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Abstract: Similarity measure has long played a critical role and attracted great interest in various areas such as pattern recognition 
and machine perception. Nevertheless, there remains the issue of developing an efficient two-dimensional (2D) robust similarity 
measure method for images. Inspired by the properties of subspace, we develop an effective 2D image similarity measure tech-
nique, named transformation similarity measure (TSM), for robust face recognition. Specifically, the TSM method robustly de-
termines the similarity between two well-aligned frontal facial images while weakening interference in the face recognition by 
linear transformation and singular value decomposition. We present the mathematical features and some odds to reveal the feasible 
and robust measure mechanism of TSM. The performance of the TSM method, combined with the nearest neighbor rule, is 
evaluated in face recognition under different challenges. Experimental results clearly show the advantages of the TSM method in 
terms of accuracy and robustness. 
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1  Introduction 
 

Similarity measure has long played a critical role 
and attracted great interest in face recognition and 
other pattern recognition tasks (Cover and Hart, 1967; 
Bowyer and Phillips, 1998; Sebe et al., 2000; Per-
libakas, 2004; Paredes and Vidal, 2006; Wang H, 
2006; Liu and Jin, 2006). Many new similarity 
measure methods have been proposed and reviewed 
(Sebe et al., 2000; Perlibakas, 2004; Paredes and 
Vidal, 2006; Zou and Yuen, 2010; Wu J et al., 2013; 
Liu CJ, 2014; Chen et al., 2015; Wen et al., 2016; 
Zhang YM et al., 2016; Peng et al., 2017, 2018; Sun 
et al., 2018; Zhou et al., 2018; He et al., 2019; Wu MC 
et al., 2019). Among the proposed methods for face 
recognition, the most widely used metric is the vector 
2-norm, i.e., Euclidean distance (Chen et al., 2015). 
There are two key advantages of the Euclidean dis-
tance: it is invariant to translation and rotation, and it 
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is equal to the Frobenius norm of an image matrix. 
Nonetheless, the Euclidean distance may fail to offer 
a discriminative and robust metric for some face 
recognition challenges. For example, variations be-
tween faces of the same person due to illumination or 
occlusion are almost always larger than image varia-
tions of the change of identities (Adini et al., 1997; 
Georghiades, 2001). 

To address this problem, discriminative metric 
learning approaches fusing prior information by a 
learning process with training datasets (e.g., local 
adaptive distance metric learning, whitened cosine 
distance, and feature extraction methods) have sprung 
up in the pattern recognition and face recognition 
(Paredes and Vidal, 2006; Wang H, 2006). Generally, 
a discriminative metric adopts training examples to 
learn a global or local model of the sample distribu-
tions, such as a linear subspace or a manifold model 
generalized to new samples by strategies like the 
weighted method. Nevertheless, the recognition per-
formance depends largely on the diversity of training 
datasets, which is difficult to obtain. For example, 
there must be a variety of face images containing 
illumination changes to ensure that the learning 
model can acquire illumination variation information. 

The linear reconstruction measure (LRM), 
which determines the similarity between the query 
sample and all the other known training samples by 
sorting the minimum L2-norm error, has significant 
potential in solving illumination variation and block 
occlusion problems in face recognition (Zhang J and 
Yang, 2014). LRM-L1 is a sparse representation clas-
sifier (Wright et al., 2009) and LRM-L2 is a linear 
regression classifier (Naseem et al., 2010), which 
were both expressed as similarity measurement 
mechanisms by Zhang J and Yang (2014). Although 
achieving impressive results, compared with many 
well-known face recognition methods, LRM is not 
robust enough to illumination variation since it is 
difficult for the known samples to span the real illu-
mination variation space in practical applications. 
Deng et al. (2012) applied an auxiliary intra-class 
variant dictionary to boost the recognition perfor-
mance of LRM under illumination changes and block 
occlusion. Inspired by this idea, Zhuang et al. (2013) 
proposed a sparse illumination learning and transfer 
(SILT) technique. Illumination in SILT is learned by 
fitting illumination examples of auxiliary face images 

from one or more additional subjects with a sparsely 
used illumination dictionary. Wagner et al. (2012) 
proposed an illumination dictionary construction 
method by simulating a realistic lighting scene to 
enhance the ability of sparse representation classifi-
cation under illumination variations. Generally, the 
above-mentioned methods show better performance 
than LRM with the generation of virtual samples. 
However, illumination dictionary construction 
method will inevitably lead to a large-scale training 
dataset, which not only has high computational cost 
but also increases the difficulty in acquiring a large 
number of images. In addition, it is still an open 
problem to guarantee the quality and reality of the 
generated virtual lighting samples. 

