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Abstract: Opinion question machine reading comprehension (MRC) requires a machine to answer questions by
analyzing corresponding passages. Compared with traditional MRC tasks where the answer to every question is
a segment of text in corresponding passages, opinion question MRC is more challenging because the answer to an
opinion question may not appear in corresponding passages but needs to be deduced from multiple sentences. In
this study, a novel framework based on neural networks is proposed to address such problems, in which a new
hybrid embedding training method combining text features is used. Furthermore, extra attention and output layers
which generate auxiliary losses are introduced to jointly train the stacked recurrent neural networks. To deal with
imbalance of the dataset, irrelevancy of question and passage is used for data augmentation. Experimental results
show that the proposed method achieves state-of-the-art performance. We are the biweekly champion in the opinion
question MRC task in Artificial Intelligence Challenger 2018 (AIC2018).
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1 Introduction

Artificial intelligence (AI) has experienced over
60 years of continuous development and changed the
world (Pan, 2016). Teaching machines to read and
comprehend is a vital part of AI. Machine reading
comprehension (MRC) is a task of answering ques-
tions by understanding corresponding passages. It
is a key goal in natural language processing (NLP).
The MRC task has attracted a lot of attention in
recent years and there are already several large-
scale datasets released, including MCTest (Richard-
son et al., 2013), CNN/Daily Mail (Hermann et al.,
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2015), WikiQA (Yang et al., 2015), Stanford Ques-
tion Answering dataset (SQuAD) (Rajpurkar et al.,
2016), Microsoft MAchine Reading COmprehension
dataset (MS-MARCO) (Bajaj et al., 2016), Triv-
iaQA (Joshi et al., 2017), and DuReader (He W
et al., 2018). SQuAD (Rajpurkar et al., 2016) is
one of the most famous MRC datasets. It con-
sists of 100 000+ questions posed by crowdworkers
on Wikipedia articles, where the answer to each
question is a segment of text from the correspond-
ing passage. Another larger MRC dataset, MS-
MARCO (Bajaj et al., 2016), consists of 1 000 000+
anonymized questions sampled from Bing’s search
query logs. In MS-MARCO, answers are human-
generated and may not be the exact span from
the corresponding passage like SQuAD. Most of the
MRC datasets are in English, including SQuAD and
MS-MARCO. Only a few MRC datasets are de-
signed in Chinese, and DuReader (He W et al., 2018)
is one of them. DuReader collects questions from
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Baidu Search, while the answers are manually gen-
erated. However, all the passages in DuReader are
from the same community question answering web-
site Baidu Zhidao (http://zhidao.baidu.com/) and
this limits it.

AI Challenger 2018 (AIC2018) is an interna-
tional AI competition. Opinion question machine
reading comprehension (OQMRC) is the main track
in AIC2018. Organizers present the largest Chi-
nese dataset so far for the OQMRC task, containing
300 000 samples. All the samples are from real-world
community question answering websites includ-
ing Sogou Ask (http://wenwen.sogou.com/), Baidu
Zhidao (http://zhidao.baidu.com/), Zhihu (http://
www.zhihu.com/), and Sina Ask (http://iask.sina.
com.cn/), making the AIC2018 OQMRC dataset
much more realistic.

Fig. 1 shows two examples of the OQMRC
dataset. Every question contains multiple options,
and the answer is not only restricted to spans of the
corresponding passage like SQuAD, but also about
an opinion which needs to be deduced from support-
ing evidence.

                                   Example 1
Question: 维生素C可以长期吃吗
                 Can I take vitamin C tablets for a long period

Passage: 每天吃的维生素的量没有超过推荐量的话是没有太大
                               问题的。
                It’s not a problem if you take vitamins everyday 
                       following the doctor’s advice.

Options:  1. 是
                     Yes
                 2. 否
                     No
                 3. 无法确定
                     Unidentified
   
URL: https://wenwen.sogou.com/z/q143317203.htm 
 
                                   Example 2
Question: 深圳和广州哪个离北京远
                 Which is farther from Beijing, Shenzhen or 
                        Guangzhou

Passage: 深圳比广州更靠南，我每次回北京都要经过广州。
                Shenzhen is farther south than Guangzhou. Every 
                       time I go back to Beijing, I have to go through 
                       Guangzhou.
         
