturbance δ 

Exoskeleton dynamics 
given by Eq. (15)

Observer dynamics 
given by Eq. (16)

Fractional power
sliding mode
control law

Acceleration reconstruction scheme

Adaptive law
given by Eq. (23)

Sensing
system
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Robotic exoskeleton system

ˆ&q ˆ&&q

Fig. 2 Schematic of the proposed fixed-time acceler-
ation reconstruction scheme

3.1 Coordination transformation

First, let x1 = q̇ and x̄2 = q̈. Then the dynam-
ical model of robotic exoskeleton can be rewritten
as
⎧
⎪⎨

⎪⎩

ẋ1 =x̄2,

˙̄x2 =−H−1Ḣq̈ −H−1Ċq̇ −H−1Cq̈

−H−1Ġ+H−1τ +H−1δ.

(14)

Let x2 = x̄2 − Tx1, where T is the positive-
definite coordination transformation matrix. Then
Eq. (14) has the form
⎧
⎪⎨

⎪⎩

ẋ1 =x2 + Tx1,

ẋ2 =−H−1Ḣq̈ −H−1Ċq̇ −H−1Cq̈

−H−1Ġ+H−1τ +H−1δ − T 2x1 − Tx2.

(15)
Remark 3 In linear differential equations, the
coefficient matrix governs the performance and sta-
bility of the system. With the added transformation
term T , we have more selectable control variables in
the governing matrix, which leaves more degrees for
controller design.

3.2 Finite-time acceleration observer design

The acceleration observer is designed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1 =x̂2 + T x̂1 −K1x̃1 − v1,

˙̂x2 =−H−1(Ḣ +C)ˆ̈q −H−1Ċq̇

−H−1(Ġ− τ̇ ) +H−1δ(q̇, ˆ̈q)− T 2x̂1

− T x̂2 −K2x̃1 − v2 − α4sign(x̃1),

sig(ξ)α=
[
|ξ1|αsign(ξ1), |ξ2|αsign(ξ2), . . . ,

|ξn|αsign(ξn)
]
,

ξ =[ξ1, ξ2, . . . , ξn]
T,

(16)

where v1 = α1sigr1(x̃1), v2 = α2sigr2(v1) +

α3sigr3(v1), and αi > 0 (i = 1, 2, 3, 4) are the feed-
back gains. r1 > 1, r2 > 0, and r3 > 0 satisfy the
following inequalities 0 < r1r2 < 1 and r1r3 > 1.
x̂1, x̂2, and ˆ̈q are the estimates of x1,x2, and q̈, re-
spectively. K1 = diag(k11, k12, . . . , k1n) and K2 =

diag(k21, k22, . . . , k2n) are positive-definite diagonal
matrices such that A is Hurwitz.

A =

[
T −K1 I

−(T 2 +K2) −T

]

. (17)

Combining Eq. (16) with Eq. (15), the error dy-
namics can be obtained as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̃x1 =(T −K1)x̃1 + x̃2 − v1,

˙̃x2 =− (T 2 +K2)x̃1 − T x̃2

−H−1(Ḣ +C)(ˆ̈q − q̈)−H−1( ˆ̇C − Ċ)q̇

+ (Q̂−Q)− v2 − α4sign(x̃1),

(18)

where Q̂ = H−1δ̂ and Q = H−1δ. Joint position
q and velocity q̇ are available in this study, and the
disturbance term Q is approximated with RBFNNs,

Q̂ = ŴTϕ(q̇, ˆ̈q). (19)

With Lemma 4, the approximation error can be
further derived:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q̃ = W̃ϕ(q̇, ˆ̈q) +N − ε∗,

Q̃ = Q̂−Q,

N = (W ∗)Tϕ(q̇, ˆ̈q)− (W ∗)Tϕ(q̇, q̈),

W̃ = Ŵ −W .

(20)

Define new matrices as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ =

[
0

−H−1(Ḣ +C)(ˆ̈q−q̈)−H−1( ˆ̇C − Ċ)q̇

]

,

Γ =

[
0

Q̂−Q

]

,

Λ =

[ −v1

−v2 − α4sign(x̃1)

]

.