We propose a fundamental similarity measure 
technique called the transformation similarity meas-
ure (TSM) without the learning process. The motiva-
tion of this study is to decrease the gap between the 
Euclidean distance (Frobenius metric) and some face 
recognition challenges by removing the related 
transformation factors that are independent of the 
intrinsic structural changes of human faces. To 
achieve this objective, we model the similarity of two 
facial images as a linear regression with the minimum 
Frobenius norm loss. Then, singular value decompo-
sition is adopted to remove some interference related 
transformations such as illumination changes and 
block occlusion. Finally, the Frobenius norm distance 
between the transformation matrix and the unit matrix 
is employed as the similarity of two face images 
based on Assumption 1 in Section 2. 

To illustrate the effectiveness of our approach, 
we present some mathematical features and examples 
to explain the rationale and robust mechanism of 
TSM for several face recognition challenges, such as 
illumination changes, block occlusion, sketch-photo 
matching, and inverse image recognition. While the 
proposed similarity measure is significant in face 
recognition and other image recognition tasks, in this 
study, we will focus on face image classification, 
which determines the identities of face images in a 
large-scale face image gallery. We perform experi-
ments on several benchmark face databases to verify 
the TSM performance, and combine TSM with the 
nearest neighbor rule under different challenges. 
Experimental results show the advantages of the TSM 
method in terms of accuracy and robustness. 
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Note that we have proposed a face image rep-
resentation method, named nearest orthogonal matrix 
representation (NOMR), with singular value de-
composition (SVD) for face recognition in our pre-
vious work (Zhang J et al., 2015). NOMR is quite 
different from the proposed TSM. Essentially, 
NOMR is an image representation method which 
processes each image by SVD separately. However, 
TSM is an image similarity measure approach, where 
SVD is used to analyze the similarity between two 
images. 

 
 

2  Image transformation similarity measure 
 

Given two m×n-dimensional gray facial image 
matrices A and B, the similarity between them can be 
formulated by the following steps: 

First, linear transformation T from B to A can be 
calculated by 

 
2
F= arg min .−

T
T || A TB ||                   (1) 

 
T represents the row-direction linear transfor-

mation, incarnating the process of turning image B 
into image A with the minimum Frobenius norm error. 
By transposing A∈m×n and B∈m×n, the column- 
direction transformation could also be achieved with 
Eq. (1). The solution to Eq. (1) is as follows: if m=n 
and B is invertible, then T=AB−1∈m×m; otherwise, 

the least-squares solution T=AB+∈m×m will be ob-
tained, where B+ denotes the Moore-Penrose gener-
alized inverse matrix. 

Secondly, transformation T will be decomposed 
as follows by SVD:  

 
T= ,T UΣV                             (2) 

 
where Σ=diag(σ1, σ2, …, σm) is a diagonal matrix of 
size m×m with nonnegative real numbers at the di-
agonal (σi is the singular value of T by convention 
arranged in a non-increasing order σ1≥σ2≥…≥σm≥0), 
and the columns of U and V are termed left-singular 
vectors and right-singular vectors of T, respectively.  

SVD provides a convenient way to break a ma-
trix into simpler, meaningful pieces. From the per-
spective of linear transformation, these three pieces 

(i.e., Σ, U, and V) have clear physical meanings; U 
and V represent the rotational transformations and Σ 
denotes the stretching transformation (Demirel et al., 
2008). Generally, the stretching transformation is 
independent of the identity variation information. For 
instance, the stretching transformation often corre-
sponds to the intra-class variations (such as illumina-
tion variations and mode changes), which are obsta-
cles for some special face recognition tasks, such as 
alternating illumination recognition and heterogene-
ous pattern recognition (Zhang J et al., 2015). Spe-
cifically, in Zhang DQ et al. (2005), more similar 
images were obtained by singular value perturbation 
to solve the single training sample recognition prob-
lem. Thus, we can remove the stretching transfor-
mation Σ from T and obtain transformation T* as 

 
* T= ,T UV                             (3) 

 
where T*∈m×m represents the transform process 
from images B to A excluding some intra-class  
variations. 