Options:  1. 深圳
                     Shenzhen
                 2. 广州
                     Guangzhou
                 3. 无法确定
                     Unidentified
   
URL: https://zhidao.baidu.com/question/427258407

Fig. 1 Examples from the AIC2018 OQMRC dataset

In this study, a novel method based on neural
networks is presented to address the OQMRC task.
The main contributions of this work can be summa-
rized as follows:

1. During the competition, external data are not
allowed and only a limited corpus can be used to
pre-train embedding. To tackle this problem, part-
of-speech (POS) tags are combined to enrich the se-
mantic representation of questions and passages.

2. A joint training method is introduced to train
stacked long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997). In the proposed model,
the passage is encoded with four bi-directional LSTM
layers. The 4th LSTM layer generates the main loss,
and the other three layers generate the auxiliary
losses. In the training process, the weights of the
auxiliary losses are adjusted and finally decrease to
zero. These auxiliary losses produce a better model
performance.

3. To deal with data imbalance in the competi-
tion, irrelevancy of question and passage is used for
data augmentation, and a total of 50 000+ new sam-
ples with label unidentified are generated. These new
samples are added to the training set, and a higher
accuracy is achieved in experiments.

2 Related works

Remarkable progress has been made since vari-
ous MRC datasets were released. Neural networks
achieve promising results in the MRC task and
most related works are based on them. Hermann
et al. (2015) first introduced an attention mech-
anism into the MRC task, which soon became a
dominating model. Wang SH and Jiang (2016)
used match-LSTM to build question-aware passage
representation, and predicted answer spans in pas-
sage with pointer networks (Vinyals et al., 2015).
Seo et al. (2016) introduced a bi-directional atten-
tion flow (BIDAF) network, a multi-stage hierarchi-
cal process which represents the context at differ-
ent levels of granularity, and used BIDAF to obtain
query-aware context representation. Wang W et al.
(2017) introduced R-NET, which matches questions
and passages with gated attention-based recurrent
networks and uses a self-matching attention mech-
anism to refine passage representation. Yu et al.
(2018) proposed QANet, whose encoder consists ex-
clusively of convolution and self-attention but not
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recurrent networks. Devlin et al. (2018) introduced
a bi-directional encoder representation from trans-
formers (BERT), which was designed to pre-train
deep bi-directional representations in all layers. The
pre-trained BERT can be fine-tuned with a simple
additional output layer for a wide range of tasks in-
cluding MRC. Table 1 shows a comparative review
of these works.

However, these related models focus mainly on
English MRC datasets and none of them has been
introduced to a formal competition with a limited
corpus. On the other hand, the OQMRC task in
AIC2018, as described in the introduction, is a for-
mal competition channel within a Chinese MRC
dataset. To accomplish this task, we propose an
approach based on neural networks. Experimental
results show that the proposed method outperforms
other competing systems. We also won the biweekly
championship in the competition.

3 Task definition

Most MRC datasets have emphasized span-
selection methods with pointer networks (Vinyals
et al., 2015). Such methods are appropriate when
answers are facts or entities in passages. However,
they cannot work for an opinion question whose an-
swer needs to be deduced from multiple sentences in
a passage.

To tackle this issue, we formulate the OQMRC
task as a classification problem. To classify the an-
swers into different opinion polarities, regular expres-
sions are used to convert every question to a state-
ment. For example, the question “Can I take vitamin
C tablets for a long period” in Fig. 1 can be converted
to a statement “I can take vitamin C tablets for a long
period.” Then the original question answering task
can be considered as a classification problem to de-

termine if the converted statement can be inferred
from its corresponding passage.

Table 2 lists the symbols used in this study. For-
mally, each sample in the dataset is represented as
a triple (Q,P, c), where Q = {xq

i }Nq
i=1 is the ques-

tion with length Nq, P = {xp
j }Np

j=1
is the passage

with length Np, and c ∈ {1, 2, 3} is the opinion la-
bel to represent whether the converted statement
is true, false, or unidentified (in the case of word-
segmentation, Nq and Np represent the numbers of
words in question and passage, respectively). Thus,
the classifier is trained with the corresponding opin-
ion labels but not the original answers.

