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Abstract: Run-length limited (RLL) codes can facilitate reliable data transmission and provide flicker-free illumi-
nation in visible light communication (VLC) systems. We propose novel high-rate RLL codes, which can improve
error performance and mitigate flicker. Two RLL coding schemes are developed by designing the finite-state machine
to further enhance the coding gain by improving the minimum Hamming distance and using the state-splitting
method to realize small state numbers. In our RLL code design, the construction of the codeword set is critical.
This codeword set is designed considering the set-partitioning algorithm criterion. The flicker control and minimum
Hamming distance of the various proposed RLL codes are described in detail, and the flicker performances of different
codes are compared based on histograms. Simulations are conducted to evaluate the proposed RLL codes in on-off
keying modulation VLC systems. Simulation results demonstrate that the proposed RLL codes achieve superior
error performance to the existing RLL codes.
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distance
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1 Introduction

Visible light communication (VLC), in which
the visible light spectrum (380–780 nm) is used to
support the integration of illumination and commu-
nication, has emerged as a technique with significant
potential in short-range indoor wireless communi-
cation systems (Rajagopal et al., 2012). Because
the signal is transmitted by light-emitting diodes
(LEDs) over optical channels and the received sig-
nal is detected by photo diodes (PDs) that detect
the information, the main challenges of VLC are
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flicker mitigation and dimming control. To over-
come these challenges, many researchers have de-
veloped improved approaches for run-length limited
(RLL) and forward error correction (FEC) codes.
In these approaches, the emphasis is on achieving
reliable data transmission while preventing flicker
and providing good dimming control (IEEE, 2011;
Lu and Li, 2016; Babar et al., 2018).

In FEC coding, several coding schemes have
been proposed to improve the transmission perfor-
mance of VLC systems, including the Reed-Muller
codes (Kim and Jung, 2011, 2013), rate-compatible
convolutional codes (Kim and Park, 2014), low-
density parity-check codes (Kim, 2015), turbo codes
(Lee and Kwon, 2012), polar codes (Fang et al.,
2017; Wang and Kim, 2018), and constrained se-
quence codes (Cao et al., 2019).
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In RLL coding schemes, such as the Manch-
ester codes, FM0/FM1, 4B/6B, 8B/10B, and Miller
codes, long runs of 1 s and 0 s are eliminated, which
may cause LED flicker and synchronization clock
detection problems (IEEE, 2011; Lu and Li, 2016).
These codes mitigate flicker by maintaining a con-
stant average illumination brightness and attenuat-
ing low-frequency components of the visible light sig-
nal. RLL constraints limit the number of encoded
bits between consecutive transitions, and are equiv-
alently referred to as the (k1, k2) constraints, where
k1 and k2 denote the minimum and maximum num-
bers of 0 s (or 1 s) between consecutive 1 s (or 0 s)
in a binary sequence (Immink, 2004), respectively.
However, research on the error performance of RLL
codes in VLC systems is limited.

To improve the 8B/10B code bit-error rate
(BER) performance, the cyclic redundancy check
decoding technique uses hard-decision decoding
(Widner and Franaszek, 1983). Wang and Kim
(2016) proposed a soft-input soft-output decoding
strategy for 4B/6B codes, and demonstrated the
effectiveness in a soft-decoded VLC system. Lu
and Li (2018) proposed enhanced Miller (eMiller)
codes, studied the eMiller coding scheme, and an-
alyzed the BER and LED flicker problems. How-
ever, this scheme develops only a class of code-rate
1/2 RLL codes with one-bit input and two-bit out-
put. Mejia et al. (2017) proposed RLL codes using
a finite-state machine (FSM) to obtain high coding
gains; however, the presented coding methods con-
sider the number of codeword bits in the output to
be even, and the number of states is high. Cao
and Fair (2019a) discussed single-state and multi-
state line codes based on FSM for VLC. Further-
more, multi-state coding with state-independent de-
coding of constrained sequence codes was proposed
by Cao and Fair (2019b).

In this study, inspired by the run-length con-
straints of the RLL codes, we design a new class of
(0, k) RLL coding schemes using an FSM to further
improve the BER performance. We propose RLL
coding methods and two algorithms that can miti-
gate flicker and provide high coding gains.

Our main contributions can be summarized as
follows:

1. We propose a new high-rate (n − 1)/n RLL
coding scheme (n > 2) to achieve flicker mitigation.
Each RLL code, based on the trellis structure and

considering run-length constraints, is realized using
the principle of FSM. The RLL codes put constraints
on the maximum long runs of 1 s and 0 s in a coded
sequence to mitigate flicker. The trellis structure can
depict the coding process in detail. The computed
minimum Hamming distances of the proposed RLL
codes demonstrate better BER performance com-
pared with other reported codes.

2. A set-partitioning mapping algorithm is pro-
posed for n-bit binary codeword sets. Furthermore,
an RLL coding scheme with a large minimum Ham-
ming distance and small state numbers is proposed
for (n − 1)/n RLL codes by introducing the state-
splitting method and the set-partitioning mapping
algorithm. We analyze the flicker control of the op-
timal RLL codes and demonstrate that flicker sup-
pression can be achieved for VLC applications.

3. We propose a high-coding-gain RLL coding
scheme by reducing the number of input informa-
tion bits or increasing the number of codeword bits
in the output. We design two high-coding-gain al-
gorithms for code-rate (n − 2)/n RLL codes with
different numbers of states. The first algorithm de-
signs RLL codes for small state numbers in the FSM,
whereas the second one designs RLL codes by reduc-
ing the number of states. The flicker control of the
higher-coding-gain RLL codes, which can mitigate
flicker, is analyzed. Simulation results further verify
the superior BER performance.

2 RLL code design using finite-state
machines

In this section, we describe the principles based
on which RLL codes using an FSM are designed.
We then propose a high-rate (n − 1)/n RLL coding
scheme, which achieves flicker mitigation and better
BER performance for n > 2.

2.1 Finite-state machines

Fig. 1 shows the FSM of a direct-current (DC)
balanced code with N states, which includes states,
edges, and labels. The running digital sum (RDS)
of the DC-free encoded sequence is limited (Immink,
2004), where the RDS is the accumulation of the
encoded bit weights in a sequence (logic one is rep-
resented by weight +1, and logic zero is represented
by weight −1). From Fig. 1, the RDS can take any
one of the N possible values.
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Fig. 1 General finite-state machine of DC-balanced
codes

In Immink (2004), with the increase in the num-
ber of states, the number of encoded output se-
quences generated from the general FSM (Fig. 1) also
increases. The number of low-frequency components
of the power spectral density increases, thus increas-
ing the flicker. The increase in the number of en-
coded sequences implies a larger minimum Hamming
distance for the encoded output sequences. There-
fore, there is a trade-off between flicker control and
coding gain.