(21)
Then, the error dynamics can be further simpli-

fied as
˙̃x = Ax̃+Φ+ Γ +Λ. (22)

Theorem 1 For the acceleration observer error
system (16), choose the adaptive parameter laws for
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RBFNNs as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ŵ =
l2b

l2b −R2
1

e
R2

1
l2
b
−R2

1 (ηϕ(q̇, ˆ̈q)q̇T − ηπ),

π̇ =
dϕ
(
q̇, ˆ̈q

)

dt
q̇T +ϕ(q̇, ˆ̈q)(x̂2 + T q̇)T,

(23)

where η ∈ R
q×n is a positive-definite diagonal filter

coefficient matrix, lb is the upper bound of x̃2, and
R1 is the radius of the attraction region for observa-
tion errors. If the following conditions hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PA+ATP +
ε1ε2

ε1 + ε2
PP < 0,

−λmax

(

T +H−1(Ḣ+C)− 1

ε2
I

)

− 1

λH

−ε2b
2>0,

− λmax(T −K1) ≥ c7l
2
a + c10‖x̃1‖2
‖x̃1‖2 + ε0

,

α1 ≥ R1,

α2 ≥ c14l
2
b + c15‖x̃2‖r2+1

‖x̃2‖r2+1 + ε0
,

α4 ≥ εN ,

(24)
the acceleration estimation error will converge in
fixed time with the prescribed constraints. The defi-
nitions of P , ε0, ε1, ε2, c7, c10, c14, c15, la, and b will
be discussed in Section 4.

4 Stability analysis

The proof of finite-time stability is divided into
three steps. First, a traditional quadratic-type Lya-
punov function is chosen to prove that the error will
converge into a rough domain asymptotically. Then,
with the results of step 1, EBLF is constructed to
demonstrate the fixed-time stability of x̃1. Based on
the results of steps 1 and 2, EBLF is again used in
step 3 to address the convergence performance (e.g.,
fixed-time convergence, initial state irrelevance, and
prescribed error constraints) of acceleration recon-
struction errors x̃2.

Step 1: Choose the candidate Lyapunov func-
tion as

V1 = x̃TPx̃+ tr(W̃P2W̃
T(ηT)−1), (25)

where tr() represents the trace of a given matrix,
P = diag(P1,P2), P1 = diag(p11, p12, . . . , p1n), and
P2 = diag(p21, p22, . . . , p2n). Differentiating V1 with

respect to time gives

V̇1 =x̃T(PA+ATP )x̃+ 2x̃TPΦ+ 2x̃TPΓ

+ 2x̃TPΛ+ 2tr
(

W̃P2
˙̃
W

T

(ηT)−1

)

. (26)

With the Young inequality, one has

2x̃TPΦ

≤ 1

ε1
x̃TP 2x̃+ ε1Φ

TΦ

≤ 1

ε1
x̃TP 2x̃+ ε1

∣
∣
∣

∣
∣
∣H−1(Ḣ +C)(ˆ̈q − q̈)

−H−1( ˆ̇C − Ċ)q̇
∣
∣
∣

∣
∣
∣
2

, (27)

where ε1 is a positive scalar. It can be further scaled
as follows with Properties 1–3:

2x̃TPΦ

≤ 1

ε1
x̃TP 2x̃+ ε1

λ̄2
HC

λ2
H

||x̃2 + T x̃1||2

+ ε1
c2

λ2
H

||x̃2 + T x̃1||2 + 2ε1c
λ̄HC

λ2
H

||x̃2 + T x̃1||2

≤ 1

ε1
x̃TP 2x̃+ c1||x̃||2, (28)

where c1 = ε1
(λ̄HC + c)2

λ2
H

(λmax(T ) + 1)2. According

to Lemma 4, it can be easily found that there exists
a positive scalar b such that

||N || =
∥
∥
∥(W ∗)Tϕ

(
q̇, ˆ̈q

)
− (W ∗)T ϕ (q̇, q̈)

∥
∥
∥

≤ b||ˆ̈q − q̈|| ≤ b||x̃2 + T x̃1||. (29)

The above inequality leads to

2x̃TPΓ = 2x̃2P2

(
W̃Tϕ

(
q̇, ˆ̈q

)
+N − ε∗

)

≤2x̃T
2 P2W̃

Tϕ
(
q̇, ˆ̈q

)
+

1

ε2
x̃TP 2

2 x̃

+ c2||x̃||2 + c3||x̃||, (30)

where c2 = ε2b
2 (λmax (T ) + 1)2, c3 = 2λmax(P2)εN ,

and ε2 is a positive scalar. Note that the control
term can be scaled as

2x̃TPΛ = −2x̃TP

[
v1

v2 + α4sign (x̃1)

]

≤ 2
(
‖x̃T

1 P1v1‖+‖x̃T
2P2v2‖+α4‖x̃T

2P2sign (x̃1)‖
)

≤ c4||x̃||, (31)
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where c4 =
∑n

i=1

(
α1p1i

√|x̃1i|2r1 + α2α
r2
1 p2i·

√|x̃1i|2r1r2 + α3α
r3
1 p2i

√|x̃1i|2r1r3 + α4

∑n
i=1 p2i

)
.

