
Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 374

EdgeKeeper: a trusted edge computing framework for
ubiquitous power Internet of Things*

Weiyong YANG1,2, Wei LIU2, Xingshen WEI2, Zixin GUO2,

Kangle YANG†‡2, Hao HUANG1, Longyun QI2

1Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China
2NARI Group Co., Ltd., Nanjing 210003, China

†E-mail: yangkangle@sgepri.sgcc.com.cn
Received Nov. 20, 2019; Revision accepted Mar. 16, 2020; Crosschecked May 29, 2020; Published online Jan. 8, 2021

Abstract: Ubiquitous power Internet of Things (IoT) is a smart service system oriented to all aspects of the power system, and has
the characteristics of universal interconnection, human-computer interaction, comprehensive state perception, efficient infor-
mation processing, and other convenient and flexible applications. It has become a hot topic in the field of IoT. We summarize
some existing research work on the IoT and edge computing framework. Because it is difficult to meet the requirements of ubiq-
uitous power IoT for edge computing in terms of real time, security, reliability, and business function adaptation using the general
edge computing framework software, we propose a trusted edge computing framework, named “EdgeKeeper,” adapting to the
ubiquitous power IoT. Several key technologies such as security and trust, quality of service guarantee, application management,
and cloud-edge collaboration are desired to meet the needs of the edge computing framework. Experiments comprehensively
evaluate EdgeKeeper from the aspects of function, performance, and security. Comparison results show that EdgeKeeper is the
most suitable edge computing framework for the electricity IoT. Finally, future directions for research are proposed.

Key words: Internet of Things; Ubiquitous power Internet of Things; Edge computing; Trusted computing; Network security
https://doi.org/10.1631/FITEE.1900636 CLC number: TP391

1 Introduction

To accelerate the strategic deployment of a
world-class energy Internet company with global
competitiveness, the State Grid Corporation of China
promoted a comprehensive plan for the “three-type
(hub-, platform-, and shared-type) and two-network
(strong smart grid and ubiquitous power Internet of
Things (IoT))” construction in 2019 and built a
“three-type” enterprise, which is an important starting
point for building a world-class energy Internet en-

terprise. Construction and operation of the “two-
network” constitutes an important material basis for
building a world-class energy Internet company. The
construction of “three types and two networks” is the
company’s specific practice of the network power
strategy, an important measure to implement the
central government’s deployment and give play to the
leading role of central enterprises, and is an inevitable
requirement to adapt to internal and external situa-
tions and challenges. The ubiquitous power IoT,
which fully applies modern information technology
(IT) and advanced communication technologies such
as mobile Internet and artificial intelligence (AI) to all
aspects of the power system, is a smart service system
that uses convenient and flexible features. It achieves
interconnection and human-computer interaction of
all links in the power system, with comprehensive
state perception and efficient information processing.

‡ Corresponding author

* Project supported by the State Grid Corporation Science and Tech-
nology Project, China

 ORCID: Weiyong YANG, https://orcid.org/0000-0001-8430-
9168; Kangle YANG, https://orcid.org/0000-0001-7646-4336
© Zhejiang University Press 2021

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1900636&domain=pdf

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 375

The creation of the ubiquitous power IoT has opened
up a new path for safer grid operation, better learner
management, more accurate investment, and better
service. At the same time, it can make full use of the
unique advantages of the power grid and open up the
huge blue ocean market of the digital economy.
Building ubiquitous power IoT is the core task in
implementing the strategic objectives of a “three-
type, two-network, and world-class” system.

With the gradual advancement of the ubiquitous
power IoT, edge computing framework has gradually
become a research hotspot. The design of an edge
computing framework is diverse and generally in-
cludes the following functions: resource management
based on the edge operating system (OS), access to
subdevices, data collection, device control, security
management, application management, and IoT
platform interaction. According to the design goals
and application scenarios, it can be divided into three
categories: edge computing for IoT, edge computing
for edge cloud services, and edge computing for cloud
edge fusion (Liang et al., 2019). The ubiquitous
power IoT has both the edge computing for IoT and
cloud-edge convergence application scenarios.

In general, in edge computing for IoT, the edge
computing framework plays mainly the following
roles (Edge Computing Consortium, 2018): (1) Ap-
plication (APP) controlling. After the IoT manage-
ment platform issues control commands, the edge
agent (edge frame) is made to receive them and acts as
an agent to control the APP in the cloud. (2) Data
sharing. The data collected by the service APP caches
data on the edge association agent and provides a
mechanism for data sharing between different APPs.
(3) Edge computation. The edge side performs edge
computation based on real-time data, cache data, and
models issued by the IoT management platform. (4)
Cloud-side collaboration. Cloud-side collaboration
system covers resource collaboration, data collabora-
tion, intelligent collaboration, application manage-
ment collaboration, business management collabora-
tion, and service collaboration. (5) APP development.
To simplify the development of APP, it is necessary to
refine the general interfaces, such as data cache, se-
cure access, data collection, and APP management, to
form a unified software development kit (SDK).

Ubiquitous edge computing of power IoT is just
in its infancy, and there are currently many problems:

(1) The existing sensing capabilities are not fully used,
and the sharing among professionals and the resource
reuse are insufficient. A large number of existing
sensing devices are not fully functioning; each pro-
fessional system is self-contained, and the sensing
devices are repeatedly deployed, making the system
difficult to achieve one-time acquisition and sharing,
thus resulting in insufficient data penetration and
insufficient data mining to improve the safe operation
level, efficiency of power grid, work quality, and so
on. (2) The local scene perception depth is insufficient;
the user’s energy information is not timely, the dis-
tribution information coverage is incomplete, and the
emerging business perception is not fully shared. (3)
There lack business support capabilities and per-
ceived sources on the Internet side; the network de-
ployment structure cannot support the development of
new formats, such as integrated energy services and
data operations. It needs standardization of the per-
ception system and rectification of the lack of intel-
ligence. Application requirement cannot be dynami-
cally changed, and a large amount of on-site opera-
tions and maintenance are required. Without stand-
ardization of construction, it is difficult to centralize,
control, and achieve the goal of one source of data.
Therefore, it is necessary to construct a unified edge
computing framework to help construct the ubiqui-
tous power IoT and support the strategic objective of
a “three-type, two-network, and world-class”
framework.

Due to the uniqueness of the ubiquitous electric
power IoT, traditional edge computing supported
software cannot meet the needs of the ubiquitous
electric power IoT in terms of edge computing. First,
the power business, especially the business related to
grid control, has strong real-time requirements. The
application-based software cannot meet the real-time
requirements of power business alone, especially the
maximum response time of system interruption. The
terminal response time is usually around 200 µs, and
it is difficult for the general Linux-based application
software to meet the requirements of power in real
time. Second, the ubiquitous gateways of the electric
power IoT are widely distributed in the wild, build-
ings, plants, and other places. Gateway devices are
faced with great network security threats and business
reliability challenges at the levels of software, OS,
and even hardware. How to ensure the security and

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 376

reliability of devices and services based on the edge
computing framework has become a major challenge.
Third, in the multiservice convergence scenario of the
IoT, cloud and edge collaboration is provided to the
power business as a whole. Achieving multiservice
and multidimensional cloud-side collaboration to
meet complex business requirements has become an
important issue for the edge computing framework.

In this study, we design and implement a set of
trusted edge computing frameworks that meet the
edge computing functional requirements of the ubiq-
uitous power IoT, and solve many technical problems.
The edge computing framework adheres to many
principles: (1) It adheres to the principle of “side-end
separation,” and develops and deploys a unified edge
IoT agent which separates the functions of the edge
IoT agent and the sensing collection terminal. The
“end” focuses on perception and collection with a
huge scale and simple functions, and the “side” fo-
cuses on data convergence, intelligent expansion,
resource sharing, one-site one-side, and unified col-
lection of data sources, to achieve front-end business
integration, thus forming edge computing and re-
gional autonomy. (2) It adheres to the principle of
“shared by side management,” builds a unified man-
agement platform for IoT, and achieves unified access,
unified operation, and unified control of the edge
agent terminals. (3) Under the premise of “reliability,
controllability, and customization,” the unified IoT
perception system should establish unified technical
specification and fully absorb the advanced and ma-
ture technologies of the Internet. (4) Considering both
the security and ease of use, the existing security
protection measures are extended in the information
intranet, and the general security protection scheme
adapted to the Internet architecture is adopted to the
Internet side to achieve safe and convenient access to
user terminals. The overall security protection strat-
egy for the IoT perception system requires the de-
velopment of the IoT management platform and the
edge agent association standard. It also needs to em-
bed the relevant security protection design in the
design and development stage. Finally, through the
IoT management platform and edge material agent
device, the problems of repeated acquisition of ex-
isting power terminals, multiple protocols, scattered
data storage are changed. Through data acquisition at
one time and multiple applications, unified standards,

unified management and control, and unified opera-
tions are achieved.

2 Related works

Since 2015, edge computing has entered into
Gartner’s hype cycle (technology maturity curve). It
has set off a wave of industrialization. Various in-
dustrial and commercial organizations are actively
initiating and promoting research, standards, and
industrialization activities for edge computing.

In academic research, IEEE/ACM Symposium
on Edge Computing was formally established in Oc-
tober 2016, which formed an academic forum jointly
recognized by academia, industry, and government.
The application to edge computing and forum’s re-
search directions have been discussed (Shi and
Dustdar, 2016; Shi et al., 2016; Satyanarayanan,
2017). In the past two years, special attention has
been paid to the performance in IoT scenarios (Ma-
heshwari et al., 2018), security (Ahmed et al., 2018),
application scenarios (Chao et al., 2018), cloud-edge
collaboration (Ai et al., 2018), and integration with AI
and other technologies (Aral and Brandic, 2018; Feng
et al., 2018; Jang et al., 2018). In May 2018, the 3rd
ACM/IEEE Symposium on Edge Computing was
held in China. Many universities and research insti-
tutes discussed edge computing interactively to sort
out the needs of developers. In addition, many do-
mestic scholars have carried out extensive research on
data models (Li JR et al., 2018), computational mod-
els (Shi et al., 2017), industrial applications (Wang
et al., 2013; Li SN and Luo et al., 2014; Zhang et al.,
2018; Zuo et al., 2019), and network security (Yang
YM and Song, 2015; Sha et al., 2018) in edge com-
puting scenarios.