4 Our approach

Fig. 2 gives an overview of the proposed ap-
proach based on neural networks. First, hybrid tag-
ging embedding is pre-trained to represent the ques-
tion and passage. Then in the encoding layer, the
question and passage are processed by bi-directional

Table 2 Symbols used in this study*

Symbol Definition

Q A question in the sample
P A passage in the sample
c A candidate opinion in the sample
Nq Length of the question
Np Length of the passage
WC Segmented word list of a corpus
PC POS tags of WC
Nc Total number of words in a corpus
TC Produced hybrid tags
Fm Minimum word-frequency
⊕ Operator to concatenate strings
R̂ Label string denoting a certain rare word

xq
i , xp

j The ith word in a question and the jth word
in a passage, respectively

Lk Objective function corresponding to the kth

stacked bi-directional LSTM
∗ Symbols used only in a single section will be defined where
they appear and are not included in this table

Table 1 Comparative review of related works

Methodology Main contribution

Attentive reader (AR) (Hermann et al., 2015) First introduced an attention mechanism into the MRC task
Match-LSTM (Wang SH and Jiang, 2016) Built question-aware passage representation and first used pointer

networks
BIDAF (Seo et al., 2016) Used BIDAF to obtain query-aware context representation
R-NET (Wang W et al., 2017) Matched the question and passage with gated attention-based re-

current networks and used the self-matching attention mechanism
QANet (Yu et al., 2018) Adopted convolution networks and self-attention
BERT (Devlin et al., 2018) Pre-trained deep bi-directional representations from unlabeled text by

jointly conditioning on both left and right contexts in all layers
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Fig. 2 Overview of the proposed approach based on
neural networks

LSTMs separately. Outputs of every stacked LSTM
layer are obtained and incorporated into question
representation by the attention mechanism. As
shown in the dashed parts in Fig. 2, extra LSTM, at-
tention, and output layers are introduced to generate
auxiliary losses, making the parameters of the model
obtain more updates during the training process.

4.1 Hybrid embedding

Embedding has been widely used in the MRC
task. However, according to the competition rules,
external data are not allowed. Thus, the official
OQMRC dataset provided in the competition is the
only corpus for pre-training embedding. The com-
mon methods which pre-train word- or character-
level embedding independently do not work well with
such a small-scale corpus. To tackle this problem, we
combine POS tags to pre-train hybrid embedding,
which contains more semantic information and can
represent questions and passages better.

The detailed process is illustrated in Algo-
rithm 1. First, all the passages and questions are
joined in the training set one by one as the corpus
for later pre-training. Second, the official NLP tools
provided in the competition are used to pre-process
the corpus. After that, the segmented word list of the
corpus WC = {wn}Nc

n=1 and the corresponding POS
tags PC = {pn}Nc

n=1 are obtained, where Nc denotes
the total number of words. Then WC and PC are
combined to produce hybrid tags TC = {tn}Nc

n=1 for

every segmented word. Let Fm denote the minimum
word-frequency and “⊕” the operator to concatenate
strings. For a word wn, its hybrid tag tn is set to
{wn ⊕ pn} if its frequency is higher than Fm; other-
wise, the corresponding POS tag pn is set to a special
label string R̂ which denotes certain rare words, and
its hybrid tag tn is set to {pn−1 ⊕ R̂⊕ pn+1}.

The open-source tool word2vec (https://pypi.
org/project/word2vec/) (Mikolov et al., 2013a,
2013b) is used to pre-train the hybrid embedding,
and the produced hybrid tags TC = {tn}Nc

n=1 are the
inputs. After pre-training, every unique hybrid tag is
mapped to a d-dimensional embedding. Every word
in the questions and passages is represented by its
corresponding hybrid embedding.

Algorithm 1 Corpus tagging
Input: segmented word list of a corpus (WC =

{wn}Nc
n=1), POS tags of a segmented corpus (PC =

{pn}Nc
n=1), and the minimum word-frequency (Fm)

Output: hybrid tag for every segmented word in the
corpus (TC = {tn}Nc

n=1)
1: D = { } // Initialize an empty dictionary
2: for wn in WC do
3: if wn not in D then
4: D[wn] = 1 // Save a new word-frequency
5: else
6: D[wn] += 1 // Count the word-frequency
7: end if
8: end for
9: TC = [ ]

10: PC.insert(R̂, 0)
11: PC.insert(R̂,−1)
12: for wn in WC do
13: if wn in D and D[wn] >= Fm then
14: TC.append(wn ⊕ pn)
15: else
16: TC.append(pn−1 ⊕ R̂ ⊕ pn+1)
17: pn = R̂
18: end if
19: end for
20: Return TC

4.2 Question and passage encoding layer

Let xq
i ∈ R

d and xp
j ∈ R

d denote the ith

(1 ≤ i ≤ Nq) word in the question and the jth

(1 ≤ j ≤ Np) word in the passage, respectively. A
bi-directional LSTM is used in the question encoding
layer to produce a new representation qi ∈ R

d of xq
i .