With the adaptive law (23) for the weight matrix
of RBFNNs, it can be obtained that

2tr
(

W̃P2
˙̃
W

T

(ηT)−1

)

= 2tr
(

W̃P2
˙̂
W

T
)

≤ −2x̃T
2P2W̃

Tϕ(q̇, ˆ̈q). (32)

Substituting inequalities (28) and (30)–(32) into
Eq. (26), one has

V̇1 ≤x̃T

(

PA+ATP +
ε1 + ε2
ε1ε2

PP

)

x̃

+ (c1 + c2)||x̃||2 + (c3 + c4)||x̃||
≤ − ‖x̃‖

(
(c6 − c1 − c2)‖x̃‖ − (c3 + c4)

)
, (33)

where c6 = −λmax

(

PA+ATP +
ε1 + ε2
ε1ε2

PP

)

. It

can be seen that inequality (33) is a quadratic term,
meaning that there exists a region Ω1 : {‖x̃‖∣∣‖x̃‖ ≤
R1}, where

R1 =
c3 + c4

c6 − c1 − c2
. (34)

Remark 4 It can be seen that once the error vector
is out of the radius (i.e., x̃ /∈ Ω1), then V̇1 < 0 and
it will asymptotically force the error variable conver-
gence into the domain Ω1. This implies that Ω1 is an
attraction region for observation errors. Note that
the convergence radius is not constant, but related
to the states and control parameters, and the radius
R1 will decrease with decreasing errors.

Step 2: Consider a new EBLF for x̃1 as

V2 = Ψ(la, x̃1) = l2a

(

exp

(
x̃T
1 x̃1

l2a − x̃T
1 x̃1

)

− 1

)

.

(35)
Differentiating V2 along the system trajectory

gives

V̇2 = 2lal̇a (e
γa − 1− γaγ̄ae

γa) + 2γ̄2
ae

γax̃T
1
˙̃x1, (36)

where γa =
x̃T
1 x̃1

l2a − x̃T
1 x̃1

, γ̄a =
l2a

l2a − x̃T
1 x̃1

, and la is

the predefined time varying error constraint func-
tion. In the case of l̇a > 0, one has

2lal̇a (e
γa − 1− γaγ̄ae

γa) ≤ 2la l̇ae
γa . (37)

When l̇a < 0, it can be derived that

−2la(−l̇a)(e
γa − 1− γaγ̄ae

γa) ≤ 2la(−l̇a)γ̄
2
ae

γa .

(38)

Combining inequalities (37) and (38) gives

2la l̇a (e
γa − 1− γaγ̄ae

γa) ≤ 2c7l
2
aγ̄

2
ae

γa , (39)

where c7 = sup
(√

|l̇a|2/l2a
)

is the settable param-

eter, which is the upper bound of |l̇a/la|. With
Lemma 3, the following inequality holds:

−x̃T
1 v1 ≤− α1

(
|x̃11|2·

r1+1
2 + |x̃12|2·

r1+1
2 + . . .

+ |x̃1n|2·
r1+1

2

)

≤− α1||x̃1||r1+1. (40)

Combining the dynamics of x̃1 and inequal-
ity (40) gives

2γ̄2
ae

γax̃T
1
˙̃x1

≤2γ̄2
ae

γax̃T
1 ((T −K1) x̃1 + x̃2 − v1)

≤−2c8γ̄
2
ae

γa ||x̃1||2+2γ̄2
ae

γa
(||x̃1||||x̃2||−α1||x̃1||r1+1

)
,

(41)

where c8 = −λmax(T −K1). From step 1, it can be
seen that

‖x̃2‖ ≤ ‖x̃‖ ≤ R1. (42)

Meanwhile, note that ‖x̃2‖r1+1 ≥ ‖x̃2‖. Let
α1 = c9 + R1, where c9 is the positive gain. Substi-
tuting α1 into inequality (41) gives

2γ̄2
ae

γa x̃T
1
˙̃x1 ≤− 2c8γ̄

2
ae

γa ||x̃1||2
− 2c9γ̄

2
ae

γa ||x̃1||r1+1. (43)

Substituting inequalities (43) and (39) into Eq. (36),
one has

V̇2 ≤ 2γ̄2
ae

γa
(
c7l

2
a − c8||x̃1||2 − c9||x̃1||r1+1

)
. (44)

Letting c8 ≥ c7l
2
a + c10||x̃1||2
||x̃1||2 + ε0

, where ε0 is a

small positive scalar to avoid singularity and c10 is
the positive feedback gain, Eq. (44) can be further
deduced as

V̇2 ≤− 2c10γ̄
2
ae

γa ||x̃1||2 − 2c9γ̄
2
ae

γa ||x̃1||r1+1

≤− 2c10(V2)
1/2

(
γa

γa + 1

)1/2

− 2c9e
γa(1−r1)

2 V
(1+r1)

2
2

(
γa

γa + 1

) (1+r1)
2

. (45)
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To demonstrate fixed-time convergence, two
new sets are defined as