T* is the solution to the following model: 
 

* 2 T
Farg min  s.t. .= − =

T
T || A TB || T T I       (4) 

 
Eq. (4) is a model of the classical orthogonal 

Procrustes problem (OPP). The OPP solves the 
problem of how closely matrix A∈m×n can ap-

proximate a given matrix B∈m×n, which is multi-

plied by matrix T∈m×m with orthogonal columns in 
the sense of the Frobenius norm. Hence, T* is a 
unique and orthogonal matrix. 

In fact, with images A and B taken as two vector 
subspaces by row or column, T* and Σ will represent 
the direction change and length change between the 
bases of these two vector subspaces, respectively.  

Based on the above discussion, we have the 
following assumption: 
Assumption 1    For similar face images A and B, the 
solution T* to Eq. (4) tends to be the unit matrix I in 
the sense of the Frobenius norm. 

If A=B (i.e., A and B are the same image of one 
object class), it is easy to obtain T*=I. In other cases, 
an example is established to verify Assumption 1. In 
this example, a face image is selected from the  
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Extended Yale B database as B and three homoge-
neous and heterogeneous images of B are randomly 
selected as A. Then, we calculate each T* by the steps 
mentioned above and present these transformations as 
visual images. Illustration of this example is shown in 
Fig. 1. T* from B to its homogeneous A is close to the 
unit matrix I, but its heterogeneous image does not 
possess this feature. 

 
 
 
 
 
 
 
 
 
 
 
 
Inspired by Assumption 1, similarity between A 

and B can be converted into the similarity between T* 
and I. Thus, we take the Frobenius norm (it is equal to 
the Euclidean distance) between T* and I as the sim-
ilarity measure of face images A and B. TSM between 
A and B is defined as 

 
* 2

FTSM( , ) 1 ( ),f= − −A B || T I ||              (5) 
 

where f(·) represents the normalization function 
normalizing * 2

F−|| T I ||  into [0, 1]. Considering hu-

man habits and the sigmoid function (which can im-
itate inputs and outputs of the human brain), we set 
f(t)=2/(1+e−t)−1, t∈[0, +∞). Thus, the concrete TSM 
can be calculated by 
 

* 2
F

2TSM( , ) 2 .
1 exp( )

= −
+ − −

A B
|| T I ||

      (6) 

 
Obviously, the larger the TSM(A, B), the more 

similar the image matrices A and B. The complete 
algorithm is outlined in Algorithm 1. 

Fig. 2 shows the TSM obtained from one image 
and the images from various classes. Here, we ran-
domly select one facial image from a certain class of 
the Extended Yale B face database as image B and 
one good-condition facial image from each class of 

Algorithm 1    Transformation similarity measure 
Input:  two image matrices A and B∈m×n 
Output:  TSM(A, B) 
Main procedure: 

1. Solve Eq. (1) and obtain linear transformation T∈m×m 
2. Perform singular value decomposition of T 
3. Remove singular values by Eq. (3) and obtain T* 
4. Obtain TSM(A, B) by Eq. (6) 

     
the Extended Yale B face database as image A (totally 
38 individual facial images), and calculate the TSM 
between B and A. Fig. 2 demonstrates that the max-
imum TSM belongs to the homogeneous image of B 
and is significantly larger than other TSMs between 
image B and its heterogeneous images. This result 
further verifies the validity of the proposed TSM. 
Additionally, Fig. 2 shows that the TSMs between 
image B and its heterogeneous images are not zeros. 
This indicates that all face images have a certain 
similarity. 

 
  
 
 
 
 
 
 
 
 

 
 
 
 
 

3  Model analysis 

3.1  Mathematical features 

In this subsection, we analyze the mathematical 
features of TSM. In general, the definition of the 
similarity measure function S(A, B) should satisfy the 
following rules: 

1. S(A, A)=1 (self-similarity). 
Obviously, if B=A then T=I and T*=I. Then 

TSM(A, A)=1. So, the proposed TSM satisfies the 
self-similarity rule. 