2.2 High-rate RLL code design with two
states

For the high-rate (n−1)/nRLL codes, we design
an FSM with two states, following the trellis struc-
ture of rate (n − 1)/n RLL codes (Li et al., 2020).
CSi,j denotes the codeword set of all possible code-
words from the current state Si to the next state Sj ,
where Si (Sj) is for the ith (jth) state. Consider an n-
bit codeword set, C = {00 . . .0

︸ ︷︷ ︸

n

, 00 . . .1
︸ ︷︷ ︸

n

, . . . , 11 . . .1
︸ ︷︷ ︸

n

},

which contains 2n binary numbers; ci ∈ C, where
i ∈ {0, 1, . . . , 2n − 1}.

A possible FSM for high-rate (n − 1)/n RLL
codes is designed in Fig. 2. The relationship between
the code rate Rc and codeword sets CS1,2 and CS2,1

is depicted in Table 1. Consider the FSM of rate
2/3 RLL codes as an example: CS1,2 = {c1, c2, c4, c7}
and CS2,1 = {c0, c3, c5, c6}. It is easy to determine
that the minimum Hamming distance, dmin, of these
high-rate RLL codes is two, which is also listed in
Table 1. Note that the maximum run-length (MRL)
value, k, of these RLL codes does not exceed 3n− 2.

S1 S2

CS

CS

2,1

1,2

Fig. 2 FSM of rate (n − 1)/n RLL codes with two
states

Table 1 Relationship between the code rate Rc and
codeword sets CS1,2 and CS2,1 of high-rate (n − 1)/n

RLL codes based on an FSM with two states

Rc Codeword set dmin

2/3 CS1,2
= {c1, c2, c4, c7}, 2

CS2,1
= {c0, c3, c5, c6}

3/4 CS1,2
= {c1, c2, c4, c7, c8, c11, c13, c14}, 2

CS2,1
= {c0, c3, c5, c6, c9, c10, c12, c15}

4/5 CS1,2
= {c1, c2, c4, c7, c8, c11, c13, c14, 2

c16, c19, c21, c22, c25, c26, c28, c31},
CS2,1

= {c0, c3, c5, c6, c9, c10, c12, c15,
c17, c18, c20, c23, c24, c27, c29, c30}

5/6 CS1,2
= {c1, c2, c4, c7, c8, c11, c13, c14, 2

c16, c19, c21, c22, c25, c26, c28, c31,

c32, c35, c37, c38, c41, c42, c44, c47,

c49, c50, c52, c55, c56, c59, c61, c62},
CS2,1

= {c0, c3, c5, c6, c9, c10, c12, c15,
c17, c18, c20, c23, c24, c27, c29, c30,

c33, c34, c36, c39, c40, c43, c45, c46,

c48, c51, c53, c54, c57, c58, c60, c63}
...

...
...

The mapping relationship between the code-
word sets and input information bits of rate 2/3 RLL
codes is presented in Fig. 3. The same mapping re-
lationship can be used for other high-rate (n − 1)/n

RLL codes.

S1 S2

{00/000, 01/011, 10/101, 11/110}

{00/001, 01/101, 10/100, 11/111}

Fig. 3 Mapping relationship between the input in-
formation bits and codeword sets of rate 2/3 RLL
codes

3 RLL code design with large dmin

In this section, we propose two coding schemes
for rate (n − 1)/n and (n − 2)/n RLL codes,
respectively.

3.1 High-rate codes with dmin = 3 and small
state numbers

For an appropriate code rate, (n−1)/n, the main
process in the coding scheme involves the design of
the set-partitioning algorithm and the FSM of (0, k)
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RLL codes for a high coding gain and small state
numbers.

3.1.1 Set-partitioning algorithm

To introduce our design, the following
codeword-set definitions are required: Consider an
n-bit codeword set, C, which can be partitioned into
l levels (l ∈ {0, 1, 2}), and |C| = 2n. Then, at parti-
tioning level l = 1, we obtain a subset C(α0), which
can be expressed as follows:

C(α0) = {ci, ci ∈ C}, α0 ∈ {0, 1}. (1)

At partitioning level l = 2, we obtain a subset
C(α0, α1), which can be expressed as follows:

C(α0, α1) = {ci, ci ∈ C(α0)} (2)

and ∀C(α0), when |C(α0)| > 4, α1 ∈ {0, 1, . . . , 4p −
1}; when |C(α0)| = 4 , α1 ∈ {0, 1, 2, 3}. Set q =

log2(|C(α0)|/4). Then we have

p =

{

q, q is even or equal to 1,

q − 1, otherwise.
(3)

A short summary of the set-partitioning process
is depicted in Algorithm 1.

Fig. 4 shows the set-partitioning process of a 3-
bit codeword set C based on Algorithm 1. At level

Algorithm 1 Set-partitioning of an n-bit codeword
set C
1: Initialization: select Rc = (n− 1)/n, n > 2

2: for partitioning level l from 1 to 2 do
3: if l = 1 then
4: Obtain C(α0) = {ci, ci ∈ C}, α0 ∈ {0, 1}
5: if log2(| C(α0) |/4) is even or equal to 1 then
6: p = log2(| C(α0) |/4)
7: else
8: p = log2(| C(α0) |/4) − 1

9: end if
10: else
11: if | C(α0) |= 4 then
12: Obtain C(α0, α1) = {ci, ci ∈ C(α0)}, α1 ∈

{0, 1, 2, 3}
13: end if
14: if | C(α0) |> 4 then
15: Obtain C(α0, α1) = {ci, ci ∈ C(α0)}, α1 ∈

{0, 1, . . . , 4p− 1}
16: end if
17: end if
18: end for

l = 1, we have C(0) = {c1, c2, c4, c7} and C(1) =

{c0, c3, s5, c6}. At level l = 2, we have C(0, 0) =

{c1}, C(0, 1) = {c2}, C(0, 2) = {c4}, C(0, 3) = {c7},
C(1, 0) = {c0}, C(1, 1) = {c3}, C(1, 2) = {c5}, and
C(1, 3) = {c6}.

l=0 {c0, c1, c2, c3, c4, c5, c6, c7}

l=1

l=2

α0=0 α0=1

α1=0 α1=1 α1=2 α1=3 α1=0 α1=1 α1=2 α1=3

{c1, c2, c4, c7}

{c3}{c1} {c2} {c4} {c7} {c0} {c5}

{c0, c3, c5, c6}

{c6}

Fig. 4 Set-partitioning process of a 3-bit codeword
set

Fig. 5 shows the set-partitioning process of a 4-
bit codeword set C based on Algorithm 1. At level
l = 1, we have C(0) = {c1, c2, c4, c7, c8, c11, c13, c14}
and C(1) = {c0, c3, s5, c6, c9, c10, c12, c15}. At level
l = 2, we have C(0, 0) = {c1, c14}, C(0, 1) = {c2, c13},
C(0, 2) = {c4, c11}, C(0, 3) = {c7, c8}, C(1, 0) =