Consider that the average length of passages is larger
than that of questions in the dataset, not one but K
(K > 1) stacked bi-directional LSTMs are used in
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the passage encoding layer. Let pk
j ∈ R

d denote the
output of the kth (1 ≤ k ≤ K) stacked bi-directional
LSTM BiLSTMk

P . Then the new representations of
question and passage are given as follows:

qi = BiLSTMQ(qi−1,x
q
i ), (1)

p1
j = BiLSTM1

P (p
1
j−1,x

p
j ), (2)

pk
j = BiLSTMk

P (p
k
j−1,p

k−1
j ). (3)

Note that the first stacked bi-directional LSTM
BiLSTM1

P takes the representation of the original
passage xp

j as input. Shown as the dashed parts in
Fig. 2, all the kth (k < K) stacked bi-directional
LSTMs and their following connected layers are
used only during training but not in the prediction
process.

4.3 Attention layer

The rise of attention mechanisms has
greatly boosted the performance of many NLP
tasks (Zhuang et al., 2017). Following previous
works, question-to-passage attention is used to
incorporate passage information into question rep-
resentation. Specifically, the attention mechanism
is applied to qi with every output pk

j of stacked
bi-directional LSTMs in the passage encoding layer.
Note that both qi and pk

j are d-dimensional, and
simple dot attention is chosen; thus, no extra
parameters are introduced in this layer. We also try
out other attention ways or their combination (Tan
et al., 2018), but find no significant difference or even
worse performance. Let “�” denote the operation of
dot product and ATTNk the attention function cor-
responding to the kth stacked bi-directional LSTM.
Then the attention result ak ∈ R

d is computed as

ak = ATTNk(qi,p
k
j )

=

Np∑

j=1

exp
(

max
1≤i≤Nq

ekij

)

∑Np
j=1 exp(e

k
ij)

pk
j , (4)

where

ekij = qi � pk
j . (5)

4.4 Output layer

As mentioned in Section 3, the problem is now
converted to a classification task to determine if the

statement converted from the original question is
true, false, or unidentified. After computing the at-
tention result ak corresponding to every stacked bi-
directional LSTM, we feed it into a classifier PREDk

to predict one from three candidate labels of each
converted statement. Specifically, a fully connected
layer with parameter W k ∈ R

3×d and a standard
softmax function are used to output the multi-class
label probabilities P k(C) ∈ R

3:

P k(C) = PREDk(ak) = softmax(W kak). (6)

Note that the multi-class label probabilities
P k(C) form a three-dimensional vector which con-
tains three real values corresponding to the proba-
bility of each class. The objective function Lk corre-
sponding to the kth stacked bi-directional LSTM is
to minimize the following multi-class cross-entropy
loss:

Lk = − 1

Nb

Nb∑

s=1

3∑

c=1

ysc log2 p
k
sc. (7)

We use mini-batch gradient descent to train the
model, where Nb denotes the number of samples in
a batch, ysc and pksc denote the one-hot label corre-
sponding to class c of the sth sample in the batch
and the probability predicted by the output layer,
respectively. Specifically, as mentioned in Section 3,
c ∈ {1, 2, 3} represents the converted statement to
be true, false, or unidentified.

4.5 Joint training

As encoders to a long text, stacked LSTMs often
give better results than the single LSTM (Sutskever
et al., 2014). However, stacked LSTMs are difficult
to train because of exploding and vanishing gradi-
ent problems (Pascanu et al., 2012). To deal with
this problem, more updates on the parameters of
stacked LSTMs should be performed. Motivated by
this insight, we jointly optimize all K multi-class
cross-entropy losses corresponding to every stacked
bi-directional LSTM in the passage encoding layer
during the training process:

L =

K∑

k=1

λkL
k, (8)

where λk denotes the weight of Lk and it is a hyper-
parameter to be tuned. Note that only the output
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layer and attention layer following the Kth stacked
bi-directional LSTM are used for model prediction,
which means that LK is the main loss and that all
other {Lk}k<K are auxiliary losses. During joint
training, all {λk}k<K linearly decrease after every
epoch until they reach zero.