2. S(A, B)≥0 (non-negativity). 
By the definition of TSM, we have 0< 

Fig. 1  Illustration of Assumption 1 
The second row shows the images of transformation T* 

Fig. 2  Illustration of the proposed transformation simi-
larity measure (TSM) 

Heterogeneous images

Homogeneous image

Image B

TSM

0 5 10 15 20 25 30 35
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Number of images A



Zhang et al. / Front Inform Technol Electron Eng   2020 21(9):1334-1345 1338 

TSM(A, B)≤1. Thus, the proposed TSM satisfies the 
non-negativity rule. 

3. S(A, B)=S(B, A) (symmetry). 
For TSM(A, B), setting TAB=AB−1 and 

AB−1=UΣVT with SVD, we have T*=UVT. Likewise, 
TBA=BA−1=(AB−1)−1=VΣ−1UT for TSM(B, A). Per-
forming SVD on TBA, we obtain BA−1=VΣ−1UT and 

* T .=BAT VU  Knowing * 2 * 2
F F ,− = −AB BA|| T I || || T I ||  we 

have TSM(A, B)=TSM(B, A). So, the proposed TSM 
satisfies the symmetry rule. 

In summary, from the mathematical point of 
view, the proposed TSM can be seen as a reasonable 
similarity measure model. 

3.2  Advantage features for face recognition 

Now we further analyze TSM in face recognition 
tasks. In general, the proposed TSM provides good 
features and innovative viewpoints for face image 
similarity measure and recognition as follows: 

1. TSM is a two-dimensional (2D) holistic sim-
ilarity measure method without parameters, and can 
be easily achieved by SVD. Without the parameter 
tuning and learning processes, TSM is time-saving 
and, more importantly, can avoid the embarrassment 
that happens in many distance learning methods. 
Compared with traditional distance-based methods 
(e.g., Euclidean distance, correlation coefficient, and 
angle-based distance), 2D TSM contains structural 
similarity of the images and is more suitable for im-
age classification. 

2. Like the cosine distance, TSM is not sensitive 
to the scaling changes, i.e., 

 
TSM(A, B)=TSM(aA, bB),                 (7) 

 
where a and b are the scaling factors for all pixels of 
one image.  

Fig. 3 shows the appearance of one image with 
the scaling factor changing. In this case, traditional 
methods, such as Euclidean distance and Mahalano-
bis distance, cannot measure the similarity, while 
TSM still works well. 

 
 
 
 
 
 

3. TSM can weaken the influence of illumination 
variation because the singular values associated with 
illumination variation are discarded during its calcu-
lation process. Here, we take an example to reveal this 
feature. In this example, we select two facial images  
with different illumination conditions from a certain 
class of the Extended Yale B face database as image B, 
randomly select one good-condition facial image 
from each class of the Extended Yale B face database 
as image A (totally 38 individual facial images), and 
calculate the TSM between B and A. Fig. 4 shows that 
the maximum TSM belongs to the homogeneous 
image B and is significantly larger than other TSMs 
between image B and its heterogeneous images. This 
verifies the validity of the proposed TSM in coping 
with the illumination variation problem. In particular, 
Fig. 4b shows that TSM handles extreme illumination 
variation conditions well.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
4. TSM is insensitive to non-face block occlu-

sion conditions. Eq. (1) can be rewritten as 
 

2
2

=1
= arg min || .

n

i i
i

−∑T
T || a Tb                 (8) 

 
Suppose that image B is blocked by C∈m×t in 

the column direction and that t≤n. Then the blocked 
Fig. 3  Appearance of one image with the scaling factor 
changing 

a
1.0 0.9 0.7 0.5 0.3 0.1

Fig. 4  An intuitive illustration of the  insensitivity of  
TSM to the illumination variation conditions: (a) extreme 
illumination condition 1; (b) extreme illumination  
condition 2 
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image can be denoted as 1 1 1=[ ,..., , ,..., ,s t s+t+B b b c c , b  

..., ]nb  and the linear transformation from B  to A can 
be calculated by 

 

2 2
2 2

1 1

2
2

1

= arg min || ||

|| .

s t

i i s j j
i j

n

k k
k s t

+
= =

= + +


− + −




+ − 


∑ ∑

∑

T
T || a Tb || a Tc

|| a Tb
 (9) 

 
From Eq. (9), it can be seen that the transfor-

mation T should balance the errors between the  
remaining and blocked parts. Actually, the transfor-
mation tends to be constant when C is not a face im-
age since it can be treated as the transformation from 
the non-face subspace to the face subspace. Thus, we 
can obtain an effective similarity measure for the 
recognition task according to the remaining part of B. 