{c0, c15}, C(1, 1) = {c3, c12}, C(1, 2) = {c5, c10}, and
C(1, 3) = {c6, c9}.

l=0

{c1, c2, c4, c7, c8, c11, c13, c14}
l=1

l=2

α0=0 α0=1

{c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15}

{c0, c3, c5, c6, c9, c10, c12, c15}

α1=0

{c1, c14}

α1=1

{c2, c13}

α1=2

{c4, c11}

α1=3

{c7, c8}

α1=0

{c0, c15}

α1=1

{c3, c12}

α1=2

{c5, c10}

α1=3

{c6, c9}

Fig. 5 Set-partitioning process of a 4-bit codeword
set

Let d1,α0

min denote the minimum intra-set distance
of subset C(α0) at partitioning level 1, and d

2,(α0,α1)
min

denote that of subset C(α0, α1) at partitioning level
2. They can be defined as

d1,α0

min = min
i�=i′

{d(ci, ci′), ∀(ci, ci′) ∈ C(α0) and ∀C(α0)},
(4)

d
2,(0,α1)
min =min

i�=i′
{d(ci, ci′), ∀(ci, ci′) ∈ C(0, α1)

and ∀C(0, α1)}, (5)

d
2,(1,α1)
min =min

i�=i′
{d(ci, ci′), ∀(ci, ci′) ∈ C(1, α1)

and ∀C(1, α1)}, (6)

where d(ci, ci′) =
|ci|−1
∑

t=0
(ci′,t ⊕ ci,t) (⊕ denotes the

modulo 2 plus).
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Furthermore, the minimum intra-set distances
at the partitioning levels of l = 1, 2 are defined as

d1min = min
{

d1,0min, d
1,1
min

}

, (7)

d2min = min
{

d
2,(0,α1)
min , d

2,(1,α1)
min

}

. (8)

Note that when l = 0, d0min is the minimum
distance of the codeword set ∀C and d0min = 1.

Based on the set-partitioning methodology, it is
desirable to obtain d0min < d1min < d2min such that
the BER performance can be improved because of a
large minimum intra-set distance. This is because
the asymptotic error probability at high signal-to-
noise ratio (SNR) under an additive white Gaus-
sian noise (AWGN) channel can be approximated
by (Simon and Divsalar, 2006)

Pe ≈ Q

(
√

2RcdminEb

N0

)

, (9)

where Q(x) =
1√
2π

∫∞
x exp(−t2/2)dt, Eb/N0 the ra-

tio of signal bit energy to noise spectral density, Rc

the code rate, and N0/2 = σ2 the variance of the
AWGN.

3.1.2 FSM design for rate (n− 1)/n RLL codes with
dmin = 3 and small state numbers

The proposed FSM design for the RLL codes
involves two stages in Algorithm 2. The codeword
set is first designed, resulting in several codeword
sets that satisfy the criterion d0min < d1min < d2min.
The state splitting technique based on Table 1 is
then applied to design the RLL-code FSM to obtain
a large minimum distance and small state numbers.

Stage 1: design the codeword sets such that
d0min < d1min < d2min.

Figs. 4 and 5 display the designs of the 3- and
4-bit codeword sets at 0, 1, and 2 partitioning levels,
respectively. Applying the set-partitioning criterion
is intended to ensure a monotonically increasing min-
imum intra-set distance, such as d0min < d1min < d2min.
As previously mentioned, d0min = 1. We establish
that d0min < d1min < d2min is strictly ensured. Thus,
the codeword sets can be partitioned as shown in
Table 1. Then, at partitioning level 1, d1min = 2

can be obtained. At partitioning level 2, we design
d2min = 4. In Table 2, the designed various codeword
sets of high-rate RLL codes at partitioning level 2
with d2min = 4 are listed.

Table 2 Various codeword sets of the high-rate RLL
codes at partitioning level 2

Rc C(0, α1) and C(1, α1) d2min

2/3 C(0, 0) = {c1}, C(0, 1) = {c2}, –
C(0, 2) = {c4}, C(0, 3) = {c7},
C(1, 0) = {c0}, C(1, 1) = {c3},
C(1, 2) = {c5}, C(1, 3) = {c6}

3/4 C(0, 0) = {c1, c14}, C(0, 1) = {c2, c13}, 4
C(0, 2) = {c4, c11}, C(0, 3) = {c7, c8},
C(1, 0) = {c0, c15}, C(1, 1) = {c3, c12},
C(1, 2) = {c5, c10}, C(1, 3) = {c6, c9}

4/5 C(0, 0) = {c1, c14}, C(0, 1) = {c2, c13}, 4
C(0, 2) = {c4, c11}, C(0, 3) = {c7, c8},
C(0, 4) = {c16, c31}, C(0, 5) = {c19, c28},
C(0, 6) = {c21, c26}, C(0, 7) = {c22, c25},
C(1, 0) = {c0, c15}, C(1, 1) = {c3, c12},
C(1, 2) = {c5, c10}, C(1, 3) = {c6, c9},
C(1, 4) = {c17, c30}, C(1, 5) = {c18, c29},
C(1, 6) = {c20, c27}, C(1, 7) = {c23, c24}

5/6 C(0, 0) = {c1, c14, c50, c61}, 4
C(0, 1) = {c2, c13, c52, c59},
C(0, 2) = {c4, c11, c55, c56},
C(0, 3) = {c7, c8, c49, c62},
C(0, 4) = {c16, c31, c32, c47},
C(0, 5) = {c19, c28, c35, c44},
C(0, 6) = {c21, c26, c37, c42},
C(0, 7) = {c22, c25, c38, c41},
C(1, 0) = {c0, c15, c51, c60},
C(1, 1) = {c3, c12, c48, c63},
C(1, 2) = {c5, c10, c54, c57},
C(1, 3) = {c6, c9, c53, c58},
C(1, 4) = {c17, c30, c34, c45},
C(1, 5) = {c18, c29, c36, c43},
C(1, 6) = {c20, c27, c39, c40},
C(1, 7) = {c23, c24, c33, c46}

...
...

...

Stage 2: based on the results of stage 1, design
the FSM for (0, k) RLL codes with dmin = 3 and a
small state number N .