4.6 Data augmentation

During AIC2018, to better understand the
OQMRC task, we carry out statistical analysis to
obtain the distribution of three labels in the training
set. Table 3 shows the results. Samples with label
true account for the largest fraction in the training
set (57.97%). Samples with label false are common
and account for nearly one-third (32.04%) in total.
In contrast, samples with label unidentified are rel-
atively rare and account for only 9.99%. Such a
distribution unbalances the training set and exerts a
bad influence on model training.

To tackle this problem, we propose a data aug-
mentation strategy to enrich the training set. Note
that in the competition no external data are allowed,
so our idea is to use the samples with label true to
generate more samples with label unidentified. The
strategy is applied to every sample with label true.

Fig. 3 shows an example of data augmentation.
First, the top-10 term frequency-inverse document
frequency (TF-IDF) (Wu HC et al., 2008) tokens
of question and passage are selected, denoted as
{tokenq} and {tokenp}, respectively. After that, the
intersection set {tokenqp} of {tokenq} and {tokenp}
is computed. It is natural to consider that the sen-
tences {sqp} containing words in {tokenqp} are more
relevant to the question. After removing all such rel-
evant sentences {sqp} from the original passage, the
remaining part {snqp} can be treated as irrelevant
to the question. In this case, it cannot be known if
the converted statement is true or false by reading
{snqp}. Therefore, a new sample with label uniden-
tified is generated, while its question is copied from
the original sample with label true and its passage
is {snqp}.

5 Experiments

In this section, experiments are conducted to
evaluate the performance of our approach. Experi-
mental results show that the proposed model outper-
forms the AIC2018 baseline and other competing ap-

Table 3 Distribution of three labels in the training
set for the AIC2018 OQMRC task

Label of Number of Ratio in total
converted statement samples (%)

True 144 925 57.97
False 80 100 32.04
Unidentified 24 975 9.99

Question: 
     做礼拜能不能玩手机
     Can I play on my cellphone at church?

Converted statement:
     做礼拜能玩手机
      I can play on my cellphone at church

Passage: 
      19%的美国人在去教堂做礼拜时玩手机。75%的美国人在任
                  何时候手机都不会超出距离自己1.5米的范围。54%的
                  美国人在床上玩手机，无论是睡觉前还是半夜醒来时。
      19% of Americans play on cellphones while going to church. 
              75% of Americans keep their cellphones within 1.5 m 
              from themselves. 54% of Americans play on 
              cellphones in bed, no matter before sleeping or waking 
              up in the midnight.

Label:  true   

{tokenq}: {手机(cellphone)}

{tokenp}: {手机(cellphone), 美国人(American)}

{tokenqp}: {手机(cellphone)}

{sqp}: 
     19%的美国人在去教堂做礼拜时玩手机。75%的美国人在任
                  何时候手机都不会超出距离自己1.5米的范围。54%的
                  美国人在床上玩手机
      19% of Americans play on cellphones while going to church. 
                  75% of Americans keep their cellphones within 1.5 m 
                  from themselves. 54% of Americans play on 
                  cellphones in bed

{snqp}: 
      无论是睡觉前还是半夜醒来时
       no matter before sleeping or waking up in the midnight

Fig. 3 An example of data augmentation

proaches. Ablation experiments are also conducted
to analyze the contribution of each component.

5.1 Dataset and evaluation metrics

The AIC2018 OQMRC dataset consists of
300 000 samples in total, with 250 000 in the training
set, 30 000 in the development set, and 20 000 in the
hidden test set. To preserve the integrity of the com-
petition, the organizers do not release the test set to
the public. Everyone must submit the predicted file
to obtain an official score on leaderboard.

Accuracy is used as the evaluation criterion in
the AIC2018 OQMRC task. It is defined as the num-
ber of correctly answered questions divided by the
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total number of questions (in the dataset every sam-
ple contains only one question).