In terms of standardization, the International
Electrotechnical Commission (IEC) released the Ver-
tical Edge Intelligence (VEI) White Paper (Jang et al.,
2018) in 2017, which introduces the importance of
edge computing for vertical industries such as man-
ufacturing. The International Organization for
Standardization (ISO)/IEC established the Edge
Computing Research Group. Edge computing has
become an important connotation of the framework in
the IEEE P2413 standard for the architectural
framework for IoT. The China Communications

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 377

Standards Association (CCSA) established the In-
dustrial Internet Ad Hoc Group (ST8).

In terms of industry alliances, in November 2016,
Huawei, China Electric Power Research Institute,
China Information and Communication Research
Institute, Intel, Advanced RISC Machine (ARM), and
iSoftStone Information Technology Co., Ltd. jointly
launched the Edge Computing Industry Alliance. In
2017, under the Global Industrial Organization In-
dustrial Internet Consortium (IIC), Edge Computing
TG was established and a partial edge computing
reference framework was defined. In 2019, to accel-
erate the strategic deployment of a world-class energy
Internet company with global competitiveness, the
State Grid Corporation of China made a comprehen-
sive promotion of the “three-type and two-network”
construction. Many researchers in the power industry
began relevant applied research and practice (Cai
et al., 2019; Chen et al., 2019; Xu, 2019; Liu et al.,
2019).

In terms of the specific edge computing frame-
work, edge computing for IoT, edge computing for
edge-cloud services, and edge computing for cloud
edge fusion are the mainstream edge computing
frameworks.

Edge computing for IoT dedicates to solving
problems in the process of developing and deploying
IoT applications, such as multiaccess methods. For
example, EdgeX Foundry (Saxena and Salem, 2015),
a standardized interoperability framework developed
for industrial IoT edge computing, provides an ex-
tremely simplified and standardized edge computing
architecture for industrial IoT around the ecosystem
of interoperability components. Apache Edgent
(https://www.oschina.net/p/apache-edgent) is a pro-
gramming model and a runtime edge framework with
the microkernel style. It focuses on efficiently ana-
lyzing data from the edge, which can accelerate the
development of edge computing applications in data
analysis. Apache Edgent with rich application pro-
gram interfaces (APIs) can be deployed in the edge
computing of running Java virtual machines for real-
time analysis of data from devices and for actual
accelerated development needs of networks. Predix
(Zhou, 2018) is oriented to manufacturing industry. It
provides a development framework, supports the
access of open field protocols, enhances the function
of edge computing, and develops the corresponding

functions of device access and edge computing by
partners.

Edge computing for edge-cloud services focuses
mainly on optimizing or rebuilding the infrastructure
of network edge, to build data centers on the edge of
the network and provide similar cloud center services,
which are usually found on the edge of network op-
erators such as cellular network base stations. Central
Office Re-architected as a Datacenter (CORD), a
representative of the Open Networking Foundation
(ONF), reconstructs the edges of networks using
software-defined networks and Network Function
Virtualization (NFV) cloud computing technology.
CORD provides edge-cloud services on the edge of
operators. For users, it does not need to provide
computing resources or build a platform, thus reduc-
ing the cost of hardware and software. In addition, the
Linux foundation provides an open-source project
named “Akraino Edge Stack” for high-performance
edge cloud, dedicating to developing a set of open-
source software stacks to optimize network construc-
tion and management of the edge infrastructure.

For edge computing based on cloud edge con-
vergence, cloud computing service providers are
important promoters of edge computing. Based on the
concept of “cloud edge convergence,” they are
committed to extending cloud service capabilities to
the edge of network. Typical examples include AWS
Green Grass, Baidu OpenEdge (Shen and Yang,
2015), Ali Link IoT Edge, and Azure IoT Edge, aim-
ing at mixing cloud and edge computing frameworks,
as well as expanding cloud capabilities to edge de-
vices to achieve low latency. Edge frameworks on the
edge device often use the same programming model
on the cloud.

Different frameworks have different under-
standings, scheme designs, and implementation ideas
for edge computing, and are not compatible with each
other. The edge framework of the ubiquitous power
IoT is dominated by the edge computing scenarios for
IoT, and at the same time, there are certain cloud-edge
fusion computing scenarios. For the computing
frameworks, OpenEdge has limited functions and is
closely tied to the Baidu IoT platform, but it can be
used for functional calculation. KubeEdge adapting
edge computing based on the Kubernetes technology
has limitations on platform technology, and is tightly
coupled to the platform. EdgeX modules are

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 378

decoupled, APP runs in the form of microservices,
and APP management is implemented by REST API
calls. It is a relatively complete solution to the indus-
trial IoT, but lacks cloud-edge convergence and se-
curity considerations. EdgeX provides the interface
only for data export and cannot communicate directly
with the IoT management platform. EdgeX lacks the
functions of application issuance, upgrade, manage-
ment, business APP control, equipment management
control, and monitoring. At the same time, EdgeX
lacks the security reinforcement scheme, design in
security access, access control, and application
command verification. It is necessary to develop an
interaction process with an IoT management platform
based on the interaction specification.

3 EdgeKeeper

The ubiquitous power IoT is not only a network

infrastructure but also an application of IoT technol-
ogy. It is a comprehensive application of new infor-
mation and communication technology (ICT).
Through mutual penetration and intelligent interac-
tion between information-physics fusion and the new
generation power systems, the company can achieve
energy and electricity production and consumption.
The real-time online connection and integration of
people, machines, and objects in each link has grad-
ually formed an infrastructure to support the opera-
tion of China’s Energy Internet. The ubiquitous power
IoT provides horizontal support for the entire business
and shields differences in the underlying network

through the IoT agent and the IoT management plat-
form to achieve the first horizontalization for con-
nections of things. Through the capability open center,
the user, business, and terminal can be integrated to
realize collaboration and achieve the secondary level
of operation on the full-service cloud. The platform
supports cloud-fog integrated processing, power ser-
vice data streaming, device data streaming, and se-
cure data streaming based on storage, management,
and analysis in the full-service data center. The con-
cept of “collected once, used everywhere” expands
the ability of supporting the entire business. The
overall functional architecture of the ubiquitous
power IoT is shown in Fig. 1.

The ubiquitous power IoT platform is composed
mainly of the IoT management platform and the ca-
pacity open center. It manages the IoT agent, the
terminal, and network resources, supports the busi-
ness upwards, and provides the API for businesses to
become open for outside operations. The IoT man-
agement platform supports ubiquitous links, achieves
establishment, maintenance, and configuration of
network topological links, and enables virtualized
orchestration/management of network resources,
status monitoring, centralized configuration, remote
upgrade of devices such as terminals, and functions of
identity authentication and authority management of
users inside and outside the network. The capability
open center provides the development environment
and API for business applications, which support
third-party capability integration, business applica-
tion, rapid development publication, and message
push. Edge computing is used mainly in the agent of

Fig. 1 Ubiquitous power Internet of Things (IoT) functional architecture

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 379

object, supporting the ubiquitous power IoT in APP
control, data sharing, computing, cloud-edge collab-
oration, APP development, and other functions.

3.1 Overall framework

The edge computing framework, EdgeKeeper, is
divided into the hardware layer, OS layer, basic
functional layer, and edge service layer in the func-
tional architecture. The hardware layer includes the
unique identifier of the device, trusted computing
module, trusted execution environment, and security
cryptographic module. It provides a secure and con-
fidential space for the privacy data and for sensitive
computing in the execution environment, in addition
to implementing the chip in the system. The step-by-
step trusted verification of the startup, i.e., the OS
layer, includes functions such as system monitoring,
secure access, application isolation, and trusted met-
rics to ensure that only the programs that pass the
authentication can run in the system. The hardware
layer and OS layer ensure the safety of the framework.
The basic functional layer includes subdevice access,
object model management, message queue, and other
functions. Microservices in the basic functional layer
communicate with devices, sensors, actuators, and
other IoT objects through the protocols inherent in
each IoT object. The generated and transmitted data is
converted into a common data structure, and the

matched data of the object model is sent to the upper
service. The edge service layer includes functions,
such as flow calculation, rule engine, and various
microservices, which provide edge analysis and data
processing, and supports cloud-side collaboration of
resources, data, intelligence, application management,
and so on. The functional framework of EdgeKeeper
is shown in Fig. 2.

We fully learn from the advantages of EdgeX,
OpenEdge, and KubeEdge. EdgeX Foundry locates
the industrial IoT and solves the interoperability
problems of IoT devices and various business proto-
col issues. The components implement data to cache
and upload, the command controls forwarding and
execution, and the rule engine implements complex
business processes. OpenEdge locates cloud-edge
fusion, function computing can achieve lightweight
edge computing, and decoupling between APPs is
based on message queuing telemetry transport
(MQTT). The agent interacts with cloud, and the
engine acts as the background to manage the business
APP. Both OpenEdge and EdgeX are based on con-
tainers for a business APP, and have complementary
business functions. KubeEdge is friendly to cloud-
edge integration based on Kubernetes (k8s). In the
end, we integrate the design concepts of EdgeX,
KubeEdge, and OpenEdge to design the edge com-
puting framework of EdgeKeeper (Fig. 3).