Based on the results of stage 1 and Fig. 3, we
design the FSM of (0, k) RLL codes with dmin = 3

and a small state number N . Select all the codeword
sets C(α0, α1) at partitioning level 2 and set m =

(max{α1}+ 1)/2. Then, the state number N = 2m.
First, we split states S1 and S2 into m states,

i.e., Sθ
1 and Sθ

2 , θ ∈ {1, 2, . . . ,m}. We then distribute
the codeword sets such that for all the possible se-
quences in the FSM, dmin is equal to 3. The algo-
rithm begins by selecting states S1 and S2, and all
the codeword sets are at level 2. Note that we need to
avoid the same subset arriving at a common state in
the FSM design process. It is crucial to ensure that
the MRL of the encoded sequence does not exceed
4n− 2 to achieve flicker control.
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Algorithm 2 Finite-state machine design
1: Initialization: select Rc = (n− 1)/n, n > 2

2: Stage 1: design the codeword sets such that d0min <

d1min < d2min

3: for partitioning level l varying from 0 to 2 do
4: if l = 0 then
5: Obtain d0min = 1

6: end if
7: if l = 1 then
8: Based on Fig. 2 and Table 1, select codeword

set CS1,2 as C(0) and CS2,1 as C(1)
9: Obtain d1min = 2

10: end if
11: if l = 2 then
12: if | C(α0) |= 4 then
13: Calculate d2min

14: Set | C(α0, α1) |= 1, α1 ∈ {0, 1, 2, 3}
15: end if
16: if | C(α0) |> 4 then
17: Set d2min = 4

18: end if
19: end if
20: end for
21: Stage 2: based on the results of stage 1, design the

FSM of (0, k) RLL codes with dmin = 3 and small
state number N

22: From stage 1, select all the codeword sets, C(α0, α1),
at partitioning level 2, and set m = (max{α1}+1)/2

23: From Fig. 2, select two states S1 and S2

24: for a given m do
25: Split S1 and S2 into m states, i.e., Sθ

1 and Sθ
2

(θ ∈ {1, 2, . . . , m})
26: loop
27: Connect codeword subsets C(α0, α1)

28: Ensure that the MRL is k ≤ 4n− 2

29: Ensure that no codeword set is connected twice
to a state

30: Obtain dmin = 3 for all the FSM codeword
sequences

31: end loop
32: end for

Using Eq. (2), we can ensure that the rate 2/3

and 3/4 RLL codes have the same max{α1} = 3.
Furthermore, from stage 2, we know that m = 2.
Thus, as shown in Fig. 6, both S1 and S2 must be
split into two states. Fig. 6 displays the FSM of rate
2/3 RLL codes with dmin = 3 and the state number
N = 4. As shown in Fig. 6a, we first construct the
FSM with states S1

1 and S2
1 , which connect all the

codeword sets of C(0, α1) and C(1, α1), respectively.
Furthermore, the codeword sets between Sθ

1 and Sθ
2

are connected as depicted in Fig. 6b, where θ = 1, 2.
Similarly, the design of the FSM for rate 3/4

RLL codes with dmin = 3 and state number N = 4

is shown in Fig. 7.
According to the FSMs in Figs. 6 and 7, the

possible mapping relationship between the codeword
sets and input information bits is depicted in Ta-
ble 3. Similarly, in Appendix A, the possible map-
ping codes for the rate 4/5 and rate 5/6 RLL codes
are presented in Tables A1 and A2, respectively.
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Fig. 6 FSM of rate 2/3 RLL codes with dmin = 3

and N = 4: (a) splitting S1 and S2 into two states;
(b) four states connected by the codeword subset with
dmin = 3
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Fig. 7 FSM of rate 3/4 RLL codes with dmin = 3 and
N = 4
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3.2 High-rate codes with dmin = 4 and small
state numbers

FSM design of RLL codes with dmin = 4 is sum-
marized in Algorithm 3. Algorithm 3 begins by se-
lecting all the codeword sets C(α0, α1) at partitioning
level 2 and calculates the total number of states N .
Based on the FSM of RLL codes with dmin = 3 and
the coding process of stage 2, we present an example
including two choices:

Choice 1: we retain the connection of codeword
subset C(0, α1) or C(1, α1), and eliminate the con-
nection of the codeword sets between C(0, α1) and
C(1, α1).

Choice 2: we retain all the states Sθ
1 and Sθ

2 ,
θ = 1, 2, . . . ,m. We then select all the codeword
sets C(0, α1) or C(1, α1). Considering C(0, α1) as an
example, we need to split each C(0, α1) into two

Table 3 Trellis diagram and mapping relationship
between the codeword sets and information bits of
rate 2/3 and rate 3/4 codes

Rc
Current Next Output Input

dminstate state codeword set bit

2/3 S1
1 S1

1 C(0, 2) = {c4} 00 3

S2
1 C(0, 0) = {c1} 01

S1
2 C(0, 1) = {c2} 10

S2
2 C(0, 3) = {c7} 11

S2
1 S1

1 C(0, 3) = {c7} 00

S2
1 C(0, 1) = {c2} 01

S1
2 C(0, 0) = {c1} 10

S2
2 C(0, 2) = {c4} 11

S1
2 S1

1 C(1, 0) = {c0} 00

S2
1 C(1, 1) = {c3} 01

S1
2 C(1, 2) = {c5} 10

S2
2 C(1, 3) = {c6} 11

S2
2 S1

1 C(1, 2) = {c5} 00

S2
1 C(1, 3) = {c6} 01

S1
2 C(1, 0) = {c0} 10

S2
2 C(1, 1) = {c3} 11

3/4 S1
1 S1

1 C(0, 3) = {c7, c8} 000, 001 3

S2
1 C(0, 0) = {c1, c14} 010, 011

S1
2 C(0, 1) = {c2, c13} 100, 101

S2
2 C(0, 2) = {c4, c11} 110, 111

S2
1 S1

1 C(0, 2) = {c4, c11} 000, 001

S2
1 C(0, 1) = {c2, c13} 010, 011

S1
2 C(0, 0) = {c1, c14} 100, 101

S2
2 C(0, 3) = {c7, c8} 110, 111

S1
2 S1

1 C(1, 0) = {c0, c15} 000, 001

S2
1 C(1, 1) = {c3, c12} 010, 011

S1
2 C(1, 2) = {c5, c10} 100, 101

S2
2 C(1, 4) = {c6, c9} 110, 111

S2
2 S1

1 C(1, 2) = {c5, c10} 000, 001

S2
1 C(1, 3) = {c6, c9} 010, 011

S1
2 C(1, 0) = {c0, c15} 100, 101

S2
2 C(1, 1) = {c3, c12} 110, 111

codeword subsets C1(0, α1) and C2(0, α1); mean-
while, |C1(0, α1)| = |C2(0, α1)| should be satis-
fied. Furthermore, we connect all the codeword sets
C1(0, α1) and C2(0, α1) under the MRL constraint,
and ensure that no codeword set is connected to a
state twice. The same method can be used for all the
codeword sets C(1, α1).

Fig. 8 shows the FSM of rate 2/4 RLL codes
with dmin = 4. For choice 1, Figs. 8a and 8b present
two FSMs with state number N = 2. For choice 2,
Fig. 8c presents the FSM with state number N = 4,
considering C(0, α1) as an example.