5.2 Baseline and competing systems

There is an official baseline system provided in
the competition, which is implemented according to
Tan et al. (2018). In addition, the proposed ap-
proach is compared with the following works intro-
duced in Section 2: AR (Hermann et al., 2015),
match-LSTM (Wang SH and Jiang, 2016), BIDAF
(Seo et al., 2016), R-NET (Wang W et al., 2017),
QANet (Yu et al., 2018), and BERT (Devlin et al.,
2018). Note that some of these systems are designed
for the span-selection MRC task. To make them suit-
able for this OQMRC competition, fully connected
layers are used to replace the original pointer net-
works to deal with this task as described in Section 3.

5.3 Implementation details

In the AIC2018 competition, external data are
forbidden. Thus, the word and character embeddings
used by the competing systems (including BERT pre-
training) can be trained only with the textual con-
text in the AIC2018 OQMRC dataset. However, the
official baseline system provided the basic Chinese
NLP tool Jieba (https://pypi.org/project/jieba/) to
obtain the POS tags for pre-training the hybrid em-
bedding and TF-IDF values for data augmentation.

The dimensions of the hybrid embedding and
the hidden vector for all layers are set to 256. Be-
cause of the GPU memory limitation of the virtual
machine provided in AIC2018, at most four stacked
LSTMs can be used in the passage encoding lay-
ers. Otherwise, there would be an out of memory
(OOM) issue in the training process. Dropout (Sri-
vastava et al., 2014) is applied between every two
connected layers, with a rate of 0.2. To keep most
passages (99.9%) complete, the maximum length of
passage input is set to 300 words. Longer ones will
be cut and zero-vectors will be appended to the tail
if the passage is shorter. Specifically, only the gener-
ated samples whose passage is longer than five words
are kept in data augmentation. We add 53 210 new
samples with label unidentified in total to the train-
ing set. During the training process, the model is
optimized via Adam (Kingma and Ba, 2014) with a
fixed learning rate of 1.0 × 10−3 and a batch size of
256. All {λk} are initialized as one, and all {λk}k<K

linearly decrease by 0.05 after every epoch until zero.

5.4 Results

Table 4 shows the performances of the pro-
posed approach and other competing systems on the
AIC2018 OQMRC dataset. The aim is to compare
the performances of different approaches; therefore,
we report the single system but not multi-system en-
semble results. The development (dev) set accuracy
is computed offline and the test set accuracy is ob-
tained by submitting the predicted file to the official
website of AIC2018. As Table 4 shows, the pro-
posed approach achieves the state-of-the-art results
with 76.35% dev accuracy and 77.52% test accuracy,
outperforming all other methods.

Table 4 Accuracies of the proposed approach and
competing systems in the dataset for the AIC2018
OQMRC task

Method Accuracy (%)

Dev Test

Official baseline (Tan et al., 2018) 69.52 69.90
AR (Hermann et al., 2015) 65.32 66.04
Match-LSTM (Wang SH and Jiang, 2016) 70.25 70.99
BIDAF (Seo et al., 2016) 72.30 72.56
R-NET (Wang W et al., 2017) 73.66 74.14
QANet (Yu et al., 2018) 61.37 62.11
BERT (Devlin et al., 2018) 70.65 70.99
Our approach 76.35 77.52
Dev: development. The best results are in bold

5.5 Ablation studies and discussion

We conduct ablation experiments on each com-
ponent of the proposed approach, and investigate the
effect of data augmentation. Note that the test set is
not published, so we must spend one submit chance
to obtain an official test accuracy every time. To save
submit chances during the competition, some of the
ablation experiments are not conducted on the test
set. However, the ablation studies are still convinc-
ing since all the results on the development (dev) set
are reported.

For ablating hybrid embedding (HE) introduced
in Section 4.1, we do not use the POS tagging tool
and pre-train the embedding with a simple word-
segmented corpus. Note that character-level em-
bedding (CE) is also widely used in the MRC task
(Seo et al., 2016; Wang W et al., 2017), and that
there are other ways to incorporate POS information
into the representation, like concatenating POS tag
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embedding (PE) with word embedding (Liu et al.,
2018). We also test these methods in the ablation
experiments.

For ablating joint training (JT) introduced in
Section 4.5, all the extra layers in dashed parts of
Fig. 2 are removed, and the networks are trained with
a single main loss. We also test residual connections
(RC) in stacked LSTMs for comparison. This is fa-
mous for training deeper and stacked layers (He KM
et al., 2016; Wu YH et al., 2016). With residual con-
nections between stacked LSTMs, Eq. (3) becomes

pk
j = BiLSTMk

P (p
k
j−1,p

k−1
j ) + pk−1

j . (9)

Data augmentation (DA) is ablating by exclud-
ing the new samples generated from the training set.