We show an example of this feature. Here, we 
select one image from a certain class of the Extended 
Yale B face database as image B and randomly select 
one good-condition facial image from each class of 
the Extended Yale B face database as image A (totally 
38 individual facial images). Then image B is blocked 
by a baboon image of different proportions from the 
Internet. We calculate the TSMs and classify the test 
image with the nearest neighbor rule. Fig. 5 shows the 
ratios between the largest and second-largest TSMs as 
well as the classification results with the variations of 
the occlusion proportion. From Fig. 5 we can see that 
image B is still correctly classified and that the 
maximum TSM is significantly larger than that when 
the occlusion proportion is 80%. This verifies the 
validity of the proposed TSM in dealing with the 
block occlusion problem.  

5. One more specific problem is that whether the 
inverse image (Fig. 6) can be used to describe identity. 
Here, the inverse image refers to the image obtained 
by the inverse operation of the original image matrix. 
This has potential application in the field of image 
encryption. Generally, it is hard to believe that the 
inverse image contains identity information. Indeed, 
almost all the existing methods have poor perfor-
mances with the inverse image. However, by deriva-
tion, we can obtain 

 
TSM(AT, BT)=TSM(A−1, B−1).              (10) 

Eq. (10) means that the similarity between the 
inverse images is equal to the similarity of the original 
images. In Section 4, experimental results show that 
the proposed TSM performs well on the inverse im-
age recognition problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3.3  Computational complexity of face recognition 

Computational complexity is commonly used to 
measure the pros and cons of a model. The computa-
tional speed of TSM is often slow with the involve-
ment of the SVD process. In theory, SVD can be 
achieved by eigen-decomposition. The computational 
complexity of the general SVD algorithm is about 
O(n3), where n is the rank of one matrix. The parallel 
SVD is more efficient in practical calculation. For 
specific algorithms, readers can refer to Demmel and 
Kahan (1990). In addition, the rank of the practical 
face recognition image is generally so small that we 
can quickly calculate it on a personal computer. We 
will compare the time consumptions of CPU of sev-
eral similarity measure methods in Section 4.2, and 

Fig. 6  Images of one person from the Extended Yale B 
database and their inverse images 
The top row shows the original images and the bottom row 
shows the corresponding inverse images 
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Fig. 5  Intuitive illustration of the  insensitivity of TSM to 
the block occlusion condition 
Blue bars mean that the test image is correctly classified and 
red bars mean misclassification. Numbers above the bars 
indicate the ratios between the largest and the second-largest 
TSMs. References to color refer to the online version of this 
figure 
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the results show that the proposed TSM can still meet 
the practical requirements on larger known datasets. 

 
 

4  Experiments 
 
In this section we present various experiments 

on public available databases for face recognition, 
which demonstrate the efficacy of the proposed  
algorithm. 

Since the proposed TSM does not include a 
learning process, we compare the proposed TSM just 
with some classical and fundamental distance-based 
similarity measure methods in face recognition: Eu-
clidean distance, Manhattan distance, angle distance 
(cosine distance), Mahalanobis distance, nuclear 
norm, Hausdorff distance, and LRM. Details of these 
methods can be found in Yambor et al. (2002), Vivek 
and Sudha (2007), Gu et al. (2012), and Zhang J and 
Yang (2014). Here, the nearest neighbor (NN) rule is 
used for classification (Cover and Hart, 1967). For 
LRM, we take the coefficient as the similarity indi-
cator, whose performance is equal to that of the sparse 
representation based classifier (SRC), which was 
reported as one of the best methods in the Extended 
Yale B and AR databases (Zhang J and Yang, 2014). 
The solution tools and parameter settings follow 
Zhang J and Yang (2014)’s suggestions. Note that all 
experiments are done on the original face images 
without any image preprocessing or feature extraction 
step. In our experiments, data is randomly permuted 
20 times, and thus all the results are reported as the 
average. Experiments are carried out on a personal 
computer (CPU: Intel® CoreTM i7-4790 2.66 GHz; 
RAM: 16 GB). 

4.1  Datasets 

Four databases are involved. The details are 
given in the following: 

1. Extended Yale B database 
 
 
 
 
 
 
 
 

The Extended Yale B database contains about 
2414 frontal face images of 38 individuals (Lee et al., 
2005). We use the cropped and normalized face im-
ages (marked with P00) of size 80×80, which were 
captured under various laboratory-controlled lighting 
conditions with only small changes in the head pose 
and facial expression. Example images of one person 
are shown in Fig. 7. 
 