Fig. 2 Ubiquitous IoT edge computing functional framework

Subequipment life
cycle management

Application
development, testing,

and publishing

Centralized
trainingData analysis

Business
orchestration

Resource synergy Data
coordination

Intelligent Application
management
collaboration

Business management
synergy

Flow calculation Rule engine Function
computation Image recognition ML model prediction

Speech
recognition

Service
collaboration

Local management Topology managementApplication managementMessage queue

Subdevice access Control commandMaterial model
management

Data persistence

System detection Security authentication Secure access Security upgrade

Real-time
scheduling

Application space and
privilege isolation Credibility measure Whole encryption

Nonclonal function
Secure password

module
Tensible computing

module
Trusted execution

environment

...
Federation of

Things
management

center

Edge
service
layer

Basic
functional

layer

Operating
system
layer

Hardware

layer

coordination

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 380

3.2 Object model design
The business application senses environmental

changes from the terminal device through the under-
lying driver, generates data, and reports data to the
IoT management platform. A large number of nonin-
telligent sensors send data periodically at different
frequencies in the industry, which is forwarded to the
International Telecommunication Union (ITU) man-
agement platform by the edge computing agent de-
vice. Edge agents need to identify semantic infor-
mation and perform preprocessing, such as data de-
noising and deduplication, emergency analysis, data
format conversion, and retransmission encryption.
After receiving the data, the IoT management plat-
form needs to verify the data based on data standards
such as integrity and data format, and data protocols
generated by different devices are completely dif-
ferent, especially in electric power plausibility check.
The above work usually faces great challenges in
practical applications. Due to various types of devices,
data formats, and transmission industries, industrial
equipment, complex industrial control protocols, and
diverse business requirements have caused the IoT
agent to face difficulties in the preprocessing and
edge computing stages. The IoT management plat-
form lacks the basis to check the data after receiving it.

To solve the above problems, the concept of
object model is introduced in the design of ubiquitous
power IoT, aimed at unifying the terminal equipment
model and the data model of the terminal equipment.
Through the standardized descriptions of equipment
capabilities, functions, attributes, and status, the data
uploaded by the agent and intelligent terminal
equipment is checked in the management platform of
the IoT, and the IoT agent performs information col-
lection and service control on sensors in the grid
business application.

The object model must be based on a self-
describing grammar format (Boutaud and Ehlig,
1991), which contains all the information needed to
describe the device. A complete description of device
capabilities is achieved by mapping the device to
three-dimensional attributes, interfaces, and events.
The attribute contains the static and extended attrib-
utes of the IoT terminal entity. A static attribute is a
natural attribute value that does not change through-
out the life cycle of an IoT terminal. The dynamic
attribute refers to the service data that the terminal
entity actively reports periodically and that needs to
be dynamically added according to the service re-
quirements during the whole life cycle management
process. Events refer to the business messages and

 Fig. 3 EdgeKeeper: component interaction

Federation of Things management center

IOT hub

Agent (cloud edge collaborative interaction interface)

OS repoDocker registry

Message bus

Unified management

Background engine

Secure trusted
operating system

Core server

Equipment

Application

Rule
engine

Task
scheduling

Function
call

Date
distribution

Data
cache

Equipment
control

Equipment
model

Device
registration

Container Container Container Container

Trusted
boot

Remote
proof

Data
security

Container
safety

Integrity
metric

System
upgrade

...

System
monitoring

Resource
management

... ...

Application
management

Parameter
management

Safety
management

Edge association agent

Edge computing capability open framework

Control commands

Equipment control System monitoring

Business
control

Business data collection

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 381

security events reported by the terminal entity on its
initiative. Interface means that the IoT terminal ac-
cepts the control command and makes a correspond-
ing description. The business unit defines the inter-
face that needs to conform to a certain format, as
shown in Table 1.

3.3 Edge calculation

At present, there is still a lack of an accurate and
unified definition of edge computing. Industry and
academia have described edge computing from their
own points of view (Luan et al., 2015; Hu et al., 2015;
Mach and Becvar, 2017; Mao et al., 2017). In general,
edge computing is a new computing model. Com-
pared with cloud computing, computing and storage
resources are deployed on the terminal device side to
obtain higher computing real-time performance and
improve service responsiveness. In addition, non-
critical data processed on the edge side no longer
needs to be uploaded to the data center, which greatly
reduces network overhead and resource pressure on
cloud computing.

EdgeKeeper provides edge computing capabili-
ties based on techniques such as the rule engine
(https://www.progress.com/openedge) and function
calculation (Fultz et al., 2010). The business program
running on EdgeKeeper acquires the data actively
from a terminal device. The process of edge-free
computing involves forwarding edge agents to the IoT
management platform. To reduce useless data trans-
mission, the edge calculation model pushes some
computing tasks down to the edge side for execution.
In a typical edge computing scenario supported by
EdgeKeeper, the APP fetches data from the device.
EdgeKeeper’s internal components publish the data
as events, and any internal components and programs

that subscribe to the event will obtain a copy of the
event. In fact, EdgeKeeper implements the edge event
triggering mechanism through the rule engine to re-
duce the response time. As the key data service,
EdgeKeeper’s rule engine subscribes to all internal
APP events and receives all the data collected by the
APP. The response is triggered by reading and loading
the rule file of the IoT management platform. The rule
file describes the events of interest, the triggered
actions, and the condition of the triggered actions.

EdgeKeeper implements two types of edge
computing methods. The first method is based on the
event-triggered device to control operations. As
shown in Fig. 4, when the built-in rules in the rule
engine are compared with the data collected by the
marketing APP, the control behavior of the APP on a
certain device will be triggered according to the rules.
Another kind of edge computing model is more
flexible. The data collected by the APP will trigger
the calculation of a function if it meets the require-
ments after comparison with the data collected by the
rule engine. The instance of function calculation is
managed uniformly by the local function calculation
background engine. The rule engine needs only to
specify the name of the function that needs to be ex-
ecuted, and this invokes the background engine in-
terface to start the function calculation instance and
process the collected data. This process includes data
denoising, data format conversion, data encryption
before transmission, and complex business logic
processing such as line loss calculation. The ad-
vantages of function calculation are light weight and
flexibility. Usually, the data processing tasks are rel-
atively simple, and do not require complex operations.
The instance loading and starting steps are fast, and
the edge system resources are less occupied.

Table 1 Interface definition of the object model

Parameter Description Mandatory
Interface name Supporting Chinese, uppercase and lowercase letters, numbers, dashes, and

underscores
Yes

Interface identifier A unique identifier, the service identifier under the same power IoT
terminal, cannot be repeated

Yes

Call method Asynchronous: when the service is called asynchronously;
synchronous: when the service is called synchronously

Yes

Inputs Setting the inputs of the interface No
Outputs Setting the outputs of the interface No
Description Description of the attribute limited to 100 bytes No
Extended description Mapping relationship between the communication protocol supported by the

power object terminal and the standard object model
Yes

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 382

EdgeKeeper’s edge computing capability is
important. Business logic tightly coupled with de-
vices, such as data acquisition and business control,
can be encapsulated in the device APP, which can run
for a long time without requiring updating unless the
device fails. The data collected by these device-class
APPs can be based on the rule engine in EdgeKeeper,
sharing and flexibly constructing high-level business
applications in different edge computing APPs. In this
way, data collection and business applications can be
completely decoupled. The edge computing APP can
be updated at any time to meet business needs, but
data collection and equipment control will not be
interrupted.

3.4 Interactive protocol

The IoT agent in ubiquitous power IoT has
flexible edge computing capabilities. As an important
supporting device, it must cooperate with the cloud to
achieve cloud-edge collaboration. The interaction
protocol aims to eliminate the difference in IoT in-
terconnection (Shen and Yang, 2015). As the standard

of interaction protocol between the IoT agent and
cloud, it regulates the transport layer protocol tech-
nology, application layer protocol, business message
category, message format and message semantics, and
request and response time sequence relationship of
cloud-side interaction. As specification of the north-
bound interface, the interactive protocol includes the
management plane and data plane. EdgeKeeper fo-
cuses on implementing the interaction specification of
the management plane. For the interaction of the data
plane, due to its strong business relevance, it is re-
served as an extension. The communication protocol
is shown in Table 2.

The EdgeKeeper interaction protocol is based on
the MQTT protocol, and JavaScript object notation
(JSON) is used as the format of the service message,
which greatly simplifies the interaction protocol with
the cloud. If the cloud issues the device upgrade
command, the IoT agent receives the cloud system
upgrade command and triggers a complete upgrade
operation. The corresponding semantic information is
shown in Table 3, and the cloud control message is as
follows:

{
 "method": "update",
 "params": [{
 "type": "os",
 "name": "glibc",
 "version": "2.17",
 "config": ""
 }]
}

Table 2 Communication protocol

Name Description
Device activation Interactive process of activation of the agent of the IoT before online
Device access Interactive process of agent access to cloud
Equipment upgrade Interactive process of remote upgrading of agent equipment in the IoT
Device configuration IoT agent accepts a remote configuration interaction process
Equipment monitoring The cloud monitors the interaction process of the agent
Equipment control The cloud achieves the interaction process of agent control
Remote proof Interacting agent completes the interaction process of remote proof
Application management The interaction process of application management in the cloud through the agent association
Child device management The cloud achieves the interaction process of child device management through the agent

association
Rule management The interaction process of rules in the cloud management rule engine
Business control The interaction process of business APP control through the connection agent in the cloud

Fig. 4 EdgeKeeper edge computing

Marketing
APPs

Data service

REST event

ZeroMQ

Publish
event

Service
distribution

(MQTT)

Service
registration

Subscribe
event Rule engine

Taiwanese
change APPs

Rule
engine

Command
service

Subscribe

Device Device

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 383

3.5 EdgeKeeper developer framework

The EdgeKeeper developer framework includes
mechanisms for development process control, appli-
cation auditing and uploading, application deploy-
ment and life cycle management, and the necessary
development tools for developers’ dependencies
(such as cross-platform development toolchain, vir-
tual device-based debugging methods, development
SDK (to develop business APPs), and secondary de-
velopment documentation). Device service SDK
supports synchronous read and write operations,
asynchronous device data, driver interface initializa-
tion and destructuring, initialization and destruction,
device connectivity, the automatic configuration
mechanism framework, multiple types of devices
with configuration files, the command triggering
action, and cached query response.

After the development is completed, the busi-
ness APP should be submitted to the application store
of the cloud platform, and the platform management
personnel should review the security, stability, and
operational dependencies of the APP. After the audit
is passed, the APP upgrade strategy will be managed
by the platform. Business requirements are pushed to
the edge association agent by device grouping. The
complete process is shown in Fig. 5.