{
Ω2 : {||x̃1||

∣
∣||x̃1|| ≤ la},

Ω3 : {‖x̃1‖
∣
∣‖x̃1‖ ≤

√
k1la},

(46)

where 0 ≤ k1 ≤ 1 is the defined auxiliary variable
named the contraction factor. When the error state
‖x̃1‖ ∈ Ω2 \Ω3, it can be obtained that

γa ≥ k1
1− k1

,
γa

γa + 1
≥ k1. (47)

Thus, inequality (45) can be further simplified
as

V̇2 ≤ −2c10k
1
2
1 V

1
2
2 − 2c9k

r1+1
2

1 e
γa(1−r1)

2 V
r1+1

2
2 . (48)

It can be seen that the derivative of the Lya-
punov function remains negative when ‖x̃1‖ ∈ Ω2 \
Ω3, which indicates that the error ‖x̃1‖ will de-
crease asymptotically when x̃1 is out of Ω3. Mean-
while, with the fixed-time convergence property of
Lemma 1, the velocity estimation error ‖x̃1‖ will be
driven to the boundary of Ω3 and Ω2 in T1, where Ω3

is a small vicinity of x̃1 = 0 with properly selected
k1. Moreover, the attraction region Ω3 is continu-
ously shrinking with the decreasing k1 and will even-
tually approach zero in T2. The convergence time T1

is represented as

T1 ≤ 2

c11ζ
+

2

c12ζ(r1 − 1)
, (49)

where c11 = 2c10k
1
2
1 and c12 = 2c9k

(r1+1)/2
1 e

γa(1−r1)
2

are positive scalars and 0 < ζ < 1.
Remark 5 Note thatΩ1 in step 1 is only a rough at-
traction region of asymptotical stability. To achieve
higher estimation accuracy, we further reduce the er-
ror domain to Ω3 by incorporating EBLF with the
contraction factor. Note that Ω3 is an attraction
region for velocity estimation error x̃1 and the area
size is directly related to the contraction factor k1.
Moreover, the contraction factor k1 decreases with
decreasing x̃1, and eventually drives the error to
zero in T2. Therefore, the total convergence time
Ts1 includes state vector convergence time T1 and
attraction region contraction time T2.

Step 3: This part presents the proof of fixed-
time convergence of x̃2 with prescribed constraint lb.
Choose the candidate EBLF as follows:

V3 = Ψ(lb, x̃2) + tr(W̃W̃T(ηT)−1). (50)

Taking the first derivative of V3 with respect to
time gives

V̇3 ≤2lb l̇b (e
γb − 1− γbγ̄be

γb) + 2γ̄2
b e

γb x̃T
2
˙̃x2

+ 2tr
(
W̃T ˙̃

W
(
ηT
)−1
)
, (51)

where γb =
x̃T
2 x̃2

l2b − x̃T
2 x̃2

and γ̄b =
l2b

l2b − x̃T
2 x̃2

. The

first term 2lbl̇b(e
γb − 1 − γbγ̄be

γb) can be scaled as
follows with the same analysis in step 2:

2lb l̇b(e
γb − 1− γbγ̄be

γb) ≤ 2c14l
2
b γ̄

2
b e

γb , (52)

where c14 =
√

|l̇b|2
|lb|2 is the selectable variable. Note

that from step 2, one can obtain x̃1 = 0 and ˙̃x1 = 0

when t > T1 + T2, which further results in

x̃2 = v. (53)

Substituting the above equation into the term
x̃T
2
˙̃x2, one has

x̃T
2
˙̃x2 = −x̃T

2 T x̃2 − x̃T
2 H

−1
(
Ḣ +C

)
x̃2

− x̃T
2 H

−1
(
ˆ̇C − Ċ

)
q̇ − x̃T

2 (Q̂−Q)− x̃T
2 v2. (54)

Note that

− x̃T
2 H

−1
(
ˆ̇C − Ċ

)
q̇ ≤ 1

λH

||x̃2||2. (55)

With the Young inequality and Eq. (20), one
has

x̃T
2 (Q̂−Q) = x̃T

2 (W̃
Tϕ(q̇, ˆ̈q) +N − ε∗)

≤x̃T
2 W̃

Tϕ
(
q̇, ˆ̈q

)
+

1

ε2
x̃T
2 x̃2+ε2b

2||x̃2||2+εN ||x̃2||.
(56)

Similar to the analysis in inequality (40), it can
be obtained that

−x̃T
2 v2 = −α2x̃

T
2 sig (v1)

r2 − α3x̃
T
2 sig (v1)

r3

≤ −α2||x̃2||r2+1 − α3||x̃2||r3+1. (57)

Combining inequalities (55)–(57) with Eq. (54)
leads to

x̃T
2
˙̃x2≤−

(

c13 − 1

λH

− ε2b
2

)

||x̃2||2− α2||x̃2||r2+1

−α3||x̃2||r3+1+εN ||x̃2||+x̃T
2 W̃

Tϕ(q̇, ˆ̈q)−α4‖x̃2‖,
(58)
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where c13 = −λmax

(

T +H−1(Ḣ +C)− 1

ε2
I

)

.