4 Flicker analysis and simulation re-
sults

In this section, we present the schematic of the
VLC system. Furthermore, we present the flicker
analysis and simulation results to verify the effec-
tiveness of the proposed RLL codes using the VLC
system model depicted in Fig. 9.

Algorithm 3 FSM design for RLL codes with
dmin = 4

1: Initialization: select Rc = (n− 2)/n, n > 2

2: From stage 1, select all the codeword sets C(α0, α1)

at partitioning level 2, and set m = (max{α1}+1)/2

3: Choice 1:
4: for N = m do
5: From stage 2, retain the connection of codeword

subsets C(0, α1) or C(1, α1), and eliminate the con-
nection of the codeword sets between C(0, α1) and
C(1, α1)

6: end for
7: Choice 2:
8: for N = 2m do
9: From stage 2, retain all the states Sθ

1 and Sθ
2 ,

θ = 1, 2, . . . ,m

10: Select all the codeword sets C(0, α1), and split
each codeword set C(0, α1) into two codeword sub-
sets C1(0, α1) and C2(0, α1), which must satisfy
|C1(0, α1)| = |C2(0, α1)|

11: loop
12: Connect codeword sets C1(0, α1) or C2(0, α1)

13: Ensure that the MRL k ≤ 4n− 2

14: Ensure that no codeword set is connected twice
to a state

15: Obtain dmin = 4 for all the FSM codeword
sequences

16: end loop
17: end for
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Fig. 8 FSM of rate 2/4 RLL codes with dmin = 4 and
N = 2, 4: (a) splitting S1 into two states; (b) splitting
S2 into two states; (c) four states connected by the
codeword subset
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Fig. 9 Schematic of the VLC system

4.1 System model

The on-off keying (OOK) modulated VLC sys-
tem shown in Fig. 9 relies on RLL codes to achieve
error correction and flicker suppression. At the
transmitter, the transmitted binary data sequence
b is inputted to the RLL encoder to generate RLL-
encoded bits, which are inputted to the OOK mod-
ulator through an LED. The OOK modulated out-
put x travels through the VLC channel. The re-
ceiver is within the field-of-view (FOV) and in the
line-of-sight (LOS) of the transmitting LED. Inter-
symbol interference (ISI), dispersion, and light re-
flections are not considered in this study because
the focus is on RLL code design. The PD received
signal is expressed as y = x+ n, where n represents
the AWGN with zero mean and variance σ2. The

received signal is then processed by the OOK de-
modulator. The demodulated data is inputted to an
RLL decoder, which uses the soft Viterbi algorithm.
Our aim is to design RLL codes to assist the VLC
receiver in achieving better BER performance, while
constraining the length of consecutive 0 s and 1 s to
enable the recovery of the synchronization clock and
avoid LED flicker.

4.2 Flicker analysis

Because the VLC system performs the dual
functions of illumination and communication, flicker
mitigation and dimming control should be consid-
ered while providing data communication. When the
flickering time period is within the maximum flick-
ering time period (MFTP), which is approximately
5 ms (Berman et al., 1991), flicker is imperceptible
to the human eye. The high-data-rate VLC system,
considered as an example, satisfies the MFTP; i.e., if
the data rate is Q kb/s, then the number of consec-
utive bits M ≤ 5Q.

Flicker is caused by changes in the brightness
between every two M bits. It is generally recognized
that brightness change with a frequency higher than
1/MFTP is beyond human-eye perception. To eval-
uate the impact of these fluctuations, we compute
the brightness level over M bits. For convenience,
we introduce the concept of super symbol M , which
is formed by M consecutive bits. Results are dis-
played in Figs. 10–23 (random bit generation), where
M = 800, 2000, 5000, 7500, or 10 000; note that the
sample symbol M meets the MFTP criterion. It can
be observed that brightness fluctuation continues to
exist, even when using multiple rate RLL codes for
M = 800. As illustrated in Figs. 10–23, the flickering
fluctuations of all the proposed RLL codes become
fairly consistent (50%) when M is large enough, such
as M = 5000, 7500, or 10 000.

From Figs. 10–13, although the difference in the
performance among schemes is not significant, the
flickering fluctuation of the high-rate RLL codes is
slightly smaller than that of the low-rate ones for
dmin = 2. As shown in Figs. 14–17, the flickering
fluctuation of high-rate RLL codes is also smaller
than that of the low-rate ones for dmin = 3.

From Figs. 18–23, the flickering fluctuation for
small state numbers N is slightly smaller than that
of the larger ones for the RLL codes at the same
rate. The flickering fluctuation of the high-rate RLL
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Fig. 10 Brightness in rate 2/3 RLL codes with N = 2

and dmin = 2: (a) M = 800; (b) M = 2000;
(c) M = 7500; (d) M = 10 000
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Fig. 11 Brightness in rate 3/4 RLL codes with N = 2

and dmin = 2: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 12 Brightness in rate 4/5 RLL codes with N = 2

and dmin = 2: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 13 Brightness in rate 5/6 RLL codes with N = 2

and dmin = 2: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 14 Brightness in rate 2/3 RLL codes with N = 4

and dmin = 3: (a) M = 800; (b) M = 2000;
(c) M = 7500; (d) M = 10 000
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Fig. 15 Brightness in rate 3/4 RLL codes with N = 4

and dmin = 3: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 16 Brightness in rate 4/5 RLL codes with N = 8

and dmin = 3: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 17 Brightness in rate 5/6 RLL codes with N = 8

and dmin = 3: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 18 Brightness in rate 2/4 RLL codes with N = 2

and dmin = 4: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 19 Brightness in rate 2/4 RLL codes with N = 4

and dmin = 4: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 20 Brightness in rate 3/5 RLL codes with N = 4

and dmin = 4: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 21 Brightness in rate 3/5 RLL codes with N = 8

and dmin = 4: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 22 Brightness in rate 4/6 RLL codes with N = 4

and dmin = 4: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500
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Fig. 23 Brightness in rate 4/6 RLL codes with N = 8

and dmin = 4: (a) M = 800; (b) M = 2000;
(c) M = 5000; (d) M = 7500

codes remains slightly smaller than that of the low-
rate ones for dmin = 4.

Similarly, the brightness level for other refer-
enced RLL codes is shown in Figs. B1–B4 in Ap-
pendix B.