The SDK provided by EdgeKeeper is different
from the edge computing SDK provided by cloud
computing vendors. For example, the SDK of Alibaba,
Huawei, and Tencent encapsulates the MQTT inter-
face, but it is used mainly to encapsulate northward

interfaces and achieve interaction with cloud. The
third-party service APP developers use EdgeKeeper’s
SDK. Based on the SDK, EdgeKeeper can accom-
plish automatic discovery of child devices, automatic
monitoring of the APP running status, and automatic
registration when APP starts. Business data such as
business data collection and control commands is
encapsulated in a unified interface. SDK provides a
device profile template based on the object model, a
business APP program development interface, and a
business APP profile template. The business APP
based on SDK development can implement functions
of the microservice of APP, automatic caching of
business data, configurable business data transmis-
sion, edge computing support, and so on. To effec-
tively manage the resource use of the business APP in
the IoT agent system, EdgeKeeper provides a con-
tainer packaging tool and container running envi-
ronment based on the lightweight base image. Busi-
ness APP developers can quickly build and package
the code into a mirror after completing SDK-based
business logic. The SDK functions provided by
EdgeKeeper are shown in Fig. 6.

4 Key technologies

The ubiquitous power IoT edge computing

framework EdgeKeeper is the basic software of the
edge layer. It is connected to the south subdevices
involving various heterogeneous sensing devices and
to the northbound IoT management platform to

Table 3 Message format for device updating in the communication protocol

Field name Type Description
Method String Message type “update” indicates that the device is upgraded
Params List Indicating the list of parameters required for the upgrade

Params.type String Describing the upgrade object (OS/APP)
Params.version String Upgrading the target version
Params.name String Upgraded software specific name
Params.config String Other required configuration files for the upgrade

Fig. 5 EdgeKeeper application management

Edge association
agent

Message queue Application upgrade APP store Application shelfDevice

Remote
upgrade

APP installation
package

Application management

Push by
policy

Set up an upgrade
strategy

Online
review Online

application

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 384

support cloud-side collaboration. In general, there are
four types of key technologies as follows:

1. Key performance. First, the ubiquitous power
IoT is oriented mainly to the traditional real-time
power industrial system, and the system has clear,
hard real-time requirements. For example, the power
load control system belongs to the hard real-time
system, which needs to deal with external events in a
timely manner. Otherwise, it may cause unpredictable
consequences. Second, there are strict deterministic
requirements for embedded real-time systems. Some
of the key businesses of the system must be com-
pleted within a certain time.

2. Security and credibility. The open software
ecological environment and Internet technology are
introduced into the power control system, thus
bringing security risks to the closed embedded sys-
tems. A large-scale open software ecological envi-
ronment may contain security vulnerabilities and
unknown backdoors; high-speed Ethernet access
mode also provides a convenient attack path for
hackers. At the same time, the ubiquitous power
equipment is usually close to the user side or the
transmission path, and thus it has a higher probability
to be attacked by the attacker. Therefore, the security
of the edge computing node is still a nonnegligible
problem. However, the cybersecurity problem of the
ubiquitous power IoT cannot directly copy the secu-
rity solutions in the field of IT. It needs to take into
account the real-time and deterministic requirements
of embedded systems. At the same time, frequent
upgrades and patches will affect the availability of the
system, and it is not applicable to the embedded sys-
tems; therefore, it is necessary to introduce a secure
and credible active defense method.

3. High reliability. Some embedded systems
involve industry and personal life safety. For such
systems, systematic and comprehensive failure anal-
ysis is needed to evaluate the functional safety level
of the business modules in terms of the failure prob-
ability, hazard size, and hazard controllability. The
bottom edge frame is required to meet the functional
safety requirements, and it provides functions of fault
monitoring and control, fault isolation, and fault
recovery.

4. Intelligent ecology for cloud-side collabora-
tion. First, smart IoT equipment introduces new
technologies, such as the Internet, big data, and AI.
These new technologies require an open intelligent
software ecosystem provided by the edge framework.
Most of the new technologies have been developed
from the IT industry and rely on the open intelligent
software ecosystem. Second, smart IoT equipment
may be coordinated by multiple systems to complete
work tasks. Therefore, edge framework is required to
provide interconnection technology and further to
provide a mechanism for interoperable mutual invo-
cation. Therefore, excellent systems such as IOS or
Android have their unique developer frameworks. On
one hand, they are easy for developers to use; on the
other hand, they integrate their own unique OS design
concepts into business applications.

4.1 Key performance

Some power services have certain real-time re-
quirements, which are particularly significant in the
control business. The maximum interrupt response
time is the most important indicator reflecting the
real-time performance of the system. It represents the
longest waiting time for a service interruption task.
The maximum terminal response time of a typical
Linux OS is often around 200 µs, which is difficult to
meet the real-time requirements. EdgeKeeper is built
on NARISecOS (Yang WY et al., 2019). NARISecOS
builds a layer of “microkernel OS” (Yang WY et al.,
2016) under the kernel layer for distributing interrupt
tasks. It also runs the NARISecOS kernel and the
NARISecOS real-time kernel. Two domains are used
to support legacy applications and real-time services
separately, and NARISecOS ensures that real-time
tasks must be responded to in real time. Experimental
results show that the maximum interrupt response
time of EdgeKeeper is about 10 µs (equivalent to

Fig. 6 EdgeKeeper software development kit (SDK)

SDK

Interface

Te
ch

ni
ca

l d
oc

um
en

ta
tio

n

Tool library Interface library
function development

E
di

to
r

C
ro

ss
 c

om
pi

la
tio

n
to

ol

A
ss

em
bl

y
lin

k
to

ol

P
ac

ka
gi

ng
 to

ol
 b

ui
ld

in
g

E
ng

in
ee

rin
g

m
an

ag
em

en
t

 to
ol

P
er

ip
he

ra
l d

riv
er

 li
br

ar
y

S
ys

te
m

 li
br

ar
y

op
er

at
in

g

U
pp

er
 a

pp
lic

at
io

n
de

ve
lo

pm
en

t l
ib

ra
ry

S
ec

ur
ity

 in
te

rfa
ce

 li
br

ar
y

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 385

those of VxWorks and other real-time OSs), which
can effectively support real-time services of ubiqui-
tous power IoT. The IoT OS hard real-time support
architecture is shown in Fig. 7.

4.2 Security and credibility

4.2.1 Secure access

When the device is registered, the IoT agent
EdgeKeeper sends an initialization request to the IoT
hub of the IoT management platform. When the de-
vice is registered, the agent must send the corre-
sponding device ID. The device ID is built in the
system beforehand. After the device registration re-
quest is approved by the IoT management platform,
the IoT agent will obtain the required three types of
certificates, including the certificate authority (CA)
certificate, the virtual private network (VPN) certifi-
cate, and the IoT management platform certificate.
After the device is registered, the business logic can
be executed. If the device is restored to factory set-
tings, the device needs to be reregistered, but the
information such as the device ID on which the device
is registered should remain unchanged. Device regis-
tration should include at least three steps to request
and obtain a certificate, an encryption certificate, and
a remote certificate, and establish a VPN. This en-
sures the security of subsequent network communi-
cations, as shown in Fig. 8.

4.2.2 System security

The agent of IoT is widely distributed, and the
OS level faces a greater threat to network security.
EdgeKeeper uses the four-level security OS named
NARISecOS (the highest security level OS) in the
application of the agent, which enables the functions
of two-factor authentication, mandatory access con-
trol (MAC), separation of three rights, data protection,
and other functions, along with a nonclonal function,
trusted execution environment (TEE), trusted plat-
form module (TPM) computing chip, and security
password module. Based on this, it implements the
trusted computing security system and full disk en-
cryption at the system level. At the same time, it fo-
cuses on strengthening the security protection of
containers to ensure that the entire OS has the ability
to deal with high-level security threats and provides a
secure execution environment at the OS level for the
business. Specifically, it includes the following secu-
rity functions: (1) separation of three rights and
achieving the principle of the minimum privilege; (2)
MAC mandatory access control, supporting SELinux
and the CAP mandatory access control model, can
effectively guarantee business security; (3) two-factor
authentication to support the OS; (4) disk encryption
to ensure data confidentiality; (5) container protection:
supporting container resource limits, access control,
and image integrity scan inspection to fully protect

Fig. 7 IoT OS hard real-time support architecture

Application layer

Standard library
 (non-real time)

Linux process (real time)

Standard
library

Real-time
library

Real-time
pipeline Linux process

 (non-real time)
Real-time
pipeline

Real-time taskAPI call
Real-time API Hardware interruptSystem call interface

Process
scheduling

Memory
management

File system

Network
interface Communication Device

drive

System call interface

NARISecOS Linux kernel
NARISecOS real-time kernel

Real-time
scheduling

Timer
service

Real-time
drive

File system IPC service
Memory

allocation

NARISecOS kernel OS

Interrupt
channel

Domain
management

Hardware interrupt

Hardware
Hardware interrupt

Delayed hardware
interrupt

I/O

I/O

Linux process

Kernel layer

Hardware layer

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 386

the container. The security features of the IoT four-
level security operating system are shown in Fig. 9.

4.2.3 Trusted authentication

The newly released “level protection 2.0” pro-
poses a clear requirement of “trusted authentication.”
In addition, based on trusted computing, most mali-
cious programs such as Trojan horses can be elimi-
nated. Therefore, trusted authentication must be im-
plemented in EdgeKeeper. The following four core
functions are achieved:

1. Trusted startup. Firmware and OS are modi-
fied based on the board card fuse mechanism and
built-in TPM chip, to achieve step-by-step trusted
authentication from chip to system startup and effi-
cient full disk encryption, and to prevent devices from
being injected malicious code offline or online and
the disclosure of sensitive data.

2. Trusted metrics. Based on the secure OS and
digital certificate system, a lightweight and reliable
metric framework can be implemented, which can
ensure that only the authenticated applications can be
installed and run in the OS without affecting the
availability of the system, and solve the security
threats of malicious viruses and Trojan horses.