Since T is the chosen transformation matrix, c13 −
1
λH

− ε2b
2 > 0 can be guaranteed with properly se-

lected parameters and it further leads to

x̃T
2
˙̃x2≤− α2||x̃2||r2+1−α3||x̃2||r3+1+εN ||x̃2||

− α4‖x̃2‖+ x̃T
2 W̃

Tϕ
(
q̇, ˆ̈q

)
, (59)

where α2, α3, and α4 are the optional feedback gains

satisfying α2 ≥ c14l
2
b + c15||x̃2||r2+1

||x̃2||r2+1 + ε0
and α4 ≥ εN .

Substituting inequalities (52) and (59) into in-
equality (51) gives

V̇3 ≤ −2c15γ̄
2
b e

γb ||x̃2||r2+1 − 2c16γ̄
2
b e

γb ||x̃2||r3+1

+ 2γ̄2
b e

γb x̃T
2 W̃

Tϕ(q̇, ˆ̈q)+2tr(W̃T ˙̃
W (ηT)−1), (60)

where c15 and c16 = α3 are positive scalars. From
step 1, one can obtain

‖x̃2‖2 ≤ ‖x̃‖2 ≤ R1. (61)

Together with the adaptive law for the weight
matrix of RBFNNs, one has

2γ̄2
b e

γb x̃T
2 W̃

Tϕ(q̇, ˆ̈q) + 2tr(W̃T ˙̃
W (ηT)−1)

≤2γ̄2
b e

γb x̃T
2 W̃

Tϕ(q̇, ˆ̈q)− 2γ̄2
b e

γbx̃T
2 W̃

Tϕ(q̇, ˆ̈q)

≤0. (62)

Thus, inequality (60) can be further deduced as

V̇3 ≤− 2c15γ̄
2
b e

γb ||x̃2||r2+1 − 2c16γ̄
2
b e

γb ||x̃2||r3+1

≤− 2c15
(
l2b (e

γb − 1)
) r2+1

2

(
γb

γb + 1

) r2+1
2

− 2c16e
γb(1−r3)

2

(
l2b (e

γb − 1)
) r3+1

2

(
γb

γb + 1

) r3+1
2

.

(63)

Similar to step 2, two new sets are defined as
follows to prove the error convergence:

{
Ω4 = {‖x̃2‖

∣
∣‖x̃2‖ ≤ lb},

Ω5 = {‖x̃2‖
∣
∣‖x̃2‖ ≤

√
k2lb},

(64)

where 0 < k2 ≤ 1 is the contraction factor and the
definitions lead to

V̇3 ≤− 2c15Ψ (lb, x̃2)
r2+1

2 k
r2+1

2
2

− 2c17Ψ (lb, x̃2)
r3+1

2 k
r3+1

2
2

≤− c18V
r2+1

2
3 − c19V

r3+1
2

3 , (65)

where c17 = c16 inf
(
e

γb(1−r3)

2

)
, c18 = 2c15k

r2+1

2
2 , and

c19 = 2c17k
r3+1

2
2 .

With Lemma 1, it can be obtained that the es-
timation error x̃2 will approach the boundary of Ω4

and Ω5 within fixed time T3 under the prescribed
constraint lb.

T3 ≤ 2

c18ζ(1 − r2)
+

2

c19ζ(r3 − 1)
. (66)

Moreover, by decreasing the chosen contraction
factor k2, the vicinity Ω5 is further reduced and
eventually approaches zero in T4. This implies that
the acceleration estimation error trajectory x̃2 will
shrink from Ω1 to Ω5 in finite time Ts2 = T3 + T4.
Therefore, the total settling time of the proposed
observer is Tob = Ts1 + Ts2.
Remark 6 The initial states for the robotic ex-
oskeleton are not always available, especially when
interacting with human limbs. Note that the to-
tal convergence time in the proposed observer is ir-
relevant to the initial states, which relaxes the re-
quirements in the conventional finite-time observer.
Moreover, the lumped disturbance is assumed to
be completely unknown without any assumptions
in this study, which is more general and robust
in practice. Furthermore, by combining the pro-
posed exponential-type Lyapunov function with the
contraction factor, the acceleration estimation ac-
curacy, fixed-time convergence, initial state irrele-
vance, and error-constrained control can be guaran-
teed simultaneously.