As illustrated in Table 5, all components con-
tribute towards the performance of the proposed ap-
proach. Removing any of the components, or re-
placing it with a comparative one, leads to lower
accuracy. The use of JT allows the network parame-
ters to obtain more and better updates, and thus it is
crucial (both dev and test accuracies drop drastically
by more than 3% if it is removed). Hybrid embed-
ding is also a necessary component that contributes
1.7%/1.49% gain of dev/test accuracy, since it com-
bines the POS information of context around rare
words and can better handle the out-of-vocabulary
(OOV) problem, especially in the situation where
external data are forbidden. The strategy of data
augmentation also makes a prominent contribution
to performance. It causes slightly lower dev accuracy
(almost 1%) if ablated. This demonstrates that the
generated samples can relieve the problem of data
imbalance.

As mentioned in Section 4.5, deeper stacked
LSTMs are more difficult to train because of ex-
ploding and vanishing gradient problems. The JT
method is proposed to solve this problem. Table 6
shows the additional ablation experiments to inves-
tigate the impact of depth in the model with the
JT method. The number of layers in the stacked
LSTMs is changed from two to four to evaluate the
development set.

We have three major observations from Table 6.
First, the three-layer stacked LSTMs have higher ac-
curacy than the two-layer stacked LSTMs, whether
there is JT or not. However, four-layer stacked
LSTMs have lower accuracy without JT due to the

difficulty in training deeper stacked LSTMs. Sec-
ond, with JT the situation is reversed—the four-
layer stacked LSTMs achieve higher accuracy than
the three-layer ones. Moreover, all the two to four
layers achieve higher accuracies. Last, deeper nets
achieve more improvements in accuracy than shal-
lower nets. With JT the four-layer stacked LSTMs
achieve 3.23% improvement, while the three-layer
ones achieve 1.16% and two-layer ones only 0.74%.
The residual connections bring similar but smaller
improvements. This demonstrates the effectiveness
of the proposed JT method.

Table 5 Ablation performance of the proposed
approach

Method Accuracy (%)

Dev Test

Our approach 76.35 77.52
-JT 73.12 (−3.23) 73.96 (−3.56)
-JT+RC 75.28 (−1.07) N/A
+RC 76.26 (−0.09) 77.33 (−0.19)
-HE 74.65 (−1.70) 76.03 (−1.49)
-HE+CE 74.77 (−1.58) N/A
-HE+PE 74.55 (−1.80) N/A
-HE+CE+PE 74.71 (−1.64) N/A
+CE+PE 75.84 (−0.51) 76.97 (−0.55)
-DA 75.44 (−0.91) N/A
-: exclude; +: include. JT: joint training; HE: hybrid embed-
ding; DA: data augmentation; RC: residual connections; CE:
character-level embedding; PE: POS tag embedding; Dev:
development. N/A: not applicable

Table 6 Ablation performance of joint training in the
development set

Method Accuracy (%)

Two-layer Three-layer Four-layer

Our approach 73.94 75.11 76.35
-JT 73.20 (−0.74) 73.95 (−1.16) 73.12 (−3.23)
-JT+RC 73.18 (−0.76) 74.27 (−0.84) 75.28 (−1.07)
+RC 73.77 (−0.17) 75.02 (−0.09) 76.26 (−0.09)
-: exclude; +: include. JT: joint training; RC: residual
connections

6 Conclusions

In this paper, we have focused on real-world
opinion question machine reading comprehension.
A novel approach based on neural networks has
been proposed to tackle the problem. POS tags
have been combined into embedding pre-training
to enrich the semantic representation of question
and passage. Extra attention and output layers
have been introduced in the training process, and
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multiple losses have been jointly optimized to better
update the parameters of networks. To relieve the
problem of data imbalance in the competition, a
data augmentation strategy has been implemented
to generate new samples. Experimental results
indicated that the proposed approach achieved
state-of-the-art performance in the challenging
AIC2018 OQMRC dataset. The ablation analyses
also demonstrated the importance of each com-
ponent of the proposed approach. In the future,
we plan to use hybrid embedding in other neural
network models and NLP tasks. Furthermore, we
will extend the JT framework to handle deeper
stacked LSTMs.
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