 
 
 
 
 
 
 

2. AR face database 
The AR face database consists of over 3000 face 

images of 126 individuals (70 men and 56 women), 
including frontal views of faces with different facial 
expressions, lighting conditions, and occlusions 
(Martínez and Benavente, 1998). There are 26 images 
of each individual, taken on two different occasions 
(i.e., two sessions separated by two weeks). We ran-
domly select 120 individuals for our experiments. We 
manually crop the face portion of the image and then 
normalize it to 45×45 pixels. The normalized images 
of one person are shown in Fig. 8. 

3. CMU PIE face database 
The CMU PIE face database consists of 337 

different subjects taken in four sessions with simul-
taneous variations in pose, expression, and illumina-
tion (Gross et al., 2010). In our experiments, the 
subset contains images of pose C27 (a nearly frontal 
pose) of 68 persons, each with 21 different direction 
illuminated images (Fig. 9). All the images are man-
ually aligned, cropped, and resized to 64×64 pixels. 

4. CUHK sketch face database 
The CUHK sketch face database contains 188 

persons (376 facial images) from the Chinese  
 

 
 
 
 
 
 
 

Fig. 7  Samples of a person under different illumination 
conditions in the Extended Yale B face database 
 

Fig. 8  Samples of a person in the AR face database 
The top row illustrates samples from session 1, and the bottom row illustrates samples from session 2 
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University of Hong Kong student database (Wang XG 
and Tang, 2009). For each person, there is a sketch 
drawn by an artist based on a photo taken in a frontal 
pose, under the normal lighting condition, and with a 
neutral expression (Fig. 10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Recognition with general conditions 

In the first experiment, we use the Extended Yale 
B database to test the performance of TSM with the 
known variation of the sample number. The randomly 
selected k (k=1, 4, 8, 16, and 32) images of each 
subject are used as the known sample set and the 
 

 
 
 
 
 
 
 
 
 
 
 
 

remaining images for testing. Table 1 shows the av-
erage recognition rates and the test sample running 
time with the known sample sizes of TSM compared 
with the Euclidean distance, Manhattan distance, 
angle distance, Mahalanobis distance, nuclear norm, 
Hausdorff distance, and LRMs. 

As shown in Table 1, the proposed TSM always 
obtains the highest recognition rate irrespective of the 
variation of the sample set size. Specifically, with the 
small sample size, such as k=1 and 4, TSM achieves 
recognition rates of over 70% and 90%, respectively, 
which are about 52% and 25% higher than those of 
LRM-L2, clearly showing the advantages of TSM in 
face recognition. In terms of computational com-
plexity, even though the performance of TSM is not 
the worst, we must admit that there exists a gap be-
tween the proposed TSM and practical applications. 

4.3  Recognition with the inverse of face image 

In theory, the inverse of image can be used to 
describe the identification performance of our pro-
posed TSM model. In this experiment, we use the 
inverse images (Fig. 6) with an experiment setting 
similar to that in the first experiment in Section 3.2 to 
test the performance of the proposed algorithm. 

Table 2 shows the recognition rates of Euclidean 
distance, Manhattan distance, angle distance, Ma-
halanobis distance, nuclear norm, Hausdorff distance, 
LRMs, and our proposed TSM. From Table 2 we can 
see that the proposed algorithm shows excellent per-
formance irrespective of the variation of the known 
sample set size, but all other methods fail. As we have 
demonstrated in Section 3.1, the TSM between in-
verse images is equal to that of the original images. 
Although the appearance of the inverse image has  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10  Illustration of some photos and the corresponding 
sketch face images from the Chinese University of Hong 
Kong 
 

Table 1  Average recognition rate and test sample running time on the Extended Yale B database with known sample size 
variation 