3. Remote trusted certificate. Based on the TPM
and lightweight measurement framework, by re-
motely collecting the device status of the IoT agent,
the IOT management center can remotely evaluate

whether the device is in a trusted state, and support
the solution to remote security upgrade problems of
firmware, operating system, and application. The
flowchart of remote certification based on the TPM
chip is shown in Fig. 10.

4. Security upgrade. The firmware, OS, and ap-
plication in the IoT agent have upgraded requirements.
It is urgent to lower the security risks of the remote
upgrade. Based on the remote trusted certificate ca-
pability, the firmware download is implemented
through the platform firmware or uploaded manually
to upgrade the update and support the ability to re-
motely update the device in various ways such as
silent, mandatory, and orientation. It can solve the

Fig. 8 Initial process of secure access (CA: certificate authority; RA: registration authority)

Return signature
value and encryption

certificate

Edge
association agent

VPN
gateway

LoT
management

center
RA CA

1.1 Initialization request

1.2 Return success

2.1 Request certificate

2.2 Return signing certificate

Private key encryption certificate

3.1 Remote proof

3.2 Return “OK”
3.3 Establishing a VPN
 tunnel

Data transmission

Submit
 (certificate request)

Return signature
value and encryption

 certificate

Manual review and
submit

(certificate request)

Manually configuring
edge association agents

Th
e

th
ird

 p
ha

se
ev

er
y

tim
e

yo
u

go

on
lin

e
(a

t t
he

 s
ce

ne
)

Th
e

se
co

nd
 s

ta
ge

w
he

n
re

gi
st

er
in

g
fo

r t
he

 fi
rs

t t
im

e
(a

t t
he

 s
ce

ne
)

Th
e

fir
st

 s
ta

ge
w

he
n

re
gi

st
er

in
g

fo
r

th
e

fir
st

 ti
m

e
(a

t t
he

po

w
er

 c
om

pa
ny

)

Fig. 9 Security features of the IoT four-level security
operating system

Trusted
authentication

Trusted
boot

Trusted
upgrade

Trusted
hardware

Trusted
operation

Two-factor

authentication
Full disk

encryption
Container security
scanning service

Trusted
boot

Trusted metric
framework

Remote
certification

service

Mandatory
access control

Non-cloning
function PUF

TEE trusted
execution

environment

TPM trusted
computing

chip

Security pass-
word module

Separation
of powers

S
ec

ur
ity

an

d
cr

ed
ib

ilit
y

N
A

R
IS

ec
O

S
 fo

ur
-

le
ve

l O
S

 la
ye

r

H
ar

dw
ar

e
la

ye
r

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 387

upgrade problems of firmware, OS, and application of
the agent.

For firmware and OS upgrades, the upgrade
service in the IoT agent will take the device status to
the over-the-air (OTA) service in the IoT platform,
and the OTA service will perform remote certification.
After the certificate is verified, the upgrade service
receives the upgrade package and uses the device
public key to verify the upgrade. The potential secu-
rity risks of the upgrade are lowered through this
two-way authentication. For the upgrade of applica-
tion, referring to the application management mech-
anism of IOS, the agent needs only to store the root
certificate (public key) of the “detection organiza-
tion,” and the detection organization can issue the
second-level certificate to the business application
research and development (R&D) institution. The
APP signed by the second-level certificate can be
applied directly to the IoT agent, which solves the
problems of security and availability.

4.3 High reliability

4.3.1 Partition-based fault isolation technology

Isolation technology supports the robust devel-
opment of edge computing. Edge devices need to
provide effective isolation technology to ensure ser-
vice reliability and quality. We need to consider two
aspects in isolation technology: (1) isolation of
computing resources (i.e., applications cannot inter-
fere with each other); (2) isolation of data (i.e., dif-
ferent applications should have different access
rights). EdgeKeeper uses a microkernel architecture
to provide partition isolation mechanism for different

functional security-level services in user mode. When
one service fails, the other partition services are not
affected. As shown in Fig. 11, specific technologies
include time isolation mechanism between partitions,
spatial isolation mechanism, permission isolation,
and hardware isolation mechanism. Among them,
spatial isolation is one of the most direct control
methods. In the past, our process was focused mainly
on the isolation of the memory address space. After
introducing the containers, we achieved the spatial
isolation of the file system, network, process identi-
fier (PID), users, and so on. The namespace is used
for spatial isolation, while cgroup is used for resource
isolation. In terms of privilege isolation, on one hand,
referring to the Linux sandbox mechanism, applica-
tions cannot interact with each other. Applications
running in the process sandbox are not allotted priv-
ileges and cannot access the system or resources.
Different EdgeKeeper applications that are restricted
to sandboxes do not interfere with each other, and
damage to the system and other applications can be
minimized. The sandbox mechanism of the Edge-
Keeper application is shown in Fig. 11. Applications
that do not have a trust relationship are isolated from
each other and run alone. On the other hand, based on
the MAC at the OS level, the operation of the business
domain is minimized, and the scope of access to the
business is limited mainly by the access control model.
To enrich the access control mechanism of Edge-
Keeper, we introduce MAC modes such as con-
sistency availability partition (CAP) tolerance,
Bell-LaPadula (BLP), and the BIBA model. The CAP
model gives the user only the minimum ability of
each privileged process to perform its functions, thus
implementing the minimum operational domain of
the business and including more than 30 permissions
such as allowing access to the network, accessing
peripherals, and shutting down. BLP and BIBA are
the implementation models of traditional confidenti-
ality and integrity in the system, respectively.

4.3.2 System operation monitoring control and multi-
level abnormal processing technology

The edge layer OS provides different granulari-
ties of system operating state monitoring and control
functions, including task-, partition-, system-, and
hardware-level operation monitoring control.
Through different levels of health monitoring and

Fig. 10 Remote certification based on a trusted platform
module (TPM) chip

Built-in TPM Support remote
verification

Firmware has
been

tampered with

Near-end
upgrade

Firmware has
been

restored

Combine firmware
 summary derived key;
Use a derived key to

establish a secure channel

Upgrade firmware

Restart the device and
regenerate the key

Establish a secure channel with
a new derived key

Verify the fireware
summary in the key. An

exception was found when
an alarm was generated

and the device was added
to the isolation list

Verify the firmware
summary in the key

Undo device isolation
by verification

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 388

control functions, different ranges of anomalies or
alarm events can be discovered in time, and the run-
ning status of key tasks can be monitored in time to
ensure that their operating status is consistent with
expectations. When different types of system failures
are found, the OS provides a multilevel exception
handling mechanism. The exceptions are processed
step by step through the task-, partition-, system-, and
hardware-level control to ensure that each abnormal
problem can be recovered with the minimum impact
on the system and the minimum impact range,
avoiding the excessive impact of recovery abnormal-
ity. EdgeKeeper designs functional safety features
based on high-reliability industry standards to moni-
tor the operation status of a control system in time and
restores the operating status of the system in a fine-
grained manner, to ensure the continuous and stable
operation of high-reliability businesses.

4.4 Intelligent ecology for cloud-edge collabora-
tion

4.4.1 Application development

In application development, EdgeKeeper im-
plements the unified management of the APP running
on intelligent terminals and edge agents, including the
APP’s trusted authentication, APP version manage-
ment, and APP upgrade policy management. The
edge linkage framework provides the basic devel-
opment framework and the IoT infrastructure ena-
blement for design developers (distributed on the IoT
management platform side). After the developers
have passed the review by the management depart-
ment, they can quickly develop applications through

the development framework and the IoT provided by
the center within their jurisdiction. The IoT man-
agement platform can provide a specific development
environment and interfaces as follows: (1) basic
components, platform interaction components, and
container components, which support the develop-
ment, compilation, and packaging of the IoT applica-
tion; (2) development API. Various types of commu-
nication interfaces, security management interfaces,
and so on support the rapid development and inte-
gration of various types of IoT applications. The IoT
developer framework is shown in Fig. 12.

4.4.2 Intelligent ecology

EdgeKeeper uses the microkernel architecture
for reference. All kernel functions and business func-
tions are provided as services to the outside world,
supporting local and remote connections and access.
First, the intelligent application service business reg-
isters with the local service manager and publishes the
service by the service manager. The local business
accesses the service manager through the inter-
process communication (IPC) mechanism, and the
service manager establishes the service connection to
achieve the local access service function. The remote
service also accesses the service manager (which is
responsible for establishing the remote service
communication channel) and finds the service node.
Through this technology, the function of intelligent
interconnection and interoperability across nodes can
be achieved, and application services can transpar-
ently use local services or remote services. The edge
framework EdgeKeeper provides service protocols
and security management protocols for application
interconnection and interoperability for different
scenarios, including constrained application protocol
(CoAP) and application interconnection protocols
such as the MQTT protocol. Through the above-
mentioned application interconnection and manage-
ment-and-control protocol, a complete ubiquitous
power IoT system is formed by achieving the coor-
dination of various heterogeneous systems.

4.4.3 Cloud-edge collaboration
EdgeKeeper implements the edge computing

framework supporting function computing, rule
engine, and flow calculation based on the application
management of basic functions, in addition to
providing intelligent services for image recognition,

Fig. 11 Partition-based fault isolation

Partition running interval
avoids an infinite loop or failure
of a partition, resulting in long-
term occupation of processor
resources, and other partition

services cannot obtain a
reasonable time quota

Time isolation

Permission isolation

Partition permissions are different
and are isolated from each other.