As M bits deliver a fairly uniform brightness
level in all the proposed RLL codes shown in
Figs. 10–23, flicker mitigation can be well handled.
Because the data rates of VLC systems are in the
order of gigabits per second, M can be much higher
than 10 000. From Figs. 10–23, the approximate
MFTP TM value and the corresponding approximate
M value, when the data rate is Q

′
= 5 × 106 bits/s

for each studied code, are presented in Table 4.
Based on Table 4 and Figs. 10–23, to obtain

fairly consistent flicker performance, we observe that
the proposed RLL codes that have approximate
TM = 1 ms must transmit M bits at about 10

times and 25 times the optical clock rate compared
to the referenced RLL codes with TM = 0.1 ms
and TM = 0.04 ms, respectively. The proposed
RLL codes with TM = 2.0 ms require 20 times
and 50 times the optical clock rate compared to the
referenced RLL codes with TM = 0.1 ms and TM =
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0.04 ms for the same brightness level, respectively.
Meanwhile, we can determine that all the proposed
RLL codes have approximate TM with Miller codes.
Furthermore, as shown in Table 4, these codes can
significantly provide mitigate flicker and dimming
constraints for high-rate data applications, which
correspond to a larger M , and can satisfy the flick-
ering time period within the MFTP, which is ap-
proximately 5 ms. This is easily satisfied, because
the existing VLCs can provide a data rate of up to
1 Gb/s.

Dimming control is a good feature of VLC sys-
tems. In VLC systems, the communication function
is included by modulating the visible light spectrum
of the LEDs used for illumination. As stated in
the IEEE 802.15.7 standard, several widely accepted
methods, such as compensation symbols and pulse
position modulation (PPM), are available for real-
izing brightness control. Each method has its own
advantages and disadvantages. However, the above
mentioned methods cannot perform error correction.

Our proposed RLL codes are designed to provide
strong error-control ability and flicker control, which
are the basic functions of RLL codes in VLC systems.
One of the dimming control methods, adding com-
pensation symbols, can be applied to our proposed
RLL codes. Furthermore, the design of other dim-
ming control methods is an interesting topic for fur-
ther study.

4.3 Simulation results

To simulate the BER performance, we varied
the noise variance σ2 by changing the SNR using
the normalized average energy per bit Eb for OOK-
modulated VLC systems. Table 5 lists the simulation
parameters of the proposed RLL codes and several
existing ones.

Fig. 24 shows the BER curves of the four pro-
posed RLL codes with dmin = 2 and N = 2, and their
comparison with the BER curves of rate 1/2 Miller,
FM0/FM1, eMiller codes (Lu and Li, 2018), rate 3/4
codes with dmin = 2 and N = 2 (Mejia et al., 2017),
and rate 4/6 codes with dmin = 2 and N = 3

(Mejia et al., 2017). It can be observed that the
BER performance of the proposed RLL codes was
significantly better than those of the rate 1/2 Miller,
FM0/FM1, and eMiller codes. Furthermore, the pro-
posed RLL codes achieved gains of approximately
1.5, 2.0, and 4.0 dB compared with the rate 1/2

Table 4 Approximate MFTP TM values and the cor-
responding approximate M values when the data rate
is Q

′
= 5 × 106 bits/s for each code

Code Rc (dmin, N) M
TM = M/Q

′

(ms)

Miller 1/2 (1, 4) 7500 1.5

FM0/FM1 1/2 (2, 4) 500 0.1

(Lu and Li, 2018)
eMiller 1/2 (2, 4) 500 0.1

(Lu and Li, 2018)
Code 3/4 (2, 2) 200 0.04

(Mejia et al., 2017) 4/6 (2, 3) 200 0.04

4/6 (4, 8) 500 0.10

Proposed code 2/3 (2, 2) 10 000 2.0

3/4 (2, 2) 7500 1.5

4/5 (2, 2) 7500 1.5

5/6 (2, 2) 7500 1.5

2/3 (3, 4) 10 000 2.0

3/4 (3, 4) 7500 1.5

4/5 (3, 8) 7500 1.5

5/6 (3, 8) 5000 1.0

2/4 (4, 2) 7500 1.5

2/4 (4, 4) 7500 1.5

3/5 (4, 4) 5000 1.0

3/5 (4, 8) 7500 1.5

4/6 (4, 4) 5000 1.0

4/6 (4, 8) 7500 1.5

Table 5 Simulated parameters for several codes

Code Modulator
Rc

dmin N(input bit,
output bit)

Miller OOK 1/2 (1, 2) 1 4

FM0/FM1 OOK 1/2 (1, 2) 2 4

(Lu and Li, 2018)
eMiller OOK 1/2 (1, 2) 2 4

(Lu and Li, 2018)
Code OOK 3/4 (3, 4) 2 2

(Mejia et al., 2017) OOK 4/6 (4, 6) 2 3

OOK 4/6 (4, 6) 4 8

Proposed code OOK 2/3 (2, 3) 2 2

OOK 3/4 (3, 4) 2 2

OOK 4/5 (4, 5) 2 2

OOK 5/6 (5, 6) 2 2

OOK 2/3 (2, 3) 3 4

OOK 3/4 (3, 4) 3 4

OOK 4/5 (4, 5) 3 8

OOK 5/6 (5, 6) 3 8

OOK 2/4 (2, 4) 4 2

OOK 2/4 (2, 4) 4 4

OOK 3/5 (3, 5) 4 4

OOK 3/5 (3, 5) 4 8

OOK 4/6 (4, 6) 4 4

OOK 4/6 (4, 6) 4 8

eMiller design, rate 1/2 FM0/FM1 design, and the
rate 1/2 Miller design, respectively, at a BER of
10−3. With the increase in code rate Rc, the coding
gain of the proposed RLL codes was more obvious
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at high SNRs. Moreover, the four proposed RLL
codes achieved gains of approximately 1.1, 1.3, 1.6,
and 1.75 dB compared with the rate 3/4 referenced
codes with dmin = 2 and N = 2 at a BER of 2×10−5.
We also compared our proposed RLL codes with the
rate 4/6 referenced codes for dmin = 2 and N = 3 at
a BER of 5 × 10−6; the coding gains obtained were
approximately 0.4, 0.8, 1.1, and 1.3 dB.

Fig. 25 presents the BER performance of our
other four proposed RLL codes with dmin = 3. The
coding gains of different RLL codes with the same
state number N were similar; the coding gain in-
creased with the increase in the state number at high
SNRs. However, the coding gain of the RLL codes
decreased with the increase in the code rate, when
SNR was less than 8 dB. Moreover, from Figs. 24 and
25, the BER performance of the proposed RLL codes
with dmin = 3 was significantly better than those of
the same code-rate RLL codes with dmin = 2.