Similarity measure 
Average recognition rate (%) Test sample running time (ms) 

k=1 k=4 k=8 k=16 k=32 k=1 k=4 k=8 k=16 k=32 
Euclidean distance 9.67 35.21 61.42 66.93 69.73 3 11 27 45 99 
Manhattan distance 9.58 33.92 57.31 62.71 69.14 6 17 41 73 137 
Nuclear norm 14.82 57.48 80.00 84.26 86.24 68 162 402 786 1342 
Angle distance 13.18 44.36 79.75 86.41 90.12 17 28 47 88 157 
Hausdorff distance 6.78 18.30 35.58 52.17 79.86 257 694 1456 2238 3967 
Mahalanobis distance 14.36 45.16 82.51 87.65 89.18 637 234 4783 8876 15 736 
LRM-L1 (SRC) 19.18 63.17 84.68 92.03 95.06 105 113 122 340 253 
LRM-L2 (LRC) 21.46 66.23 86.43 92.67 95.51 0.37 0.56 0.72 1.19 1.32 
Proposed TSM 73.72 91.30 96.80 98.41 98.95 139 447 834 1521 2986 

 

 

Fig. 9  Illustration of one person from the subset pose C27 
in the CMU PIE face database 
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obscured its actual identity and is disorganized, TSM 
can still measure its similarity. However, other 
methods, no matter based on the image structure or 
pixel value, lose their measurement function. For 
example, obviously, ||A−B||F is not equal to 
||A−1−B−1||F. This feature suggests that TSM may have 
application in the field of image encryption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Recognition under different illumination  
conditions 

In this subsection, we test the proposed method 
under various lighting conditions. In the first exper-
iment, the Extended Yale B database is divided into 
five subsets of different illumination conditions. We 
use subset 1 consisting of 266 images (seven images 
per subject) under the nominal lighting condition as 
the known sample set, and all others for testing. 
Subsets 2 and 3 each contain 12 images per subject 
and are characterized by slight to moderate luminance 
variations. Subset 4 (14 images per subject) and 
subset 5 (19 images per subject) depict severe illu-
mination variations. Results are shown in Fig. 11.  

Fig. 11 shows that the proposed method achieves 
excellent performance for either moderate or severe 
lighting variations and obtains the highest recognition 
rate for almost all subsets. In particular, for both 
subsets 4 and 5 with extreme lighting conditions, our 
proposed TSM achieves the highest rates of 81.3% 
and 75.4%, respectively. Some robust methods like 
LRM-L1 and LRM-L2 do not seem to be robust to 
extreme illumination changes. 

 
 
 
 
 
 
 
 
 
 

 

 
We conduct the second experiment on the subset 

of the CMU PIE face database containing images of 
pose C27 (a nearly frontal pose) of 68 persons, each 
with 21 different direction illuminated images (Fig. 9). 
In our experiment, some images of each subject are 
randomly selected for the known sample set, and the 
remaining images for testing. 

Fig. 12 presents the average recognition rates on 
the CMU PIE face database. Clearly, in all cases, the 
proposed method achieves the best results. Specifi-
cally, for the single sample problem, TSM can still 
obtain an 83.21% recognition rate, about 20% higher 
than that of the second-highest LRM-L1. Other 
methods like LRMs and nuclear norm achieve com-
petitive results. This is possibly because the CMU 
PIE face database has more moderate lighting condi-
tions than Extended Yale B and these reconstruction- 
based similarity measure methods are insensitive to 
relatively slight illumination changes. 

 
 
 
 
 
 
 
 

 
 

4.5  Recognition with occlusions 

In the first experiment, we use an experimental 
setting similar to that in Zhang and Yang (2014) to 
test the performance of the proposed TSM. Subsets 1 
and 2 of Extended Yale B are used as the known 
sample sets and subset 3 for testing (these subsets 

Table 2  Average recognition rate on the Extended Yale B 
database with inverse images 

Similarity  
measure 

Average recognition rate (%) 
k=1 k=4 k=8 k=16 k=32 

Euclidean  
distance 

2.43 2.51 2.68 2.34 2.71 

Manhattan  
distance 

2.54 2.86 3.02 3.21 3.24 

Nuclear norm 1.26 2.38 2.28 2.74 2.62 
Angle distance 2.43 2.28 2.54 2.67 2.68 
Hausdorff  
distance 

1.12 2.28 2.18 2.24 2.37 

Mahalanobis 
distance 

3.15 3.26 3.46 4.25 5.38 

LRM-L1 (SRC) 3.47 3.61 3.65 4.17 4.28 
LRM-L2 (LRC) 3.48 3.62 3.65 4.12 4.32 
Proposed TSM 71.96 92.91 97.13 97.96 98.16 
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Fig. 11  Recognition rate on the Extended Yale B database 
under various lighting conditions 
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Fig. 12  Average recognition rate on the CMU PIE face 
database 
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have been described in Section 4.1). Each test image 
is corrupted by the randomly located square block of a 
“baboon” image. The block size determines the oc-
clusion level of an image. Fig. 13 shows these images 
with the occlusion level varying from 10% to 90%. 
Fig. 14 shows the recognition rates under different 
occlusion levels. 