Avoid a partition from illegally
accessing resources of other
partitions or illegally holding

access rights of other partitions,
and avoid the impact of security

threats between partitions

Hardware isolation

Partition hardware resource
isolation provides

heterogeneous hardware and
software systems for critical
control services. Switch the

backup system in time when the
main system fails

Space isolation

Avoid the illegal access or
tampering of critical data or

processes of other
partitions, and avoid the impact

of partition failures

Partitioned address space isolation

Partition isolation

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 389

machine learning model prediction, and speech
recognition. We believe that the core of cloud-edge
collaboration is to further achieve the cloud-side
collaboration system, with the coverage of resource
collaboration, data collaboration, intelligent
collaboration, application management collaboration,
business management collaboration, and service
collaboration. Among them, (1) resource coordination
refers to the life cycle management of the edge node
infrastructure, equipment, and southbound resources;
(2) data collaboration refers mainly to the edge col-
lection and centralized analysis of data; (3) intelligent
collaboration refers to the centralized training of data

on the platform side, distribution of intelligent rea-
soning, and sending of the trained model to the edge
frame side for execution; (4) application management
collaboration refers to the full life cycle management
of application development and its testing/application;
(5) business management collaboration refers to the
unified management of business applications; (6)
service coordination refers to the unified arrangement
of services. These six types of collaboration can ba-
sically meet the needs of all cloud-side collaborative
application scenarios of ubiquitous power IoT. The
edge-based cloud edge collaboration is shown in
Fig. 13.

Fig. 12 IoT developer framework

Permission review

Application
managment

Deployment
Verification

design

Data demand
control

requirements

Release request

Service target

Frame call

Development

Integration Verification

Release

Development service framework
Deploy the service framework

Business
orchestration

Application
deployment

Application
market

Scenes

Development
framework

Design
developer

Protocol plugin

IoT enabler

Business
Orchestration analysis

Optimization control

Calculation storage

Communication Virtualization

Function
realization

Deployment
implementation

IoT management
center

Management
department

Platform usage
permission application

Role
assignment

Communication
interface

MQIT TCP Special
agreement

Security interface
management

Development
environment

Runtime

Encrypted
interface

Management
interface

Authentication
interface

Containerized
component

Basic
component

Visual
component

Compilation
module

Running
module

Certificate type

Data model

Data encryption

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 390

5 Experiments

To verify the validity and adaptability of the

EdgeKeeper framework, we detail the experimental
verification work on function, non-functionality,
performance, and application scenario verification.
Because the cloud-side interaction protocol between
the edge framework (edge-linking agent) and the IoT
management platform is suitable for testing by the
platform side, some tests are initiated from the side of
the IoT management platform to verify the support of
the edge computing framework in the IoT agent. The
test targets four edge computing frameworks, i.e.,
EdgeKeeper, OpenEdge, EdgeX, and KubeEdge.

5.1 Main tests

5.1.1 Functional test

The basic functions of the edge framework are
verified, i.e., device access, device management ca-
pability, model definition and delivery, device shadow,
data communication capability, data collection, data
distribution, firmware upgrade, APP management,
rule engine, and operation and maintenance man-
agement, as shown in Table 4.

5.1.2 Nonfunctional test

Based on the special requirements of the IoT
application scenario, the test and verification of the
remote operation and maintenance capability of the
IoT agent and nonfunctional indicators of the edge

framework are carried out (Table 5), including eight
test items, such as remote configuration of the agent
of the IoT, remote monitoring, remote debugging,
reliability, openness, and security of the edge
framework.

5.1.3 Performance test

To meet the access of huge-scale devices, we
verify mainly the access performance and system
performance of the edge framework (Table 6), in-
cluding 10 indicators, i.e., the maximum number of
simultaneous connections supported by a single node,
the number of messages that the edge frame can
process per second, the number of messages that can
be processed by a single node, the performance of
commands sent by the edge frame, the performance of
commands sent by a single node, the maximum
number of online users, the average response time of
the core functions, 8-h continuous reporting infor-
mation, and 8-h continuous issuing instructions. In
terms of testing ideas, first, we need to provide pro-
fessional performance testing tools and complete the
writing of test scripts. Testers use test tools to execute
test scripts. Second, in the design of test items, con-
sidering the limited resources of the laboratory, the
test may not be able to meet the full demand of the
whole business. Therefore, two types of cases of a
single node and edge frame platform (multiedge agent
nodes through platform test) are designed for the
same test item, and the growth correlation curve be-
tween performance indicators and resources is ana-
lyzed to evaluate the performance of the edge
framework. Third, there are differences in the de-
ployment of edge frameworks among vendors.
Therefore, the resources of each edge framework in
the laboratory are slightly different.

To ensure the fairness of the test, the resources of
the supporting nodes corresponding to the test items
are required to be consistent for each framework.

5.2 Application scenario verification

According to the actual business requirements of
the power grid side and user side, application scenario
verification is carried out and the support capability of
the edge object association framework for each ap-
plication scenario is emphasized. Through building
an application scenario simulation environment in the
laboratory, we will carry out end-to-end business
verification from terminals, IoT agents, and IoT

Fig. 13 Edge-based cloud-edge collaboration

Resource synergy

Service
collaboration

Image
identification

Speech
recognitionML model prediction

Flow
calculationRule engineFunction

calculation

APPAPPAPP

Data collaboration

Smart service

Edge computing framework

Application management

Device
life cycle

Analysis
data

Application
development,
debugging,
publishing

Centralized
training

...Business
orchestration

Business orchestration
Intelligent

collaboration

Application
management
collaboration

Business
management
collaboration

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 391

Table 4 Functional test

Test item Test point Requirement

Device access

Device registration and
access

After device registration is completed on the platform function page, the
device can access the platform;

Batch registration of devices is supported, and all registered devices can
access the platform

Provide access to the SDK Provide basic SDK under different platforms (Linux and Android platforms)

Data transfer protocol Support data transfer protocols, such as MQTT, CoAP, HTTP, and WebSocket

Tenant and IoT agency
relationship

Support the same tenant to manage multiple IoT agents;
The same object agent can be managed by multiple tenants, but the resource

requirements of different tenants have permission control

Model definition
and delivery

Object model definition Object model supports multiple levels;
Attributes defined by the model can be added, modified, or deleted;
Data format should be standardized

Object model Model definition can be issued to the edge object association agent;
Modified model definition should be updated and sent to the edge object

association agent
Data reporting Terminal device can report the data to the platform according to the model

definition;
After the model is updated, the data is reported according to the new model

definition

Device shadow

Device shadow editing Device shadow data model definition, modification, and deletion;
Device shadow status view

Data reporting The collected data is reported to the device shadow;
Platform’s northbound application can access device shadow data

Status change Business APP modifies the device shadow state data;
The device shadow state data is asynchronously sent to the terminal device

Equipment
communication
capability

MQTT protocol Support QoS=0 and QoS=1 message characteristics of the MQTT protocol

Offline storage capability Support offline storage capabilities of device messages (including reporting
and delivery)

Data collection

Import device messages
into message queue

Support device message that imports message queue;
Implement asynchronous message communication between devices and the

third-party services
Temporary storage of data Support caching the collected data on the platform

Data error retransmission Support data error retransmission

Data distribution

Status change Support the data reported by the terminal device to be distributed to different
message queues and different databases;

Upper-layer business APPs can directly use the data
Data subscription Support the data directly subscribed by business applications

Sending data command Support upper-layer applications to send data commands and consume
messages through API interfaces

Firmware upgrade Firmware upgrade Platform upgrades firmware for a single device or batch devices

APP management

Management of upper
and lower shelves of
the APP

Support management of the APP

Remote upgrade of the
APP

Support remote installation and upgrade of APP for a single object agent and
grayscale release;

Support batch operation of IoT agents with the same APP installed

To be continued

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 392

Table 5 Nonfunctional test

Test item Test point Requirement

Remote
configuration

Device remote
configuration

Support the connection and modification of the edge object agent
device and the terminal device;

Support the delivery of the modified configuration file to the edge
agent device and the terminal device

System remote configuration
operation

Support patch upgrades and configuration updates for the edge agent
device and the terminal device operating system

Remote
monitoring

System remote monitoring
operation

Support the operation status monitoring of the edge IOT agent
equipment and the terminal device operating system, including the
CPU utilization rate and memory utilization rate

Terminal operation status
monitoring

Support status monitoring of the edge agent based proxy devices and
the terminal devices, such as offline and online conditions

Application status
monitoring

Support monitoring of the operation of the edge IoT proxy devices
and the terminal devices, such as log acquisition

Alarm information
management

Support collection and message sending of alarm information of the
edge agent device and the terminal device

Remote
debugging

Edge proxy device remote
debugging

Support remote viewing, analysis, fault recovery, and so on for edge
proxy devices

Remote debugging of terminal
equipment

Support remote viewing, analysis, fault recovery, and so on for ter-
minal equipment

Reliability

Batch device online
success rate

Time and success rate of re-launching the device after it goes offline

Cluster high availability
deployment

When some devices fail, the services provided by the platform are
uninterrupted, and the impacts of the software, hardware, and
human-induced faults on the service are minimized

Security

Edge proxy device access
security

Register and authenticate the device with a key or other means

Edge proxy device
transmission security

Provide standard transport layer security (TLS) or other high-level
encryption for transmission encryption

Message publishing subscrip-
tion security and safety

The publishing and subscribing capabilities of messages have strict
and secure authority control;

Support operation authority control of the same resource under mul-
tiple accounts

API authentication Have authentication of the IoT API interface

To be continued

Table 4

Test item Test point Requirement

APP management

APP remote configuration Support APP remote configuration for a single object agent and
multiple IoT agents

APP version management Support APP version management, including a single device and batch
devices

Rule engine

Rule configuration Add, modify, and delete rules;
Enable and stop operations on rules

Class structured query
language (SQL) syntax
and underlying semantic
operations

Rule description supports class structured query language (SQL) syntax
and basic semantic operations

Operation and mainte-
nance management

Operation and mainte-
nance management

Support the operation log viewing and downloading of platform services,
edge agent devices, and terminal devices;

Require platform service installation and upgrade to support automation
operations

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 393

Table 6 Performance test
Test point Requirement

The maximum number of simulta-
neous connections

The platform supports ≥5000 connections;
The connection lasts 8 h without interruption;
Device central processing unit (CPU) and memory usages are <85%

Single node supporting the maxi-
mum number of simultaneous
connections

A single device node supports ≥1000 connections;
The connection lasts 8 h without interruption;
Device CPU and memory usages are <85%

The number of messages that the
platform can process per second

The platform supports processing of ≥500 messages per second;
Device CPU and memory usages are <85%

The number of messages that a single
node can process per second

Single node supports processing ≥100 messages per second;
Device CPU and memory usages are <85%