5 Simulation and experimental results

5.1 Simulation

Compared with traditional multi-link robots,
the essential characteristic of the robotic exoskeleton
is the human-in-the-loop model, where the robotic
machine is directly coupled with the human body.
The exoskeleton dynamics can not only be affected
by the internal disturbances from the driving sys-
tem, but also strongly disturbed by the unpre-
dictable ever-changing body movements. Therefore,
we adopt the same two-link robot dynamics, but cou-
ple with a strong disturbance as the exoskeleton plat-
form. The proposed acceleration observer scheme is
implemented for each joint with nine different initial
state values to validate its unique properties, i.e.,
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fixed-time convergence and constrained observation
errors. The parameters of the robots are listed in
Table 1. The simulated human-exoskeleton interac-
tion disturbance is assumed to be related to the joint
angular velocity and acceleration, which is a rela-
tively huge disturbance for the robot dynamics. It is
denoted as

δ(q̇, q̈) = 0.3q̇ + 0.15q̈, (67)

where q̇ = [q̇1, q̇2] and q̈ = [q̈1, q̈2].

Table 1 Parameters of the robotic exoskeleton

Parameter
Value

Link 1 Link 2

Length of link (m) 1 1
Weight of link (kg) 1 1
Center-of-gravity position of link (m) 0.5 0.5

The two-link robotic system is initially set at
a static level as shown in Fig. 3, and it will fall
free under gravity effects. In this process, a simple
damping controller, i.e., τ = −0.5q̇, is applied to the
joints to simulate the rotation friction. The param-
eters of the proposed observer are listed in Table 2.
To confirm fixed-time convergence and initial state
independence, nine cases of initial state values are
selected as Eq. (68), which are uniformly distributed
around the ground truth.

ˆ̈q(0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[−19, 39.2]T , case 1,

[−16.5, 41.7]
T
, case 2,

...

[−29, 29.2]T , case 9.

(68)

Figs. 4 and 5 show the velocity and accelera-
tion observation tracking performance under the nine
cases, respectively. It can be seen that observed ve-
locities and accelerations show a rapid convergence

Link 1

g g

Link 2

Fig. 3 Schematic diagram of the simulation
environment

Table 2 Parameters of the acceleration observer in
simulation

Parameter Value

la 0.2
lb 40
r1 1.2
r2 0.3
r3 1.2
α1 100
α2 2
α3 2
α4 10
K1 diag(20,50)
K2 diag(20,50)
T diag(0.01,0.01)
η diag(0.05,0.05)
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Fig. 4 Trajectories of observed and actual velocities:
(a) observed velocity ˆ̇q1 and actual velocity q̇1; (b)
observed velocity ˆ̇q2 and actual velocity q̇2
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Fig. 5 Trajectories of observed and actual accelera-
tions: (a) observed acceleration ˆ̈q1 and actual accel-
eration q̈1; (b) observed acceleration ˆ̈q2 and actual
acceleration q̈2

rate at initial time and are fully capable of tracking
time-varying trajectories thereafter. In particular,
all the trajectories achieve complete tracking in the
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same fixed time. Figs. 6 and 7 show the observation
errors of joint velocity and acceleration, respectively.
It can be seen that these error trajectories are dif-
ferent at the starting time, where more deviation of
initial states will induce larger overshoots; however,
they all converge to zero at the same time. The
red dotted lines in Figs. 6 and 7 are the predefined
bounds for observation errors, and it can be seen that
the observation velocity errors never exceed the pre-
defined constraints even in the convergent transient
process, which further illustrates the effectiveness of
the state constraint of the proposed EBLF.

Fig. 8 shows the disturbance approximation per-
formance via RBFNNs. It can be seen that the de-
signed RBFNNs with adaptive laws are capable of
estimating most parts of the disturbance. Although
RBFNNs cannot guarantee perfect estimation and
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there still exist some errors, especially at the spike
points, the errors are quite small compared with raw
disturbance and limited within a fixed range from
Fig. 9. In the proposed scheme, the sliding mode con-
trol law can totally suppress these uncompensated
parts.

The above simulation results verify the unique
properties (i.e., fixed-time convergence, initial state
irrelevance, high accuracy, and perfect disturbance
suppression) of the proposed algorithm preliminar-
ily. Also, the acceleration reconstruction performs
as expected from these figures in terms of both the

0 1 2 3 4 5
Time (s)

0 1 2 3 4 5
Time (s)

D
is

tu
rb

an
ce

 δ
2  

D
is

tu
rb

an
ce

 δ
1  

δ2

δ1

δ2

›

δ1

›

−10

−10

10

−5

0

0

5

10

20

(a)

(b)

Fig. 8 Disturbance estimation performance via
RBFNNs: (a) disturbance estimation of δ1; (b) dis-
turbance estimation of δ2

Time (s)
0 1 2 3 4 5

Time (s)
0 1 2 3 4 5

−10

−5

0

5

10

Es
tim

at
io

n 
er

ro
r

−5

0

5(a)

(b)

Es
tim

at
io

n 
er

ro
r

Fig. 9 Disturbance estimation errors via RBFNNs:
(a) disturbance estimation error of δ1; (b) disturbance
estimation error of δ2



Xue et al. / Front Inform Technol Electron Eng 2020 21(5):705-722 717

static and dynamic accuracies. However, the sys-
tem is continuous and the model is accurate in the
simulation environment, which is impossible in the
physical exoskeleton platform. Therefore, it has to
be tested further in physical experiments to validate
the properties and robustness.