In Fig. 26, we compared our proposed different
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10−6

B
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0 2 4 6 8 10 12
Eb/N0 (dB)

Miller codes
FM0/FM1 codes
eMiller codes (Lu and Li, 2018)
Rc=2/3, dmin=2, N=2
Rc=3/4, dmin=2, N=2
Rc=4/5, dmin=2, N=2
Rc=5/6, dmin=2, N=2
Rc=4/6, dmin=2, N=3 (Mejia et al., 2017)
Rc=3/4, dmin=2, N=2 (Mejia et al., 2017)

Fig. 24 BER comparison with the Viterbi algorithm
of various codes
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Fig. 25 BER comparison of RLL codes with different
code rates with dmin = 3

rate RLL codes with dmin = 4 with other reported
codes (Mejia et al., 2017). It can be observed that
with the increase in state number N of the same
rate codes, the BER performance became better. At
a BER of 1 × 10−5, rate 2/4 codes with N = 4

achieved 0.4 dB gain, compared with those with N =

2; rate 3/5 codes with N = 8 achieved 0.8 dB gain,
compared with those with N = 4; rate 4/6 codes
with N = 8 achieved approximately 0.5 dB gain,
compared with those with N = 4. The proposed
rate 4/6 RLL codes with N = 8 achieved 0.6 dB
coding gain compared with other reported codes with
dmin = 4 (Mejia et al., 2017).
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Rc=3/5, dmin=4, N=8
Rc=4/6, dmin=4, N=4
Rc=4/6, dmin=4, N=8
Rc=4/6, dmin=4, N=8 (Mejia et al., 2017)

Rc=2/4, dmin=4, N=2
Rc=2/4, dmin=4, N=4

Fig. 26 BER comparison of RLL codes with different
code rates with dmin = 4

5 Conclusions

In this study, a high-rate RLL coding scheme
has been proposed for OOK-modulated VLC sys-
tems. The state splitting method and codeword-set
partitioning criterion have been introduced in the
design of two FSMs based on the FSM of high-rate
RLL codes with N = 2. The first RLL code has been
proposed to improve the coding gain. This RLL cod-
ing design includes two stages: the consideration of
the set-partitioning criterion of the codeword set and
FSM design with small state numbers. Other RLL
codes have been proposed to enhance the coding gain
based on the first scheme. Moreover, two different
choices for RLL code design have been provided with
different state numbers for the FSM. The flicker con-
trol of the proposed RLL codes has been analyzed;
it approached the 50% desirable brightness level in
high-data-rate applications. The proposed FSM-
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based RLL code design methods have presented a
trade-off between flicker mitigation and BER per-
formance. The minimum Hamming distances of the
various proposed RLL codes have been computed.
Furthermore, the BER performances of the various
proposed RLL codes have been evaluated using a
VLC system. Simulation results established that the
various proposed coding schemes achieved superior
error performance to existing codes.
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Appendix A: Possible mapping codes for the rate 4/5 and rate 5/6 RLL codes
Mapping relationships between the output codeword set and the input information bits are shown in

Tables A1 and A2. See the next page for Table A2.

Table A1 Trellis diagram and mapping relationship between the output codeword set and input bits of rate
4/5 codes with dmin = 3

Current Next Output Input Current Next Output Input
state state codeword set bits state state codeword set bits