Performance of instructions issued
by the platform

Require the platform to support the batch delivery of instructions to 500 devices
within 1 min;

Success rate of issuing instructions is 100%;
Device CPU and memory usages are <85%

Performance of single-node delivery
instructions

A single device node is required to deliver instructions to a batch of 100 devices
in 1 min;

Success rate of issuing instructions is 100%;
Device CPU and memory usages are <85%

The maximum number of online
users

Support 100 users online at the same time (reference value is the maximum number of
users in the marketing business, i.e., 18 000);

Device CPU and memory usages are <85%
Average response time of the core

function
In the case where the database has >100 million data volumes in the corresponding core

function table, the average response time is within 3 s;
Device CPU and memory usages are <85%

Support 8-h continuous reporting
information

1100 devices continuously report information for 8 h at an interval of 1 s, requiring an
average response time of 1 s, and transaction volume per second (TPS) is not less than
50;

The information processing success rate is 100%;
Device CPU and memory usages are <85%

Support 8-h continuous delivery
instructions

The platform continuously delivers instructions to 100 devices in batches for 8 h at an
interval of 1 s, requiring an average response time of 1 s, and TPS is not less than 50;

The information processing success rate is 100%;
Device CPU and memory usages are <85%

Table 5

Test item Test point Requirement

Security

Platform login security Provide a unified login authentication system
Platform security Support identity authentication, access control, security audit,

software fault tolerance, and resource control;
The user is assigned rights, and the management is separated from the

business account

Flexibility

Northbound interface Support upper-layer services to subscribe to messages through
different data formats

Southbound interface Support push commands or messages to the terminal for
configuration

Openness Northward openness Northbound API interface supports secondary development
Southward openness Southbound API interface supports secondary development

Loose coupling

Support for mainstream
databases

Support Oracle, DB2, SQL server, MySQL, and other mainstream
databases

Support grayscale update
capability

Loose coupling between platform components and grayscale upgrade

Support component automatic
expansion and contraction

Support multinode multilevel deployment

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 394

management platforms to business applications, and
test the connectivity of the edge framework in the
south, north, and complete links. Each business sce-
nario is based on the same southward and northward
environment to complete the access of each edge
framework. It carries out mainly the application sce-
nario validation of the station area, distribution station,
transmission line, integrated energy services, and so
on. The verification content is illustrated with the
station area scenario as an example. To improve the
operation management and customer service level of
the substation distribution network, automatic col-
lection of perception information at the substation
side, low-voltage line side, and user side is realized,
and station status by deploying environmental sensors,
monitoring units, smart meters, and other end devices
is also realized. By the intelligent distribution termi-
nal transformer terminal unit (TTU), the concentrator
and other side devices achieve information collection
and processing, and the collected data is transmitted
to the intranet system using a wireless private
network/public network communication method
(Fig. 14).

The test in this project tests and verifies mainly
the various power IoT business scenarios, such as
meter data reporting, meter data calling, electricity

meter control instructions issued, distribution moni-
toring data reporting, and remote debugging of the
circuit breaker by simulating the low-voltage station
area scenario and verifying the adaptability of the
edge IoT framework to power professional applica-
tions (Table 7).

5.3 Test results

The overall test results of EdgeKeeper,
OpenEdge, EdgeX, and KubeEdge are shown in
Table 8, where “●” indicates full support, “○” indi-
cates no support, and “◎” indicates partial support.
As can be seen from Table 8, EdgeKeeper has passed
the tests of all functions, non-functions, performance,
and application scenarios, and the performance is the
most complete. EdgeX is not satisfactory in terms of
nonfunctional test. The KubeEdge does not perform
well in non-functional testing and application sce-
narios. EdgeKeeper edge computing framework has
performed well in all tests. OpenEdge does not per-
form well in some application scenarios, but in other
tests, it performs relatively well. In the functional test,
EdgeKeeper has the characteristics of perfect basic
functions and high reusability; in the nonfunctional
test, it has the characteristics of practicality, reliability,
flexibility, loose coupling, and so on; in the

Fig. 14 Overview of the collection of the area

In
fo

rm
at

io
n

in
tra

ne
t Electricity

information
collection system

Distribution
automation

master station

Wireless public network
Wireless private network

Application protocol:
IEC101/IEC104/DL698/QGDW1376.1

TTU Concentrator
Side

Remote communication public network
APN/private network APN, etc.

Local communication:
RS232/RS485/PLC/LoRz/ZigBee/RJ45

Application protocol:
IEC101/IEC104/DL645/DL698

End

Zone area test (power distribution room and ring network cabinet) Low-voltage side User side

Smart
door lock

Water immersion
detection Exhaust fan Dehumidifier

Fire-extinguishing
device Gateway

Low voltage
shunt monit-

oring unit

Low voltage
fault sensor Smart meter

Partial Smoke sensor CameraTemperature and
humidity

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 395

Table 7 Application scenario test

Test item Test point Requirement

Zone area
scene

Meter data reporting Smart meter sends data to the mining system through the concentrator, edge object
association agent, and object management platform

Meter data calling

Use the mining system to send an instruction to collect meter data through the IoT
management platform;

The acquisition instruction is sent to the meter by the agent of the IoT;
The smart meter returns data to the mining system through the edge agent and agent

management platform

Electricity meter control
instructions issued

Use the mining system to send control commands to the electricity meter through
the IoT management platform and the edge object association agent;

After the smart meter completes the action, it returns the status signal to the mining
system through the edge object association agent and object management
platform

Distribution monitoring
data reporting

The smart capacitor, circuit breaker, and branch monitoring unit send status data to
the TTU;

The TTU terminal sends the collected information such as the hanging device to the
object management platform through the edge object association agent

Remote debugging of the
circuit breaker

The DMS system sends control commands to the circuit breaker through the IoT
management platform, edge agent, and TTU;

After the circuit breaker completes the action, the status signal is returned to the
DMS system through the TTU, edge object association agent, and IoT man-
agement platform

Table 8 Test results

Verification test Test item Test point OpenEdge EdgeX KubeEdge EdgeKeeper

Functional test

Device access

Device registration and access ● ◎ ● ●

Access to the SDK ● ◎ ○ ●

Data transfer protocol ● ◎ ● ●

Tenant and IoT agency relationship ● ◎ ● ●

Model definition
and delivery

Object model definition ● ◎ ● ●

Object model launching ● ◎ ● ●

Data reporting ● ● ● ●

Device shadow

Device shadow editing ● ● ◎ ●

Data reporting ● ◎ ◎ ●

Status change ● ● ◎ ●

Equipment
communication
capability

MQTT protocol ● ● ● ●

Offline storage capability ● ● ● ●

Data collection

Device message import message
queue ● ● ● ●

Temporary storage of data ● ● ◎ ●

Data error retransmission ● ● ◎ ●

Data distribution

Status change ● ● ● ●

Data subscription ● ● ● ●

Send data command ● ● ● ●

Firmware upgrade Firmware upgrade ◎ ● ◎ ●

To be continued

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 396

Table 8

Verification test Test item Test point OpenEdge EdgeX KubeEdge EdgeKeeper

Functional test

APP management

Management of upper and lower
shelves of the APP

● ● ◎ ●

Remote upgrade of the APP ● ● ◎ ●

APP remote configuration ● ● ◎ ●

APP version management ● ● ◎ ●

Rule engine
Rule configuration ● ● ◎ ●

Class SQL syntax and underlying
semantic operations

● ● ◎ ●

Operation and
maintenance
management

Operation and maintenance
management ◎ ◎ ● ●

Non-functional
test

Remote
configuration

Device remote configuration ● ○ ○ ●

Operating system remote
configuration

● ● ○ ●

Remote monitoring

Operating system remote monitoring ● ● ○ ●

Terminal operation status monitoring ● ● ○ ●

Application status monitoring ● ● ○ ●

Alarm information management ● ● ○ ●

Remote debugging
Edge proxy device remote debugging ● ● ○ ●

Remote debugging of terminal
equipment

● ● ○ ●

Reliability
Batch device online success rate ● ● ○ ●

Cluster high availability deployment ● ● ○ ●

Safety

Edge proxy device access security ● ● ○ ●

Edge proxy device transmission
security

● ● ● ●

Message publishing subscription
security

● ○ ● ●

API authentication ● ○ ● ●

Platform login security ● ○ ● ●

Platform safety ● ○ ● ●

Flexibility
Northbound interface ● ○ ● ●

Southbound interface ● ○ ● ●

Openness
Northward openness ● ○ ● ●

Southward openness ● ○ ● ●

Loose coupling

Support of mainstream databases ◎ ○ ○ ●

Grayscale update capability ● ○ ○ ●

Support of component automatic
expansion and contraction

● ○ ○ ●

To be continued

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 397

performance test, it has the characteristics of perfect
basic functions and high reusability; in the perfor-
mance test, it has the characteristics of high load, fast
response, and zero error in issuing instructions, which
can well meet the requirements of high load and real-
time performance; in the application scenario test, it
has high adaptability to the professional application
scenario of power. It can be seen that EdgeKeeper is
currently the most suitable edge computing frame-
work for the ubiquitous power IoT.

6 Conclusions

Edge computing refers to providing the nearest-
end service on the side close to the object or data
source. Its applications are launched on the edge side,
resulting in rapid network service response and
meeting the basic needs of the industry in real-time
business, application intelligence, security, and pri-
vacy protection. Edge computing works between
physical entities and industrial connections, or at the
top of the physical entities. In cloud computing, his-
torical data of edge calculations can still be accessed.
In the construction of ubiquitous power IoT, the core

of the ubiquitous power IoT is to construct an edge
computing framework, which is suitable for ubiqui-
tous power IoT. For this purpose, an edge-trusted
computing framework named EdgeKeeper is de-
signed and implemented, which completes the design
of object model, edge computing, cloud-edge inter-
action, and breakthrough key technologies, yielding
features such as good performance, good security,
good reliability, high reliability, and intelligent ecol-
ogy. Through functional, nonfunctional, performance,
and application scenario tests, and comparison with
OpenEdge, EdgeX, and KubeEdge, EdgeKeeper il-
lustrates its advantages in business satisfaction and
adaptability.