5.2 Experiments

As shown in Fig. 1, the developed hip exoskele-
ton has one active degree for each leg, which provides
flexion and extension forces around the hip to realize
movement assistance. In this system, the angular
position and velocity of the joint can be easily and
directly obtained from the encoder but the acceler-
ation remains unknown. In this part, we use the
proposed algorithm to reconstruct the unmeasurable
acceleration signal from existing information.

A healthy human subject was recruited to carry
out an acceleration reconstruction experiment with
the developed hip assistance exoskeleton. To make
the results convincing, nine cases of initial state val-
ues and different activities of daily living, including
squatting and level walking, were considered in this
experiment. In these test cases, the walking motion
is more dynamic, while squatting is more static; these
two scenarios are used to demonstrate the static-
dynamic performance of acceleration estimation. In
addition, the quantitative comparison results with
linear differential observers are presented to further
demonstrate the superiority of the proposed scheme.
The parameters of the proposed scheme are listed in
Table 3.

Similar to the simulation, nine cases of uni-
formly distributed initial state values are selected

Table 3 Parameters of the acceleration observer in
experiments

Parameter Value

la 0.3
lb 40
r1 1.2
r2 0.3
r3 1.2
α1 100
α2 50
α3 150
α4 150
K1 10
K2 10
T diag(0.01,0.01)
η diag(0.05,0.05)

as Eq. (69) to validate the fixed-time convergence
property:

ˆ̈q(0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−40, case 1,

−30, case 2,

...

40, case 9.

(69)

5.2.1 Walking experiments

One complete experimental gait cycle with
robotic exoskeleton is shown in Fig. 10 and two cycles
of walking gait data were presented in the following
figures. The velocity/acceleration tracking perfor-
mance and errors are plotted in Figs. 11–14.

The velocity and acceleration tracking results
for these nine cases show that the proposed scheme
has a high convergence rate at the starting time and
is fully capable of tracking strongly disturbed sig-
nals. In addition, it can be seen from the enlarged
figures that all these tracking trajectories converge
at the same fixed time 0.1 s, which is irrelevant to
the initial state values. Also, the reconstruction er-
rors from Figs. 12 and 14 validate the fixed-time
convergence property. The predefined error bounds
in Figs. 12 and 14 are presented with red dotted
lines. It can be seen that both the velocity and

(1) (5) (7)(6)(4)(3)(2)

Fig. 10 Walking assistance with robotic exoskeleton
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Fig. 11 Velocity tracking performance via the pro-
posed scheme in the walking experiments
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Fig. 12 Velocity reconstruction errors via the pro-
posed scheme in the walking experiments
References to color refer to the online version of this figure
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Fig. 13 Acceleration tracking performance via the
proposed scheme in the walking experiments
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Fig. 14 Acceleration reconstruction errors via the
proposed scheme in the walking experiments
References to color refer to the online version of this figure

acceleration reconstruction errors are limited in the
predefined constraints. The convergence process is
similar to the simulation; more deviation of the ini-
tial states will induce larger overshoot, but they all
converge at the same time with the same predefined
constraints. Note that, in contrast to the simulation,
there still exist estimation errors in a steady process
in these experiments. This might be the result of
discrete sampling data and modeling uncertainties
of physical systems. Fortunately, the static estima-
tion errors are all limited in a small range under the
predefined constraint, where the errors will decrease
with the reduced constraint, and the errors are to-
tally acceptable to the control accuracy for human-
exoskeleton interaction.

To make the results convincing, a traditional lin-
ear differential observer was also implemented, whose
mathematical form can be described as

{
ż = −lz − l2q̇,

ˆ̈q = z + lq̇,
(70)

where z is the state variable and l represents the
feedback gain. The results using linear observers
are shown in Figs. 15 and 16. The accuracy of the
estimated acceleration trajectory with actual signals
is poor. It has a maximum error of 50.98 rad/s2 at
time 0.72 s, while all the errors approach zero at time
0.1 s with the proposed algorithm. Moreover, the
estimated signal has a significant delay with ground
truth, which will bring serious challenges in stability
control.
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Fig. 15 Acceleration tracking performance via the
linear observer in the walking experiments
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Fig. 16 Acceleration reconstruction errors via the
linear observer in the walking experiments

5.2.2 Sit-to-stand experiments

One complete sit-to-stand cycle with exoskele-
ton assistance is shown in Fig. 17, where the subject
performed a series of squatting actions in a slow
manner. This experiment further verified the static-
dynamic conversion performance of the proposed
scheme. Similar to the above experiments, the angu-
lar accelerations were estimated with the proposed
scheme and linear differential observer, respectively.