S1
1 S1

1 C(0, 0) = {c1, c14} 0000, 0001 S1
2 S1

2 C(1, 4) = {c17, c30} 0000, 0001

S2
1 C(0, 1) = {c2, c13} 0010, 0011 S2

2 C(1, 5) = {c18, c29} 0010, 0011

S3
1 C(0, 2) = {c4, c11} 0100, 0101 S3

2 C(1, 6) = {c20, c27} 0100, 0101

S4
1 C(0, 3) = {c7, c8} 0110, 0111 S4

2 C(1, 7) = {c23, c24} 0110, 0111

S5
1 C(0, 4) = {c16, c31} 1000, 1001 S5

2 C(1, 0) = {c0, c15} 1000, 1001

S6
1 C(0, 5) = {c19, c28} 1010, 1011 S6

2 C(1, 1) = {c3, c12} 1010, 1011

S7
1 C(0, 6) = {c21, c26} 1100, 1101 S7

2 C(1, 2) = {c5, c10} 1100, 1101

S8
1 C(0, 7) = {c22, c25} 1110, 1111 S8

2 C(1, 3) = {c6, c9} 1110, 1111

S2
1 S1

1 C(0, 3) = {c7, c8} 0000, 0001 S2
2 S1

2 C(1, 7) = {c23, c24} 0000, 0001

S2
1 C(0, 2) = {c4, c11} 0010, 0011 S2

2 C(1, 6) = {c20, c27} 0010, 0011

S3
1 C(0, 1) = {c2, c13} 0100, 0101 S3

2 C(1, 5) = {c18, c29} 0100, 0101

S4
1 C(0, 0) = {c1, c14} 0110, 0111 S4

2 C(1, 4) = {c17, c30} 0110, 0111

S5
1 C(0, 7) = {c22, c25} 1000, 1001 S5

2 C(1, 3) = {c6, c9} 1000, 1001

S6
1 C(0, 6) = {c21, c26} 1010, 1011 S6

2 C(1, 2) = {c5, c10} 1010, 1011

S7
1 C(0, 5) = {c19, c28} 1100, 1101 S7

2 C(1, 1) = {c3, c12} 1100, 1101

S8
1 C(0, 4) = {c16, c31} 1110, 1111 S8

2 C(1, 0) = {c0, c15} 1110, 1111

S3
1 S1

1 C(0, 4) = {c16, c31} 0000, 0001 S3
2 S1

2 C(1, 0) = {c0, c15} 0000, 0001

S2
1 C(0, 5) = {c19, c28} 0010, 0011 S2

2 C(1, 1) = {c3, c12} 0010, 0011

S3
1 C(0, 6) = {c21, c26} 0100, 0101 S3

2 C(1, 2) = {c5, c10} 0100, 0101

S4
1 C(0, 7) = {c22, c25} 0110, 0111 S4

2 C(1, 3) = {c6, c9} 0110, 0111

S5
1 C(0, 0) = {c1, c14} 1000, 1001 S5

2 C(1, 4) = {c17, c30} 1000, 1001

S6
1 C(0, 1) = {c2, c13} 1010, 1011 S6

2 C(1, 5) = {c18, c29} 1010, 1011

S7
1 C(0, 2) = {c4, c11} 1100, 1101 S7

2 C(1, 6) = {c20, c27} 1100, 1101

S8
1 C(0, 3) = {c7, c8} 1110, 1111 S8

2 C(1, 7) = {c23, c24} 1110, 1111

S4
1 S1

1 C(0, 7) = {c22, c25} 0000, 0001 S4
2 S1

2 C(1, 3) = {c6, c9} 0000, 0001

S2
1 C(0, 6) = {c21, c26} 0010, 0011 S2

2 C(1, 2) = {c5, c10} 0010, 0011

S3
1 C(0, 5) = {c19, c28} 0100, 0101 S3

2 C(1, 1) = {c3, c12} 0100, 0101

S4
1 C(0, 4) = {c16, c31} 0110, 0111 S4

2 C(1, 0) = {c0, c15} 0110, 0111

S5
1 C(0, 3) = {c7, c8} 1000, 1001 S5

2 C(1, 7) = {c23, c24} 1000, 1001

S6
1 C(0, 2) = {c4, c11} 1010, 1011 S6

2 C(1, 6) = {c20, c27} 1010, 1011

S7
1 C(0, 1) = {c2, c13} 1100, 1101 S7

2 C(1, 5) = {c18, c29} 1100, 1101

S8
1 C(0, 0) = {c1, c14} 1110, 1111 S8

2 C(1, 4) = {c17, c30} 1110, 1111

Appendix B: Brightness level for referenced RLL codes
Histograms of the brightness level for referenced RLL codes are shown in Figs. B1–B4.
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Fig. B1 Brightness in rate 1/2 Miller codes: (a) M=
5000; (b) M=7500
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Fig. B2 Brightness in rate 3/4 RLL codes with
N=2 and dmin=2 (Mejia et al., 2017): (a) M=100;
(b) M=200
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Fig. B3 Brightness in rate 4/6 RLL codes with
N=8 and dmin=4 (Mejia et al., 2017): (a) M=300;
(b) M=500

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8
1.0

B
rig

ht
ne

ss

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8
1.0

B
rig

ht
ne

ss(a) (b)

Number of super symbols Number of super symbols

Fig. B4 Dimming value for rate 4/6 RLL codes with
N=3 and dmin=2 (Mejia et al., 2017): (a) M=100;
(b) M=200
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Table A2 Trellis diagram and mapping relationship between the output codeword set and input bits of rate
5/6 codes with dmin = 3

Current Next Output Input Current Next Output Input
state state codeword set bits state state codeword set bits

S1
1 S1

1 C(0, 0) = {c1, c14, c50, c61} 0–3 S1
2 S1

2 C(1, 4) = {c17, c30, c34, c45} 0–3
S2
1 C(0, 1) = {c2, c13, c52, c59} 4–7 S2

2 C(1, 5) = {c18, c29, c36, c43} 4–7
S3
1 C(0, 2) = {c4, c11, c55, c56} 8–11 S3

2 C(1, 6) = {c20, c27, c39, c40} 8–11
S4
1 C(0, 3) = {c7, c8, c49, c62} 12–15 S4

2 C(1, 7) = {c23, c24, c33, c46} 12–15
S5
1 C(0, 4) = {c16, c31, c32, c47} 16–19 S5

2 C(1, 0) = {c0, c15, c51, c60} 16–19
S6
1 C(0, 5) = {c19, c28, c35, c44} 20–23 S6

2 C(1, 1) = {c3, c12, c48, c63} 20–23
S7
1 C(0, 6) = {c21, c26, c37, c42} 24–27 S7

2 C(1, 2) = {c5, c10, c54, c57} 24–27
S8
1 C(0, 7) = {c22, c25, c38, c41} 28–31 S8

2 C(1, 3) = {c6, c9, c53, c58} 28–31
S2
1 S1

1 C(0, 3) = {c7, c8, c49, c62} 0–3 S2
2 S1

2 C(1, 7) = {c23, c24, c33, c46} 0–3
S2
1 C(0, 2) = {c4, c11, c55, c56} 4–7 S2

2 C(1, 6) = {c20, c27, c39, c40} 4–7
S3
1 C(0, 1) = {c2, c13, c52, c59} 8–11 S3

2 C(1, 5) = {c18, c29, c36, c43} 8–11
S4
1 C(0, 0) = {c1, c14, c50, c61} 12–15 S4

2 C(1, 4) = {c17, c30, c34, c45} 12–15
S5
1 C(0, 7) = {c22, c25, c38, c41} 16–19 S5

2 C(1, 3) = {c6, c9, c53, c58} 16–19
S6
1 C(0, 6) = {c21, c26, c37, c42} 20–23 S6

2 C(1, 2) = {c5, c10, c54, c57} 20–23
S7
1 C(0, 5) = {c19, c28, c35, c44} 24–27 S7

2 C(1, 1) = {c3, c12, c48, c63} 24–27
S8
1 C(0, 4) = {c16, c31, c32, c47} 28–31 S8

2 C(1, 0) = {c0, c15, c51, c60} 28–31
S3
1 S1

1 C(0, 4) = {c16, c31, c32, c47} 0–3 S3
2 S1

2 C(1, 0) = {c0, c15, c51, c60} 0–3
S2
1 C(0, 5) = {c19, c28, c35, c44} 4–7 S2

2 C(1, 1) = {c3, c12, c48, c63} 4–7
S3
1 C(0, 6) = {c21, c26, c37, c42} 8–11 S3

2 C(1, 2) = {c5, c10, c54, c57} 8–11
S4
1 C(0, 7) = {c22, c25, c38, c41} 12–15 S4

2 C(1, 3) = {c6, c9, c53, c58} 12–15
S5
1 C(0, 0) = {c1, c14, c50, c61} 16–19 S5

2 C(1, 4) = {c17, c30, c34, c45} 16–19
S6
1 C(0, 1) = {c2, c13, c52, c59} 20–23 S6

2 C(1, 5) = {c18, c29, c36, c43} 20–23
S7
1 C(0, 2) = {c4, c11, c55, c56} 24–27 S7

2 C(1, 6) = {c20, c27, c39, c40} 24–27
S8
1 C(0, 3) = {c7, c8, c49, c62} 28–31 S8

2 C(1, 7) = {c23, c24, c33, c46} 28–31
S4
1 S1

1 C(0, 7) = {c22, c25, c38, c41} 0–3 S4
2 S1

2 C(1, 3) = {c6, c9, c53, c58} 0–3
S2
1 C(0, 6) = {c21, c26, c37, c42} 4–7 S2

2 C(1, 2) = {c5, c10, c54, c57} 4–7
S3
1 C(0, 5) = {c19, c28, c35, c44} 8–11 S3

2 C(1, 1) = {c3, c12, c48, c63} 8–11
S4
1 C(0, 4) = {c16, c31, c32, c47} 12–15 S4

2 C(1, 0) = {c0, c15, c51, c60} 12–15
S5
1 C(0, 3) = {c7, c8, c49, c62} 16–19 S5

2 C(1, 7) = {c23, c24, c33, c46} 16–19
S6
1 C(0, 2) = {c4, c11, c55, c56} 20–23 S6

2 C(1, 6) = {c20, c27, c39, c40} 20–23
S7
1 C(0, 1) = {c2, c13, c52, c59} 24–27 S7

2 C(1, 5) = {c18, c29, c36, c43} 24–27
S8
1 C(0, 0) = {c1, c14, c50, c61} 28–31 S8

2 C(1, 4) = {c17, c30, c34, c45} 28–31
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