Fig. 14 shows that the proposed method signif-
icantly outperforms other similarity measure methods 
when the occlusion level is equal to or larger than 
10%. The recognition rate of TSM with the nearest 
neighbor classifier drops slowly with the increase of 
the occlusion level, and thus the proposed method is 
insensitive to the level of structural noise. Note that 
the proposed method can still achieve an over 90% 
recognition rate when the occlusion level is 70%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 

 
Now we test the TSM performance in real face 

disguise on the AR database. Different from Chen 
et al. (2015), we test these methods with more chal-
lenging conditions. For each subject, we randomly 
select seven images from 14 images with only illu-
mination change and expressions as known samples. 
Others are divided into two separate subsets (with 
sunglasses and scarves, six samples per subject per 
session) for testing. 

From Fig. 15, we observe that the proposed 
method can achieve the highest recognition rates for 

both tests with a scarf and sunglasses. For the test 
with sunglasses, all methods can achieve good results 
because the occlusion level is relatively low. There is 
no significant performance difference between the 
proposed method and others. For the test with a scarf, 
the proposed method significantly outperforms others, 
but does not achieve the same prime performance as 
in the first experiment. We believe that the mediocre 
performance of the proposed method is caused by the 
irregular nature of the occlusions in this experiment. 

 
 
 
 
 
 

 
 

4.6 Experiments on the CUHK sketch face  
database 

We test the performance of the proposed TSM on 
the CUHK sketch face database (Wang XG and Tang, 
2009) compared with Euclidean distance, Manhattan 
distance, angle distance, Mahalanobis distance, nu-
clear norm, Hausdorff distance, LRMs, and the sketch 
transform method (STM) proposed by Wang XG and 
Tang (2009). In this experiment, we adopt the same 
experimental setting as in Wagner et al. (2012). We 
compute the recognition rates with the feature space 
dimension of 50×50 obtained by the down- 
sample method. The recognition rates are shown in 
Fig. 16. 

 
 
 
 
 
 
 
 
 
 
 

 
As shown in Fig. 16, it is surprising that our 

proposed TSM achieves the highest 95% recognition 
rate versus 26% of Euclidean distance, 31% of 
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Fig. 14  Recognition rate under different occlusion levels 
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Fig. 16  Recognition rate on the CUHK sketch face  
database 

Fig. 15  Average recognition rate on the AR database with 
real face disguise 
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Fig. 13  Illustration of some images with the occlusion 
level varying from 10% to 90% 
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Manhattan distance, 30% of angle distance, 22% of 
Mahalanobis distance, 71% of nuclear norm, 13% of 
Hausdorff distance, 80% of LRM-L1, 82% of LRM-L2, 
and 71% of STM. The results show that TSM has the 
potential to deal with the heterogeneous face image 
recognition problem. 

 
 

5  Conclusions and future work 
 

It is important to improve the robustness of 
similarity measure in face recognition. We have 
studied the similarity between face image identities 
from the perspective of image matrix transformation. 
We believe that some transformations are not related 
to the identity information portrayed by the image. 
Based on this assumption and the nature of singular 
value decomposition, we have proposed the trans-
formation similarity measure (TSM) to enhance the 
robustness of the metric method under lighting and 
occlusion conditions. The proposed method is both 
simple and practical since it does not involve learning 
process. Experimental results indicated that the pro-
posed TSM achieves encouraging performance 
compared with the general similarity measure meth-
ods with respect to some robustness issues, such as 
alternating illumination, structural noise caused by 
occlusion, and heterogeneous pattern. 

Our future work includes mainly applying TSM 
to other image-based applications, such as nature 
image detection and recognition tasks. In addition, 
our proposed TSM model uses linear transformation 
to capture the intrinsic similarity of two face images. 
Whether this model is effective against more complex 
conditions or how to extend the model for non- 
linear cases such as pose variations needs further 
investigation. 
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