The velocity and acceleration tracking results
are shown in Figs. 18 and 19, respectively, while the

(1) (5) (7)(6)(4)(3)(2)

Fig. 17 A sit-to-stand cycle with exoskeleton
assistance
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Fig. 18 Velocity tracking performance via the pro-
posed scheme in the sit-to-stand experiments
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Fig. 19 Acceleration tracking performance via the
proposed scheme in the sit-to-stand experiments

corresponding errors are presented in Figs. 20 and
21. The results demonstrate properties that are sim-
ilar to those in the walking experiments. It shows
perfect tracking capability with a high convergence
rate and high accuracy, and all the estimation errors
under different initial values approach zero in the
same fixed time. Moreover, it can be seen that this
estimation is still precise at the conversion points be-
tween static and dynamic states. Most importantly,
the reconstruction errors are all constrained within
the predefined bounds. Note that there still exist es-
timation errors during the whole process, especially
at the static states. However, the errors are relatively
small and completely acceptable to the exoskeleton
system.

Figs. 22 and 23 show the estimation results from
the linear differential observer. It can be seen that
the observer is more like a low-pass filter to main-
tain the low-frequency components of acceleration.
However, the high-frequency components are sig-
nificant in a dynamical process like human move-
ments, and the low-pass property will induce severe
errors. From Fig. 23, the maximum estimation error
reaches 9.9 rad/s2 during squatting, which is totally
unacceptable. Moreover, it shows a serious time
delay at the conversion points and in the dynamic
process.

The quantitative comparison results between
the proposed scheme and the linear observer are pre-
sented in Table 4. The same zero initial state values
were set for the two approaches and two parameters
(i.e., root mean square error (RMSE) and maximum
error) were selected as the evaluation criteria. From
the data, it can be seen that the proposed scheme
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Table 4 Performance comparison

Scenario
RMSE (rad/s2) Maximum error (rad/s2)

Proposed scheme Linear observer Reduction Proposed scheme Linear observer Reduction

Walking 3.15 18.85 82.29% 10.55 51.53 79.52%
Squatting 1.76 2.00 12.08% 4.31 9.98 56.75%
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Fig. 20 Velocity reconstruction errors via the pro-
posed scheme in the sit-to-stand experiments
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Fig. 21 Acceleration reconstruction errors via the
proposed scheme in the sit-to-stand experiments

shows significantly reduced RMSE and maximum
error during walking and squatting experiments. In
the dynamic process of walking, RMSE and the max-
imum error decrease by 82.29% and 79.52%, respec-
tively. Even in the static process of squatting move-
ments, the acceleration estimation performance is
still enhanced, but it is not as obvious as that in
the walking experiments. In all, the data demon-
strate comprehensive superiority of acceleration
reconstruction.

In summary, both the simulation and physical
experiments validate the unique properties of the
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Fig. 22 Acceleration tracking performance via the
linear observer in the sit-to-stand experiments
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Fig. 23 Acceleration reconstruction errors via the
linear observer in the sit-to-stand experiments

proposed algorithm, i.e., fixed-time convergence, ini-
tial state irrelevance, high reconstruction accuracy,
perfect disturbance suppression, and excellent static-
dynamic performance. Compared with the linear
differential observer, the estimation performance is
strongly improved in dynamic motions like walking
and is also enhanced in static motions like squatting,
which account for most of the activities of daily liv-
ing. Note that, different from the simulation, there
still exist some errors in physical experiments due to
the discrete sampling data and uncertainties of mod-
eling. Therefore, it is recommended to adopt a high
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sampling rate and a relatively accurate model when
using this algorithm.

6 Conclusions

In this study, we have investigated the fixed-
time acceleration estimation problem of the robotic
exoskeleton system with prescribed error constraints.
The proposed scheme has some unique properties,
i.e., fixed-time convergence, initial state irrelevance,
high reconstruction accuracy, perfect disturbance
suppression, and excellent static-dynamic perfor-
mance, which will contribute to developing bet-
ter acceleration-dependent control algorithms. In
theory, a novel EBLF has been proposed to handle
the observation error constraints, providing an alter-
native barrier Lyapunov function template for con-
straint and non-constraint systems. Based on the
EBLF, an adaptive acceleration observer has been
further developed to achieve fixed-time acceleration
observation, where RBFNNs were used to approxi-
mate the completely unknown lumped disturbances.
Both the simulation and human subject experimen-
tal results validated the properties, and the superior-
ity has been further highlighted with the quantitative
comparison results.
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