In the future, we will continue to optimize the
architecture of EdgeKeeper based on the existing
work and continue to enrich the application ecology
of the ubiquitous power IoT with the business units
and help the construction of the IoT.

Contributors
Weiyong YANG designed the EdgeKeeper framework.

Wei LIU analyzed the EdgeKeeper framework and designed
the experimental scheme. Xingshen WEI and Huang HAO
analyzed the experimental data. Weiyong YANG and Kangle
YANG drafted the manuscript. Zixin GUO analyzed the

Table 8

Verification test Test item Test point OpenEdge EdgeX KubeEdge EdgeKeeper

Performance test Performance test

The maximum number of
simultaneous connections ◎ ○ ○ ●

The number of messages a single node
that can process per second ● ○ ○ ●

Performance of issuing instructions ● ○ ○ ●

The maximum number of online users ● ○ ○ ●

Average response time of the core
function ◎ ○ ○ ●

Support of 8-h continuous reporting
information ◎ ○ ○ ●

Support of 8-h continuous delivery
instructions ◎ ○ ○ ●

Application
scenario Zone area scene

Meter data reporting ◎ ● ● ●

Meter data calling ○ ○ ○ ●

Remote meter status ○ ○ ○ ●

Distribution monitoring data reporting ● ● ● ●

Remote debugging of the circuit
breaker ● ● ● ●

“●” indicates full support, “○” indicates no support, and “◎” indicates partial support

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 398

experimental scheme and provided materials and analysis tools.
Longyun QI studied the EdgeKeeper framework in depth and
proposed a modification plan which is of constructive signif-
icance. Kangle YANG participated in the experiment and
revised and finalized the paper.

Compliance with ethics guidelines

Weiyong YANG, Wei LIU, Xingshen WEI, Zixin GUO,
Kangle YANG, Hao HUANG, and Longyun QI declare that
they have no conflict of interest.

References
Ahmed R, Zaheer Z, Li R, et al., 2018. Harpocrates: giving out

your secrets and keeping them too. IEEE/ACM Symp on
Edge Computing, p.103-114.

 https://doi.org/10.1109/SEC.2018.00015
Ai Y, Peng M, Zhang KC, 2018. Edge computing technologies

for Internet of Things: a primer. Dig Commun Netw,
4(2):77-86. https://doi.org/10.1016/j.dcan.2017.07.001

Aral A, Brandic I, 2018. Dependency mining for service re-
silience at the edge. IEEE/ACM Symp on Edge Compu-
ting, p.228-242. https://doi.org/10.1109/SEC.2018.00024

Boutaud F, Ehlig PN, 1991. Series Maxium/Minimum Func-
tion Computing Devices, Systems and Methods. US Pa-
tent 5 072 418, USA.

Cai YM, Feng SY, Du HW, et al., 2019. Novel edge-ware
adaptive data processing method for the ubiquitous elec-
tric power Internet of Things. High Volt Eng, 45(6):1715-
1722 (in Chinese).

 https://doi.org/10.13336/j.1003-6520.hve.20190604005
Chao MY, Yang C, Zeng YK, et al., 2018. F-MStorm:

feedback-based online distributed mobile stream pro-
cessing. IEEE/ACM Symp on Edge Computing, p.273-
285. https://doi.org/10.1109/SEC.2018.00027

Chen XL, Wan S, Zhu YF, et al., 2019. Analysis of distributed
power distribution fault processing based on edge com-
puting. Electromech Inform, (17):32-33 (in Chinese).

 https://doi.org/10.19514/j.cnki.cn32-1628/tm.2019.17.018
Edge Computing Consortium, 2018. Edge Computing Refer-

ence Architecture 3.0.
http://www.ecconsortium.org/Uploads/file/20190225/15
51059767474697.pdf [Accessed on Sept. 12, 2019].

Feng ZQ, George S, Harkes J, et al., 2018. Edge-based dis-
covery of training data for machine learning. IEEE/ACM
Symp on Edge Computing, p.145-158.

 https://doi.org/10.1109/SEC.2018.00018
Fultz D, Ramanujan AS, Ibitayo KY, 2010. Rules Engine

Architecture and Implementation. US Patent 7 853 786,
USA.

Hu YC, Patel M, Sabella D, et al., 2015. Mobile Edge Com-
puting—A Key Technology Towards 5G. ETSI White
Paper No. 11, ETSI, France.

Jang SY, Lee Y, Shin B, et al., 2018. Application-aware IoT
camera virtualization for video analytics edge computing.
IEEE/ACM Symp on Edge Computing, p.132-144.

 https://doi.org/10.1109/SEC.2018.00017

Li JR, Li XY, Gao YL, et al., 2018. Review on data forwarding
model in Internet of Things. J Softw, 29(1):196-224 (in
Chinese). https://doi.org/10.13328/j.cnki.jos.005373

Li SN, Luo GJ, 2014. The overview of technologies and ap-
plications for industrial IOT. Telecommun Netw Technol,
(3):26-31 (in Chinese).

Liang JY, Liu B, Liu F, 2019. The present situation of open
source platforms for edge computing. ZTE Technol,
25(3):8-14 (in Chinese).

 https://doi.org/10.12142/ZTETJ.201903002
Liu RL, Liu HT, Xia SF, et al., 2019. Internet of Things tech-

nology application and prospects in distribution trans-
former service area management. High Volt Eng, 45(6):
1707-1714 (in Chinese).

 https://doi.org/10.13336/j.1003-6520.hve.20190604004
Luan TH, Gao LX, Li Z, et al., 2015. Fog computing: focusing

on mobile users at the edge.
 https://arxiv.org/abs/1502.01815
Mach P, Becvar Z, 2017. Mobile edge computing: a survey on

architecture and computation offloading. IEEE Commun
Surv Tutor, 19(3):1628-1656.

 https://doi.org/10.1109/COMST.2017.2682318
Maheshwari S, Raychaudhuri D, Seskar I, et al., 2018. Scala-

bility and performance evaluation of edge cloud systems
for latency constrained applications. IEEE/ACM Symp
on Edge Computing, p.286-299.

 https://doi.org/10.1109/SEC.2018.00028
Mao YY, You CS, Zhang J, et al., 2017. A survey on mobile

edge computing: the communication perspective. IEEE
Commun Surv Tutor, 19(4):2322-2358.

 https://doi.org/10.1109/COMST.2017.2745201
Satyanarayanan M, 2017. The emergence of edge computing.

Computer, 50(1):30-39.
 https://doi.org/10.1109/MC.2017.9
Saxena H, Salem K, 2015. EdgeX: edge replication for web

applications. 8th Int Conf on Cloud Computing, p.1041-
1044. https://doi.org/10.1109/CLOUD.2015.147

Sha LT, Xiao P, Chen W, et al., 2018. Leakage perception
method for backdoor privacy in industry Internet of
Things environment. J Softw, 29(7):1863-1879 (in Chi-
nese). https://doi.org/10.13328/j.cnki.jos.005356

Shen SB, Yang Z, 2015. Architecture of Internet of Things and
its standardization. J Nanjing Univ Post Telecommun (Nat
Sci), 35(1):1-18 (in Chinese).
https://doi.org/10.14132/j.cnki.1673-5439.2015.01.001

Shi WS, Dustdar S, 2016. The promise of edge computing.
Computer, 49(5):78-81.

 https://doi.org/10.1109/MC.2016.145
Shi WS, Cao J, Zhang Q, et al., 2016. Edge computing: vision

and challenges. IEEE Int Things J, 3(5):637-646.
 https://doi.org/10.1109/JIOT.2016.2579198
Shi WS, Sun H, Cao J, et al., 2017. Edge computing—an

emerging computing model for the Internet of Everything
era. J Comput Res Dev, 54(5):907-924 (in Chinese).

 https://doi.org/10.7544/issn1000-1239.2017.20160941
Wang H, Li Y, Mi MR, et al., 2013. Secure data fusion method

Yang et al. / Front Inform Technol Electron Eng 2021 22(3):374-399 399

based on supervisory mechanism for industrial Internet of
Things. Chin J Sci Instrum, 34(4):817-824 (in Chinese).

 https://doi.org/10.3969/j.issn.0254-3087.2013.04.016
Xu H, 2019. Implementation of edge calculation in motor

monitoring system. Electron Technol Soft Eng, (11):190-
192 (in Chinese).

Yang WY, Liu W, Huang H, et al., 2016. Research on power
private micro kernel-based secure operating system
technology. Electron Power Inform Commun Technol,
14(11):22-27 (in Chinese).

 https://doi.org/10.16543/j.2095-641x.electric.power.ict.
2016.11.004

Yang WY, Liu W, Wei XS, et al., 2019. Micro-kernel OS ar-
chitecture and its ecosystem construction for ubiquitous
electric power IoT. IEEE Int Conf on Energy Internet,
p.179-184. https://doi.org/10.1109/ICEI.2019.00038

Yang YM, Song ZH, 2015. Research on industrial Internet of
Things security and protection technology. Int Things
Technol, 5(3):64-66, 69 (in Chinese).

 https://doi.org/10.3969/j.issn.2095-1302.2015.03.028
Zhang JX, Wu XL, Yang Z, et al., 2018. Research and appli-

cation of industrial data acquisition based on industrial
Internet of Things. Telecommun Sci, 34(10):124-129 (in
Chinese).
https://doi.org/10.11959/j.issn.1000-0801.2018271

Zhou Q, 2018. GE Industrial Internet five years. Chin Ind
Inform Technol, (7):32-38.
https://doi.org/10.19609/j.cnki.cn10-1299/f.2018.07.005

Zuo PL, Zhou Q, Dai X, 2019. Analysis of industrial Internet
of Things technology in smart factory. Style Sci Technol,
(8):88 (in Chinese).

 https://doi.org/10.19392/j.cnki.1671-7341.201908072

	Weiyong YANG1,2, Wei LIU2, Xingshen WEI2, Zixin GUO2,
	Kangle YANG†‡2, Hao HUANG1, Longyun QI2

